1
|
Craven BC, Souza WH, Jaglal S, Gibbs J, Wiest MJ, Sweet SN, Athanasopoulos P, Lamontagne ME, Boag L, Patsakos E, Wolfe D, Hicks A, Maltais DB, Best KL, Gagnon D. Reducing endocrine metabolic disease risk in adults with chronic spinal cord injury: strategic activities conducted by the Ontario-Quebec RIISC team. Disabil Rehabil 2024; 46:4835-4847. [PMID: 38018518 DOI: 10.1080/09638288.2023.2284223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/17/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE The Rehabilitation Interventions for Individuals with a Spinal Cord Injury in the Community (RIISC) team aimed to develop and evaluate innovative rehabilitation interventions to identify endocrine metabolic disease (EMD) risk, intending to reduce the frequency and severity of EMD related morbidity and mortality among adults living with chronic spinal cord injury or disease (SCI/D). MATERIALS AND METHODS An interprovincial team from Ontario and Quebec reviewed available EMD literature and evidence syntheses and completed an inventory of health services, policies and practices in SCI/D care. The review outcomes were combined with expert opinion to create an EMD risk model to inform health service transformation. RESULTS EMD risk and mortality are highly prevalent among adults with chronic SCI/D. In stark contrast, few rehabilitation interventions target EMD outcomes. The modelled solution proposes: 1) abandoning single-disease paradigms and examining a holistic perspective of the individual's EMD risk, and 2) developing and disseminating practice-based research approaches in outpatient community settings. CONCLUSIONS RIISC model adoption could accelerate EMD care optimization, and ultimately inform the design of large-scale longitudinal pragmatic trials likely to improve health outcomes. Linking the RIISC team activities to economic evaluations and policy deliverables will strengthen the relevance and impact among policymakers, health care providers and patients.
Collapse
Affiliation(s)
- Beverley Catharine Craven
- Toronto Rehabilitation Institute, Lyndhurst Centre, University Health Network, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Wagner Henrique Souza
- Kite Research Institute, University Health Network, Lyndhurst Centre, Toronto, Canada
| | - Susan Jaglal
- Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Jenna Gibbs
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | | | - Shane N Sweet
- Department of Kinesiology & Physical Education, McGill University, Montreal, Canada
| | - Peter Athanasopoulos
- Senior Manager Public Policy and Government Relations, Spinal Cord Injury Ontario, Toronto, Canada
| | | | - Lynn Boag
- University of Guelph, Guelph, Canada
| | - Eleni Patsakos
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Dalton Wolfe
- Department of Physical Medicine and Rehabilitation, Western University, Parkwood Institute Research, London, Canada
| | - Audrey Hicks
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Désirée B Maltais
- Department of Rehabilitation, Physiotherapy Program, Laval University, Quebec City, Canada
| | - Krista Lynn Best
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Dany Gagnon
- School of Rehabilitation, Université de Montréal, Montréal, Canada
- Centre for Interdisciplinary Research in Rehabilitation, Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), Montréal, Canada
- Rehabilitation, Université de Montréal, École de Réadaptation, Montréal, Canada
| |
Collapse
|
2
|
Bass A, Morin SN, Guidea M, Lam JTAT, Karelis AD, Aubertin-Leheudre M, Gagnon DH. Potential Effects of an Exoskeleton-Assisted Overground Walking Program for Individuals With Spinal Cord Injury Who Uses a Wheelchair on Imaging and Serum Markers of Bone Strength: Pre-Post Study. JMIR Rehabil Assist Technol 2024; 11:e53084. [PMID: 38163294 PMCID: PMC10790203 DOI: 10.2196/53084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND As many as 60% of individuals use a wheelchair long term after a spinal cord injury (SCI). This mode of locomotion leads to chronic decline in lower-extremity weight-bearing activities and contributes to the development of severe sublesional osteoporosis and high rates of fragility fracture. Overground exoskeleton-assisted walking programs provide a novel opportunity to increase lower-extremity weight bearing, with the potential to improve bone health. OBJECTIVE The aim of the study is to measure the potential effects of an exoskeleton-assisted walking program on lower-extremity bone strength and bone remodeling biomarkers in individuals with chronic (≥18 months) SCI who use a wheelchair. METHODS In total, 10 participants completed a 16-week exoskeleton-assisted walking program (34 individualized 1-hour sessions, progressing from 1 to 3 per week). Bone mineral density and bone strength markers (dual-energy x-ray absorptiometry: total body, left arm, leg, total hip, and femoral neck and peripheral quantitative computed tomography: 25% of left femur and 66% of left tibia) as well as bone remodeling biomarkers (formation=osteocalcin and resorption=C-telopeptide) were measured before and after intervention and compared using nonparametric tests. Changes were considered significant and meaningful if the following criteria were met: P<0.1, effect size ≥0.5, and relative variation >5%. RESULTS Significant and meaningful increases were observed at the femur (femoral neck bone mineral content, bone strength index, and stress-strain index) and tibia (cortical cross-sectional area and polar moment of inertia) after the intervention (all P<.10). We also noted a decrease in estimated femoral cortical thickness. However, no changes in bone remodeling biomarkers were found. CONCLUSIONS These initial results suggest promising improvements in bone strength markers after a 16-week exoskeleton-assisted walking program in individuals with chronic SCI. Additional research with larger sample sizes, longer interventions (possibly of greater loading intensity), and combined modalities (eg, pharmacotherapy or functional electrical stimulation) are warranted to strengthen current evidence. TRIAL REGISTRATION ClinicalTrials.gov NCT03989752; https://clinicaltrials.gov/ct2/show/NCT03989752. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR2-10.2196/19251.
Collapse
Affiliation(s)
- Alec Bass
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Centre Intégré Universitaire de Santé et Services Sociaux (CIUSSS) du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
| | - Suzanne N Morin
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Michael Guidea
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Centre Intégré Universitaire de Santé et Services Sociaux (CIUSSS) du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
| | - Jacqueline T A T Lam
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Centre Intégré Universitaire de Santé et Services Sociaux (CIUSSS) du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
| | - Antony D Karelis
- Department of Exercise Science, Faculty of Sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Mylène Aubertin-Leheudre
- Department of Exercise Science, Faculty of Sciences, Université du Québec à Montréal, Montréal, QC, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Dany H Gagnon
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Centre Intégré Universitaire de Santé et Services Sociaux (CIUSSS) du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Araneda OF, Rosales-Antequera C, Contreras-Briceño F, Tuesta M, Rossi-Serrano R, Magalhães J, Viscor G. Systemic and Pulmonary Inflammation/Oxidative Damage: Implications of General and Respiratory Muscle Training in Chronic Spinal-Cord-Injured Patients. BIOLOGY 2023; 12:828. [PMID: 37372113 DOI: 10.3390/biology12060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Chronic spinal cord injury affects several respiratory-function-related parameters, such as a decrease in respiratory volumes associated with weakness and a tendency to fibrosis of the perithoracic muscles, a predominance of vagal over sympathetic action inducing airway obstructions, and a difficulty in mobilizing secretions. Altogether, these changes result in both restrictive and obstructive patterns. Moreover, low pulmonary ventilation and reduced cardiovascular system functionality (low venous return and right stroke volume) will hinder adequate alveolar recruitment and low O2 diffusion, leading to a drop in peak physical performance. In addition to the functional effects described