1
|
Gigliotti A, Pereira HM. Emerging evidence on the effects of electrode arrangements and other parameters on the application of transcutaneous spinal direct current stimulation. J Neurophysiol 2025; 133:709-721. [PMID: 39819139 DOI: 10.1152/jn.00441.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025] Open
Abstract
Transcutaneous spinal direct current stimulation (TSDCS) has the potential to modulate spinal circuits and induce functional changes in humans. Nevertheless, differences across studies on basic parameters used and obtained metrics represent a confounding factor. Computer simulations are instrumental in improving the application of the TSDCS technique. Their findings allow a better interpretation of the tissue conductivities heterogeneity. Emerging findings indicate the electric field is maximal in the segments located between the electrodes, and that factors such as the depth of the targeted area, and location of the electrodes on low conductive points, such as the spinous processes, may impact the electric field generated in the spinal cord, with consequences for thoracic versus lumbar or cervical applications. Recently, growing attention has been directed toward the importance of the TSDCS reference electrode's position and its influence on the current field properties at the targeted site. This review highlights the influence of dosage, polarity, and electrode position on the variety of TSDCS results in healthy and some clinical populations. Based on the available evidence, we suggest that although the current dosage appears to have a negligible effect, the variety of electrode montages and configurations of TSDCS can significantly impact the electric field distributions and potentially explain the conflicting results of experimental studies. Future human trials should systematically and thoughtfully evaluate the location of TSDCS electrodes based on the targeted neural structures.
Collapse
Affiliation(s)
- Andrea Gigliotti
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - Hugo M Pereira
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| |
Collapse
|
2
|
Pascual-Valdunciel A, Ibáñez J, Rocchi L, Song J, Rothwell JC, Bhatia KP, Farina D, Latorre A. Frequency-Selective Suppression of Essential Tremor via Transcutaneous Spinal Cord Stimulation. Mov Disord 2024; 39:1817-1828. [PMID: 39113400 DOI: 10.1002/mds.29966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Essential tremor (ET) is a common debilitating condition, yet current treatments often fail to provide satisfactory relief. Transcutaneous spinal cord electrical stimulation (tSCS) has emerged as a potential noninvasive neuromodulation technique capable of disrupting the oscillatory activity underlying tremors. OBJECTIVE This study aimed to investigate the potential of tSCS to disrupt tremor in a frequency-dependent manner in a cohort of patients with ET. METHODS Eighteen patients with ET completed the study. The experiment consisted of 60-s postural tremor recording, during tSCS at tremor frequency, at 1 Hz, at 21 Hz, no stimulation, and trapezius stimulation. Tremor frequency and amplitude were analyzed and compared across the conditions. RESULTS We found tremor amplitude reduction at tremor frequency stimulation significant only during the second half of the stimulation. The same stimulation resulted in the highest number of responders. tSCS at 1 Hz showed a trend toward decreased tremor amplitude in the latter half of stimulation. tSCS at 21 Hz did not produce any significant alterations in tremor, whereas trapezius stimulation exacerbated it. Notably, during tremor frequency stimulation, a subgroup of responders exhibited consistent synchronization between tremor phase and delivered stimulation, indicating tremor entrainment. CONCLUSIONS Cervical tSCS holds promise for alleviating postural tremor in patients with ET when delivered at the subject's tremor frequency. The observed changes in tremor amplitude likely result from the modulation of spinal cord circuits by tSCS, which disrupts the oscillatory drive to muscles by affecting afferent pathways or spinal reflexes. However, the possibility of an interplay between spinal and supraspinal centers cannot be discounted. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Jaime Ibáñez
- Department of Bioengineering, Imperial College London, London, United Kingdom
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Joy Song
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Hvingelby VS, Carra RB, Terkelsen MH, Hamani C, Capato T, Košutzká Z, Krauss JK, Moro E, Pavese N, Cury RG. A Pragmatic Review on Spinal Cord Stimulation Therapy for Parkinson's Disease Gait Related Disorders: Gaps and Controversies. Mov Disord Clin Pract 2024; 11:927-947. [PMID: 38899557 PMCID: PMC11329578 DOI: 10.1002/mdc3.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Parkinson's Disease (PD) is a progressive neurological disorder that results in potentially debilitating mobility deficits. Recently, spinal cord stimulation (SCS) has been proposed as a novel therapy for PD gait disorders. The highest levels of evidence remain limited for SCS. OBJECTIVES In this systematic review and narrative synthesis, the literature was searched using combinations of key phrases indicating spinal cord stimulation and PD. METHODS We included pre-clinical studies and all published clinical trials, case reports, conference abstracts as well as protocols for ongoing clinical trials. Additionally, we included trials of SCS applied to atypical parkinsonism. RESULTS A total of 45 human studies and trials met the inclusion criteria. Based on the narrative synthesis, a number of knowledge gaps and future avenues of potential research were identified. This review demonstrated that evidence for SCS is currently not sufficient to recommend it as an evidence-based therapy for PD related gait disorders. There remain challenges and significant barriers to widespread implementation, including issues regarding patient selection, effective outcome selection, stimulation location and mode, and in programming parameter optimization. Results of early randomized controlled trials are currently pending. SCS is prone to placebo, lessebo and nocebo as well as blinding effects which may impact interpretation of outcomes, particularly when studies are underpowered. CONCLUSION Therapies such as SCS may build on current evidence and be shown to improve specific gait features in PD. Early negative trials should be interpreted with caution, as more evidence will be required to develop effective methodologies in order to drive clinical outcomes.
Collapse
Affiliation(s)
- Victor S. Hvingelby
- Department of Clinical Medicine – Nuclear Medicine and PET CenterAarhus UniversityAarhusDenmark
| | - Rafael B. Carra
- Department of Neurology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Miriam H. Terkelsen
- Department of Clinical Medicine – Nuclear Medicine and PET CenterAarhus UniversityAarhusDenmark
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| | - Tamine Capato
- Department of Neurology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Zuzana Košutzká
- Second Department of NeurologyComenius University BratislavaBratislavaSlovakia
| | - Joachim K. Krauss
- Department of Neurosurgery, Hannover Medical SchoolHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of NeurosciencesGrenobleFrance
| | - Nicola Pavese
- Clinical Ageing Research Unit Newcastle UniversityNewcastle upon TyneUK
| | | |
Collapse
|
4
|
Fernández-Pérez JJ, Serrano-Muñoz D, Beltran-Alacreu H, Avendaño-Coy J, Gómez-Soriano J. Trans-Spinal Direct Current Stimulation in Neurological Disorders: A systematic review. J Neurol Phys Ther 2024; 48:66-74. [PMID: 38015051 DOI: 10.1097/npt.0000000000000463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND PURPOSE Trans-spinal direct current stimulation (tsDCS) is a noninvasive stimulation technique that applies direct current stimulation over spinal levels. However, the effectiveness and feasibility of this stimulation are still unclear. This systematic review summarizes the effectiveness of tsDCS in clinical and neurophysiological outcomes in neurological patients, as well as its feasibility and safety. METHODS The search was conducted using the following databases: PEDro, Scopus, Web of Science, CINAHL, SPORTDiscus, and PubMed. The inclusion criteria were: Participants : people with central nervous system diseases; Interventions : tsDCS alone or in combination with locomotion training; Comparators : sham tsDCS, transcranial direct current stimulation, or locomotion training; Outcomes : clinical and neurophysiological measures; and Studies : randomized clinical trials. RESULTS Eight studies with a total of 143 subjects were included. Anodal tsDCS led to a reduction in hypertonia, neuropathic pain intensity, and balance deficits in people with hereditary spastic paraplegia, multiple sclerosis, and primary orthostatic tremor, respectively. In contrast, cathodal tsDCS only had positive effects on balance and tremor in people with primary orthostatic tremor. No severe adverse effects were reported during and after anodal or cathodal tsDCS. DISCUSSION AND CONCLUSIONS Although certain studies have found an effect of anodal tsDCS on specific clinical outcomes in people with central nervous system diseases, its effectiveness cannot be established since these findings have not been replicated and the results were heterogeneous. This stimulation was feasible and safe to apply. Further studies are needed to replicate the obtained results of tsDCS when applied in populations with neurological diseases.
Collapse
Affiliation(s)
- Juan José Fernández-Pérez
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| | | | | | | | | |
Collapse
|
5
|
Maccora S, Torrente A, Di Stefano V, Lupica A, Iacono S, Pilati L, Pignolo A, Brighina F. Non-pharmacological treatment of hereditary spastic paraplegia: a systematic review. Neurol Sci 2024; 45:963-976. [PMID: 37968432 PMCID: PMC10858081 DOI: 10.1007/s10072-023-07200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Affiliation(s)
- Simona Maccora
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy.
- Neurology Unit, ARNAS Civico di Cristina and Benfratelli Hospitals, 90127, Palermo, Italy.
| | - Angelo Torrente
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
| | - Antonino Lupica
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
| | - Salvatore Iacono
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
| | - Laura Pilati
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
| | - Antonia Pignolo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
- Department of Neuroscience, "S. Giovanni di Dio" Hospital, 88900, Crotone, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
| |
Collapse
|
6
|
Di Lazzaro V, Ranieri F, Bączyk M, de Carvalho M, Dileone M, Dubbioso R, Fernandes S, Kozak G, Motolese F, Ziemann U. Novel approaches to motoneuron disease/ALS treatment using non-invasive brain and spinal stimulation: IFCN handbook chapter. Clin Neurophysiol 2024; 158:114-136. [PMID: 38218077 DOI: 10.1016/j.clinph.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
Non-invasive brain stimulation techniques have been exploited in motor neuron disease (MND) with multifold objectives: to support the diagnosis, to get insights in the pathophysiology of these disorders and, more recently, to slow down disease progression. In this review, we consider how neuromodulation can now be employed to treat MND, with specific attention to amyotrophic lateral sclerosis (ALS), the most common form with upper motoneuron (UMN) involvement, taking into account electrophysiological abnormalities revealed by human and animal studies that can be targeted by neuromodulation techniques. This review article encompasses repetitive transcranial magnetic stimulation methods (including low-frequency, high-frequency, and pattern stimulation paradigms), transcranial direct current stimulation as well as experimental findings with the newer approach of trans-spinal direct current stimulation. We also survey and discuss the trials that have been performed, and future perspectives.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy.
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Królowej Jadwigi Street 27/39, 61-871 Poznań, Poland
| | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine-JLA, Egas Moniz Study Centre, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal; Department of Neurosciences and Mental Health, CHULN, Lisbon, Portugal
| | - Michele Dileone
- Faculty of Health Sciences, UCLM Talavera de la Reina, Toledo, Spain; Neurology Department, Hospital Nuestra Señora del Prado, Talavera de la Reina, Toledo, Spain
| | - Raffaele Dubbioso
- Neurophysiology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Napoli, Italy
| | - Sofia Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016-Lisboa, Portugal
| | - Gabor Kozak
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Francesco Motolese
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Awuah WA, Tan JK, Shkodina AD, Ferreira T, Adebusoye FT, Mazzoleni A, Wellington J, David L, Chilcott E, Huang H, Abdul-Rahman T, Shet V, Atallah O, Kalmanovich J, Jiffry R, Madhu DE, Sikora K, Kmyta O, Delva MY. Hereditary spastic paraplegia: Novel insights into the pathogenesis and management. SAGE Open Med 2023; 12:20503121231221941. [PMID: 38162912 PMCID: PMC10757446 DOI: 10.1177/20503121231221941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Hereditary spastic paraplegia is a genetically heterogeneous neurodegenerative disorder characterised primarily by muscle stiffness in the lower limbs. Neurodegenerative disorders are conditions that result from cellular and metabolic abnormalities, many of which have strong genetic ties. While ageing is a known contributor to these changes, certain neurodegenerative disorders can manifest early in life, progressively affecting a person's quality of life. Hereditary spastic paraplegia is one such condition that can appear in individuals of any age. In hereditary spastic paraplegia, a distinctive feature is the degeneration of long nerve fibres in the corticospinal tract of the lower limbs. This degeneration is linked to various cellular and metabolic processes, including mitochondrial dysfunction, remodelling of the endoplasmic reticulum membrane, autophagy, abnormal myelination processes and alterations in lipid metabolism. Additionally, hereditary spastic paraplegia affects processes like endosome membrane trafficking, oxidative stress and mitochondrial DNA polymorphisms. Disease-causing genetic loci and associated genes influence the progression and severity of hereditary spastic paraplegia, potentially affecting various cellular and metabolic functions. Although hereditary spastic paraplegia does not reduce a person's lifespan, it significantly impairs their quality of life as they age, particularly with more severe symptoms. Regrettably, there are currently no treatments available to halt or reverse the pathological progression of hereditary spastic paraplegia. This review aims to explore the metabolic mechanisms underlying the pathophysiology of hereditary spastic paraplegia, emphasising the interactions of various genes identified in recent network studies. By comprehending these associations, targeted molecular therapies that address these biochemical processes can be developed to enhance treatment strategies for hereditary spastic paraplegia and guide clinical practice effectively.
Collapse
Affiliation(s)
| | | | - Anastasiia D Shkodina
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
| | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Adele Mazzoleni
- Barts and the London School of Medicine and Dentistry, London, UK
| | - Jack Wellington
- Cardiff University School of Medicine, Cardiff University, Wales, UK
| | - Lian David
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Ellie Chilcott
- Cardiff University School of Medicine, Cardiff University, Wales, UK
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | - Vallabh Shet
- Faculty of Medicine, Bangalore Medical College and Research Institute, Karnataka, India
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Riaz Jiffry
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | | | - Mykhailo Yu Delva
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
8
|
Hassan AB, Salihu AT, Masta MA, Gunn H, Marsden J, Abdullahi A, Ahmad RY, Danazumi MS. Effect of transcutaneous spinal direct current stimulation on spasticity in upper motor neuron conditions: a systematic review and meta-analysis. Spinal Cord 2023; 61:587-599. [PMID: 37640926 DOI: 10.1038/s41393-023-00928-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
STUDY DESIGN A systematic review and meta-analysis of clinical trials. OBJECTIVES To determine the effect of non-invasive transcutaneous spinal direct current stimulation (tsDCS) on spasticity, activity limitations and participation restrictions in various upper motor neuron diseases. METHODS Six databases including CINAHL plus, Cochrane CENTRAL, Embase, MEDLINE, SCOPUS and Web of Science were searched for the relevant records from January 2008 to December 2022. Two reviewers independently selected and extracted data on spasticity, activity limitations and participation restrictions. The risk of bias was evaluated using the PEDro scale while the GRADE approach established the certainty of the evidence. RESULTS Eleven studies were identified of which 5 (45.5%) were rated as having a low risk of bias and 8 (72.7%) were meta-analyzed. The meta-analyses did not show any significant differences between cathodal (SMD = -0.67, 95% CI = -1.50 to 0.15, P = 0.11, I2 = 75%, 6 RCTs) or anodal (SMD = 0.11, 95% CI = -0.43 to -0.64, p = 0.69, I2 = 0%, 2 RCTs) and sham tsDCS for spasticity. There was also no significant difference between active and sham tsDCS for activity limitations (SMD = -0.42, 95% CI = -0.04 to 0.21, p = 0.2, I2 = 0%, 2 RCTs) and participation restrictions (MD = -8.10, 95% CI = -18.02 to 1.82, p = 0.11, 1 RCT). CONCLUSIONS The meta-analysis of the available evidence provides an uncertain estimate of the effect of cathodal tsDCS on spasticity, activity limitation and participation restriction. It might be very helpful, or it may make no difference at all. However, considering the level of the evidence and the limitation in the quality of the majority of the included studies, further well-designed research may likely change the estimate of effect. TRIAL REGISTRATION PROSPERO CRD42021245601.
Collapse
Affiliation(s)
- Auwal B Hassan
- Department of Medical Rehabilitation (Physiotherapy), Faculty of Allied Health Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Abubakar T Salihu
- Department of Physiotherapy, Monash University, Melbourne, VIC, Australia
| | - Mamman A Masta
- Department of Medical Rehabilitation (Physiotherapy), Faculty of Allied Health Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Hilary Gunn
- Peninsula Allied Health Centre, University of Plymouth, Plymouth, UK
| | - Jonathan Marsden
- Peninsula Allied Health Centre, University of Plymouth, Plymouth, UK
| | - Auwal Abdullahi
- Department of Physiotherapy, Bayero University Kano, Kano, Nigeria
| | - Rufa'i Y Ahmad
- Department of Physiotherapy, Bayero University Kano, Kano, Nigeria
| | - Musa S Danazumi
- Discipline of Physiotherapy, School of Allied Health, Human Services and Sport, College of Sciences, Health and Engineering, La Trobe University, Bundoora, VIC, 3085, Australia.
| |
Collapse
|
9
|
Faccioli S, Cavalagli A, Falocci N, Mangano G, Sanfilippo I, Sassi S. Gait analysis patterns and rehabilitative interventions to improve gait in persons with hereditary spastic paraplegia: a systematic review and meta-analysis. Front Neurol 2023; 14:1256392. [PMID: 37799279 PMCID: PMC10548139 DOI: 10.3389/fneur.2023.1256392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
Background Hereditary spastic paraplegias (HSPs) are a group of inheritance diseases resulting in gait abnormalities, which may be detected using instrumented gait analysis. The aim of this systematic review was 2-fold: to identify specific gait analysis patterns and interventions improving gait in HSP subjects. Methods A systematic review was conducted in PubMed, Cochrane Library, REHABDATA, and PEDro databases, in accordance with reporting guidelines of PRISMA statement and Cochrane's recommendation. The review protocol was recorded on the PROSPERO register. Patients with pure and complicated HSP of any age were included. All types of studies were included. Risk of bias, quality assessment, and meta-analysis were performed. Results Forty-two studies were included: 19 were related to gait analysis patterns, and 24 were intervention studies. The latter ones were limited to adults. HSP gait patterns were similar to cerebral palsy in younger subjects and stroke in adults. Knee hyperextension, reduced range of motion at knee, ankle, and hip, reduced foot lift, and increased rapid trunk and arm movements were reported. Botulinum injections reduced spasticity but uncovered weakness and improved gait velocity at follow-up. Weak evidence supported intrathecal baclofen, active intensive physical therapy (i.e., robot-assisted gait training, functional exercises, and hydrotherapy), and functional electrical stimulation. Some improvements but adverse events were reported after transcranial magnetic stimulation, transcutaneous spinal direct current stimulation, and spinal cord stimulation implant. Conclusion Knee hyperextension, non-sagittal pelvic movements, and reduced ROM at the knee, ankle, and hip represent the most peculiar patterns in HSP, compared to diplegic cerebral palsy and stroke. Botulinum improved comfortable gait velocity after 2 months. Nonetheless, interventions reducing spasticity might result in ineffective functional outcomes unveiling weakness. Intensive active physical therapy and FES might improve gait velocity in the very short term.
Collapse
Affiliation(s)
- Silvia Faccioli
- Children Rehabilitation Unit, Azienda Unità Sanitaria Locale IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Cavalagli
- Children Rehabilitation Unit, IRCCS Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Nicola Falocci
- Office of Policy Evaluation and Statistical Studies, Umbria Legislative Assembly, Perugia, Italy
| | - Giulia Mangano
- Department of Physical Medicine and Rehabilitation, Azienda Sanitaria Provinciale 3 (ASP 3), Acireale Hospital, Catania, Italy
| | | | - Silvia Sassi
- Children Rehabilitation Unit, Azienda Unità Sanitaria Locale IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
10
|
Siow SF, Yeow D, Rudaks LI, Jia F, Wali G, Sue CM, Kumar KR. Outcome Measures and Biomarkers for Clinical Trials in Hereditary Spastic Paraplegia: A Scoping Review. Genes (Basel) 2023; 14:1756. [PMID: 37761896 PMCID: PMC10530989 DOI: 10.3390/genes14091756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is characterized by progressive lower limb spasticity. There is no disease-modifying treatment currently available. Therefore, standardized, validated outcome measures to facilitate clinical trials are urgently needed. We performed a scoping review of outcome measures and biomarkers for HSP to provide recommendations for future studies and identify areas for further research. We searched Embase, Medline, Scopus, Web of Science, and the Central Cochrane database. Seventy studies met the inclusion criteria, and eighty-three outcome measures were identified. The Spastic Paraplegia Rating Scale (SPRS) was the most widely used (27 studies), followed by the modified Ashworth Scale (18 studies) and magnetic resonance imaging (17 studies). Patient-reported outcome measures (PROMs) were infrequently used to assess treatment outcomes (28% of interventional studies). Diffusion tensor imaging, gait analysis and neurofilament light chain levels were the most promising biomarkers in terms of being able to differentiate patients from controls and correlate with clinical disease severity. Overall, we found variability and inconsistencies in use of outcome measures with a paucity of longitudinal data. We highlight the need for (1) a standardized set of core outcome measures, (2) validation of existing biomarkers, and (3) inclusion of PROMs in HSP clinical trials.
Collapse
Affiliation(s)
- Sue-Faye Siow
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards 2065, Australia
| | - Dennis Yeow
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Neuroscience Research Australia, University of New South Wales, Randwick 2031, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Department of Neurology, Concord Hospital, Concord 2139, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Randwick 2031, Australia
| | - Laura I. Rudaks
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards 2065, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Department of Neurology, Concord Hospital, Concord 2139, Australia
| | - Fangzhi Jia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
| | - Gautam Wali
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Neuroscience Research Australia, University of New South Wales, Randwick 2031, Australia
| | - Carolyn M. Sue
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Neuroscience Research Australia, University of New South Wales, Randwick 2031, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Randwick 2031, Australia
- School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Kensington 2052, Australia
| | - Kishore R. Kumar
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Department of Neurology, Concord Hospital, Concord 2139, Australia
- School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Kensington 2052, Australia
| |
Collapse
|
11
|
Chen S, Zhou Z, Ren M, Chen X, Shi X, Zhang S, Xu S, Zhang X, Zhang X, Lin W, Shan C. Case report: High-frequency repetitive transcranial magnetic stimulation for treatment of hereditary spastic paraplegia type 11. Front Neurol 2023; 14:1162149. [PMID: 37273711 PMCID: PMC10232891 DOI: 10.3389/fneur.2023.1162149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of inherited neurodegenerative disorders that currently have no cure. HSP type 11 (SPG11-HSP) is a complex form carrying mutations in the SPG11 gene. Neuropathological studies demonstrate that motor deficits in these patients are mainly attributed to axonal degeneration of the corticospinal tract (CST). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique that can induce central nervous system plasticity and promote neurological recovery by modulating the excitability of cortical neuronal cells. Although rTMS is expected to be a therapeutic tool for neurodegenerative diseases, no previous studies have applied rTMS to treat motor symptoms in SPG11-HSP. Here, we report a case of SPG11-HSP with lower extremity spasticity and gait instability, which were improved by applying high-frequency rTMS (HF-rTMS) at the primary motor cortex (M1). Clinical and physiological features were measured throughout the treatment, including the Modified Ashworth Scale (MAS), Berg Balance Scale (BBS), the timed up and go (TUG) test and the 10-meter walk test time (10 MWT). The structure and excitability of the CST were assessed by diffusion tensor imaging (DTI) and transcranial magnetic stimulation (TMS), respectively. After treatment, the patient gained 17 points of BBS, along with a gradual decrease in MAS scores of the bilateral lower extremity. In addition, the TUG test and 10 MWT improved to varying degrees. TMS assessment showed increased motor evoked potential (MEP) amplitude, decreased resting motor threshold (RMT), decreased central motor conduction time (CMCT), and decreased difference in the cortical silent period (CSP) between bilateral hemispheres. Using the DTI technique, we observed increased fractional anisotropy (FA) values and decreased mean diffusivity (MD) and radial diffusivity (RD) values in the CST. It suggests that applying HF-rTMS over the bilateral leg area of M1 (M1-LEG) is beneficial for SPG11-HSP. In this study, we demonstrate the potential of rTMS to promote neurological recovery from both functional and structural perspectives. It may provide a clinical rationale for using rTMS in the rehabilitation of HSP patients.
Collapse
Affiliation(s)
- Songmei Chen
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqing Zhou
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Ren
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xixi Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Shi
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sicong Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shutian Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Xiaolin Zhang
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Xingyuan Zhang
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Wanlong Lin
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
12
|
Guidetti M, Giannoni-Luza S, Bocci T, Pacheco-Barrios K, Bianchi AM, Parazzini M, Ionta S, Ferrucci R, Maiorana NV, Verde F, Ticozzi N, Silani V, Priori A. Modeling Electric Fields in Transcutaneous Spinal Direct Current Stimulation: A Clinical Perspective. Biomedicines 2023; 11:1283. [PMID: 37238953 PMCID: PMC10216237 DOI: 10.3390/biomedicines11051283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Clinical findings suggest that transcutaneous spinal direct current stimulation (tsDCS) can modulate ascending sensitive, descending corticospinal, and segmental pathways in the spinal cord (SC). However, several aspects of the stimulation have not been completely understood, and realistic computational models based on MRI are the gold standard to predict the interaction between tsDCS-induced electric fields and anatomy. Here, we review the electric fields distribution in the SC during tsDCS as predicted by MRI-based realistic models, compare such knowledge with clinical findings, and define the role of computational knowledge in optimizing tsDCS protocols. tsDCS-induced electric fields are predicted to be safe and induce both transient and neuroplastic changes. This could support the possibility to explore new clinical applications, such as spinal cord injury. For the most applied protocol (2-3 mA for 20-30 min, active electrode over T10-T12 and the reference on the right shoulder), similar electric field intensities are generated in both ventral and dorsal horns of the SC at the same height. This was confirmed by human studies, in which both motor and sensitive effects were found. Lastly, electric fields are strongly dependent on anatomy and electrodes' placement. Regardless of the montage, inter-individual hotspots of higher values of electric fields were predicted, which could change when the subjects move from a position to another (e.g., from the supine to the lateral position). These characteristics underlines the need for individualized and patient-tailored MRI-based computational models to optimize the stimulation protocol. A detailed modeling approach of the electric field distribution might contribute to optimizing stimulation protocols, tailoring electrodes' configuration, intensities, and duration to the clinical outcome.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Stefano Giannoni-Luza
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology—University of Lausanne, Jules Gonin Eye Hospital/Fondation Asile des Aveugles, 1015 Lausanne, Switzerland; (S.G.-L.); (S.I.)
| | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy;
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA 02129, USA;
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Lima 15024, Peru
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria Dell’Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), 10129 Milan, Italy;
| | - Silvio Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology—University of Lausanne, Jules Gonin Eye Hospital/Fondation Asile des Aveugles, 1015 Lausanne, Switzerland; (S.G.-L.); (S.I.)
| | - Roberta Ferrucci
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy;
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Natale Vincenzo Maiorana
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
| | - Federico Verde
- Department of Neurology, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy; (F.V.); (N.T.); (V.S.)
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy; (F.V.); (N.T.); (V.S.)
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Vincenzo Silani
- Department of Neurology, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy; (F.V.); (N.T.); (V.S.)
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy;
| |
Collapse
|
13
|
Tufo T, Ciavarro M, Di Giuda D, Piccininni C, Piano C, Daniele A. Spinal cord stimulation may improve gait and cognition in hereditary spastic paraplegia with mental retardation: a case report. Neurol Sci 2023; 44:961-966. [PMID: 36369309 DOI: 10.1007/s10072-022-06487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) include various sporadic and hereditary neurodegenerative disorders, characterized by progressive spasticity and weakness of lower limbs, possibly associated to additional features. CASE PRESENTATION We report a male HPS patient in his 40 s, showing mental retardation associated with language impairment, dysarthria, and increased urinary frequency. Three months after treatment with electric chronic high-frequency cervical spinal cord stimulation (HF-SCS), he showed an amelioration of motor symptoms (lower limbs spasticity and gait), dysarthria, cognitive functioning (language and constructive praxic abilities), and urinary symptoms (decreased urinary frequency). Single-photon emission computed tomography (SPECT) showed a postoperative increase of cerebral perfusion in right frontal cortex and temporal cortex bilaterally. CONCLUSION In our patient, HF-SCS might have induced an activation of ascending neural pathways, resulting in changes in activity in various cortical areas (including sensory-motor cortical areas), which may give rise to a modulation of activity in spared descending motor pathways and in neural networks involved in cognitive functions, including language. Although further studies in patients with HPS are needed to clarify whether HF-SCS can be a suitable treatment option in HSP, our observation suggests that HF-SCS, a minimally invasive neurosurgical procedure, might induce beneficial effects of on various symptoms of such orphan disease.
Collapse
Affiliation(s)
- Tommaso Tufo
- Neurosurgery Unit, IRCCS Fondazione Policlinico Universitario A.Gemelli, Rome, Italy
| | | | - Daniela Di Giuda
- Nuclear Medicine Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Piccininni
- Department of Geriatrics, Neurosciences and Orthopedics, High Intensity Neurorehabilitation Unit, Policlinico Universitario A. Gemelli, Rome, Italy
| | - Carla Piano
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Daniele
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| |
Collapse
|
14
|
Differential effects of invasive anodal trans-spinal direct current stimulation on monosynaptic EPSPs, Ia afferents excitability, and motoneuron intrinsic properties between SOD1 G93A and WT mice. Neuroscience 2022; 498:125-143. [DOI: 10.1016/j.neuroscience.2022.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 06/25/2022] [Indexed: 01/06/2023]
|
15
|
Mai AS, Yong JH, Lim OZH, Tan EK. Non-Invasive Electrical Stimulation in Patients with Neurodegenerative Ataxia and Spasticity: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Eur J Neurol 2022; 29:2842-2850. [PMID: 35666142 DOI: 10.1111/ene.15438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND There are limited treatment options for patients with neurodegenerative ataxia and spasticity. Non-invasive electrostimulation (NES) is receiving increasing interest because of its ease of implementation, cost-effectiveness, and safety. We conducted a meta-analysis to evaluate the efficacy of NES. METHODS We screened Medline and Embase for studies using NES in ataxias and spasticity. Key outcome measurements of effectiveness included changes in: (1) Modified Ashworth Scale (MAS) scores, (2) cerebellar brain inhibition (CBI), (3) 9-hole peg test (9HPT), (4) 8-meter walking time (8MWT), (5) International Cooperative Ataxia Rating Scale (ICARS) scores, (6) Scale for Assessment and Rating of Ataxia (SARA) scores. RESULTS Seven randomised controlled trials (RCTs) involving 203 patients were included. There were significant improvements in MAS (MD -0.42, 95% CI -0.76 to -0.08, P=0.015), CBI (MD -0.35%, 95% CI -0.42 to -0.28, P<0.001), 8MWT (MD -1.88 seconds, 95% CI -3.26 to -0.49, P=0.008), ICARS (MD -7.84, 95% CI -11.90 to -3.78, P<0.001), and SARA (MD -3.01, 95% CI -4.74 to -1.28, P<0.001). There was almost no heterogeneity across all outcomes except for CBI (I2 =79%). No significant changes in 9HPT were observed when comparing NES to a sham procedure (MD -3.52 seconds, 95% CI -9.15 to 2.10, P=0.220). Most included studies were at low risk of bias, and no severe adverse effects were reported. CONCLUSION We demonstrated that NES is an effective treatment for improving coordination and balance, and increased exercise capacity in patients with ataxia and spasticity. There was also a significant modulation of CBI in ataxic patients.
Collapse
Affiliation(s)
- Aaron Shengting Mai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jung Hahn Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Oliver Zi Hern Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, General Hospital Campus, National Neuroscience Institute, Singapore, Singapore.,Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| |
Collapse
|
16
|
Rahman MA, Tharu NS, Gustin SM, Zheng YP, Alam M. Trans-Spinal Electrical Stimulation Therapy for Functional Rehabilitation after Spinal Cord Injury: Review. J Clin Med 2022; 11:1550. [PMID: 35329875 PMCID: PMC8954138 DOI: 10.3390/jcm11061550] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating injuries in the world. Complications after SCI, such as respiratory issues, bowel/bladder incontinency, pressure ulcers, autonomic dysreflexia, spasticity, pain, etc., lead to immense suffering, a remarkable reduction in life expectancy, and even premature death. Traditional rehabilitations for people with SCI are often insignificant or ineffective due to the severity and complexity of the injury. However, the recent development of noninvasive electrical neuromodulation treatments to the spinal cord have shed a ray of hope for these individuals to regain some of their lost functions, a reduction in secondary complications, and an improvement in their life quality. For this review, 250 articles were screened and about 150 were included to summarize the two most promising noninvasive spinal cord electrical stimulation methods of SCI rehabilitation treatment, namely, trans-spinal direct current stimulation (tsDCS) and trans-spinal pulsed current stimulation (tsPCS). Both treatments have demonstrated good success in not only improving the sensorimotor function, but also autonomic functions. Due to the noninvasive nature and lower costs of these treatments, in the coming years, we expect these treatments to be integrated into regular rehabilitation therapies worldwide.
Collapse
Affiliation(s)
- Md. Akhlasur Rahman
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
- Centre for the Rehabilitation of the Paralysed (CRP), Savar Union 1343, Bangladesh
| | - Niraj Singh Tharu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
| | - Sylvia M. Gustin
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia;
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
| | - Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia;
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW 2031, Australia
| |
Collapse
|
17
|
Lallemant-Dudek P, Darios F, Durr A. Recent advances in understanding hereditary spastic paraplegias and emerging therapies. Fac Rev 2021; 10:27. [PMID: 33817696 PMCID: PMC8009193 DOI: 10.12703/r/10-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of rare, inherited, neurological diseases characterized by broad clinical and genetic heterogeneity. Lower-limb spasticity with first motoneuron involvement is the core symptom of all HSPs. As spasticity is a syndrome and not a disease, it develops on top of other neurological signs (ataxia, dystonia, and parkinsonism). Indeed, the definition of genes responsible for HSPs goes beyond the 79 identified SPG genes. In order to avoid making a catalog of the different genes involved in HSP in any way, we have chosen to focus on the HSP with cerebellar ataxias since this is a frequent association described for several genes. This overlap leads to an intermediary group of spastic ataxias which is actively genetically and clinically studied. The most striking example is SPG7, which is responsible for HSP or cerebellar ataxia or both. There are no specific therapies against HSPs, and there is a dearth of randomized trials in patients with HSP, especially on spasticity when it likely results from other mechanisms. Thus far, no gene-specific therapy has been developed for HSP, but emerging therapies in animal models and neurons derived from induced pluripotent stem cells are potential treatments for patients.
Collapse
Affiliation(s)
- Pauline Lallemant-Dudek
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Frederic Darios
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Alexandra Durr
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Genetic Department, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
18
|
Bączyk M, Krutki P, Zytnicki D. Is there hope that transpinal direct current stimulation corrects motoneuron excitability and provides neuroprotection in amyotrophic lateral sclerosis? Physiol Rep 2021; 9:e14706. [PMID: 33463907 PMCID: PMC7814489 DOI: 10.14814/phy2.14706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of largely unknown pathophysiology, characterized by the progressive loss of motoneurons (MNs). We review data showing that in presymptomatic ALS mice, MNs display reduced intrinsic excitability and impaired level of excitatory inputs. The loss of repetitive firing specifically affects the large MNs innervating fast contracting muscle fibers, which are the most vulnerable MNs in ALS. Interventions that aimed at restoring either the intrinsic excitability or the synaptic excitation result in a decrease of disease markers in MNs and delayed neuromuscular junction denervation. We then focus on trans‐spinal direct current stimulation (tsDCS), a noninvasive tool, since it modulates the activity of spinal neurons and networks. Effects of tsDCS depend on the polarity of applied current. Recent work shows that anodal tsDCS induces long‐lasting enhancement of MN excitability and synaptic excitation of spinal MNs. Moreover, we show preliminary results indicating that anodal tsDCS enhances the excitatory synaptic inputs to MNs in ALS mice. In conclusion, we suggest that chronic application of anodal tsDCS might be useful as a complementary method in the management of ALS patients.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| | - Piotr Krutki
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| | - Daniel Zytnicki
- Université de Paris, Centre National de la Recherche Scientifique (CNRS), Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France
| |
Collapse
|
19
|
Transcutaneous spinal direct current stimulation shows no effect on paired stimulation suppression of the somatosensory cortex. Sci Rep 2020; 10:22010. [PMID: 33319846 PMCID: PMC7738485 DOI: 10.1038/s41598-020-79131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/03/2020] [Indexed: 11/08/2022] Open
Abstract
Transcutaneous spinal direct current stimulation (tsDCS) is a safe and convenient method of neuromodulation. It has been proven to alter sensory processing at cervicomedullary level by amplitude changes of the P30 response of tibial nerve somatosensory evoked potentials (TN SEPs). With knowledge that tsDCS affects cortical circuits, we hypothesized that tsDCS may also affect intracortical excitability of the somatosensory cortex assessed by paired stimulation suppression (PSS). Fourteen healthy men were included in this prospective, single-blinded, placebo-controlled crossover study. Single (SS) and paired stimulation (PS) TN SEPs were recorded over the scalp before, immediately as well as 30 and 60 min after applying 15 min of tsDCS over the twelfth thoracic vertebra. Each volunteer underwent three independent and randomized sessions of either cathodal, anodal or sham stimulation. tsDCS showed no effect on peak-to-peak amplitudes or latencies of cortical P40-N50 response after SS. Furthermore, tsDCS failed to induce significant changes on amplitude ratios of PSS, thus showing no impact on intracortical excitability of the somatosensory cortex in healthy subjects. Further research is required to reveal the different mechanisms and to strengthen clinical use of this promising technique.
Collapse
|
20
|
Bączyk M, Drzymała-Celichowska H, Mrówczyński W, Krutki P. Polarity-dependent adaptations of motoneuron electrophysiological properties after 5-wk transcutaneous spinal direct current stimulation in rats. J Appl Physiol (1985) 2020; 129:646-655. [DOI: 10.1152/japplphysiol.00301.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcutaneous spinal direct current stimulation applied systematically for 5 wk evoked polarity-dependent adaptations in the electrophysiological properties of rat spinal motoneurons. After anodal polarization sessions, motoneurons became more excitable and could evoke higher maximum discharge frequencies during repetitive firing than motoneurons in the sham polarization group. However, no significant adaptive changes of motoneuron properties were observed after repeated cathodal polarization in comparison with the sham control group.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Hanna Drzymała-Celichowska
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
- Department of Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | | | - Piotr Krutki
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
21
|
Paget-Blanc A, Chang JL, Saul M, Lin R, Ahmed Z, Volpe BT. Non-invasive treatment of patients with upper extremity spasticity following stroke using paired trans-spinal and peripheral direct current stimulation. Bioelectron Med 2020; 5:11. [PMID: 32232101 PMCID: PMC7098221 DOI: 10.1186/s42234-019-0028-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Background Muscle spasticity is a common impediment to motor recovery in patients with chronic stroke. Standard-of-care treatments such as botulinum toxin injections can temporarily relieve muscle stiffness and pain associated with spasticity, but often at the expense of increased muscle weakness. Recent preclinical investigations of a non-invasive treatment that pairs trans-spinal direct current stimulation and peripheral nerve direct current stimulation (tsDCS+pDCS) provided promising data for a novel approach based on bioelectronic medicine for the treatment of patients with post-stroke spasticity. Methods Twenty-six patients with upper limb hemiparesis and wrist spasticity at least 6 months after their initial stroke participated in this single-blind crossover design study to test whether tsDCS+pDCS reduces chronic upper-extremity spasticity. Subjects received five consecutive daily sessions (20 min of stimulation or sham) of anodal tsDCS+pDCS, separated by a one-week washout period. The sham condition always preceded the active condition. Clinical and objective measures of spasticity and motor function were collected before and after each condition, and for five weeks after the completion of the active intervention. Results Subjects treated with active tsDCS+pDCS demonstrated significant reductions in both Modified Tardieu Scale scores (summed across the upper limb, P < 0.05), and in objective torque measures (Nm) of the spastic catch response at the wrist flexor (P < 0.05), compared to the sham condition. Motor function also improved significantly (measured by the Fugl-Meyer and Wolf Motor Function Test; P < 0.05 for both tests) after active treatment. Conclusions tsDCS+pDCS intervention alone significantly reduced upper limb spasticity in participants with stroke. Decreased spasticity was persistent for five weeks after treatment, and was accompanied by improved motor function even though patients were unsupervised and there was no prescribed activity or training during that interval. Trial registration NCT03080454, March 15, 2017.
Collapse
Affiliation(s)
- Alexandra Paget-Blanc
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Johanna L Chang
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Maira Saul
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Regina Lin
- BARC Global Central Laboratory, 5 Delaware Dr, Hyde Park, NY 11042 USA
| | - Zaghloul Ahmed
- College of Staten Island, Department of Physical Therapy, Center for Developmental Neuroscience, Staten Island, NY 10314 USA.,4Graduate Center, City University of New York, New York, NY USA
| | - Bruce T Volpe
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| |
Collapse
|
22
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
Affiliation(s)
- Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Rio Grande do Norte Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Kátia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Andre Fonseca
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Tommaso Bocci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milan, Italy
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Raaj Chatterjee
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Jeffrey M. Hausdorff
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Luciane Aparecida Moscaleski
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Marcelo Salvador Caetano
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Kátia Nunes Sá
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Alexandre Hideki Okano
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Graduate Program in Physical Education. State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
23
|
Bączyk M, Drzymała-Celichowska H, Mrówczyński W, Krutki P. Long-lasting modifications of motoneuron firing properties by trans-spinal direct current stimulation in rats. Eur J Neurosci 2019; 51:1743-1755. [PMID: 31677210 DOI: 10.1111/ejn.14612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Trans-spinal direct current stimulation (tsDCS) is a novel neuromodulatory technique that has been used during neurological rehabilitation and sports to modulate muscle activation. However, the physiological mechanisms that underly the long-lasting functional effects of polarization are not yet fully understood, nor are their relationships with specific neuronal populations. The acute facilitatory and depressive effects of anodal and cathodal polarization on motoneurons have been recently demonstrated, and the aim of this study was to determine whether tsDCS-evoked modulations of motoneuron properties are able to persist over several hours. Intracellular recordings from multiple antidromically identified rat motoneurons were performed both before and after the application of tsDCS (0.1 mA for 15 min), at various time points up to 180 min after the offset of anodal or cathodal tsDCS. The examined effects of anodal polarization included decreased rheobase, voltage threshold, the minimum and maximum currents necessary for rhythmic firing, increased rhythmic firing frequencies and the slope of the f-I relationship. The majority of these facilitatory changes to threshold and firing properties were sustained for 30-60 min after polarization. In contrast, the significant effects of cathodal polarization were absent, except the short-lasting decreased ability for motoneurons to induce rhythmic activity. This study provides direct evidence that a single polarization session can alter the electrophysiological properties of motoneurons for at least one hour and provides a basis for the further use of tsDCS techniques under conditions where the sustained modification of motoneuron firing is desired.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Hanna Drzymała-Celichowska
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland.,Department of Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | | | - Piotr Krutki
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
24
|
Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol 2019; 18:1136-1146. [PMID: 31377012 DOI: 10.1016/s1474-4422(19)30235-2] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Hereditary spastic paraplegia (HSP) describes a heterogeneous group of genetic neurodegenerative diseases characterised by progressive spasticity of the lower limbs. The pathogenic mechanism, associated clinical features, and imaging abnormalities vary substantially according to the affected gene and differentiating HSP from other genetic diseases associated with spasticity can be challenging. Next generation sequencing-based gene panels are now widely available but have limitations and a molecular diagnosis is not made in most suspected cases. Symptomatic management continues to evolve but with a greater understanding of the pathophysiological basis of individual HSP subtypes there are emerging opportunities to provide targeted molecular therapies and personalised medicine.
Collapse
|
25
|
Gómez-Soriano J, Megía-García A, Serrano-Muñoz D, Osuagwu B, Taylor J. Non-invasive spinal direct current stimulation for spasticity therapy following spinal cord injury: mechanistic insights contributing to long-term treatment effects. J Physiol 2019; 597:2121-2122. [PMID: 30820947 DOI: 10.1113/jp277740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Escuela Universitaria de Enfermería y Fisioterapia, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Alvaro Megía-García
- Biomechanics and Technical Aids Unit, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Diego Serrano-Muñoz
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Bethel Osuagwu
- Stoke Mandeville Spinal Research, National Spinal Injuries Centre, Aylesbury, UK
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo, Spain.,Harris Manchester College, University of Oxford, Oxford, UK
| |
Collapse
|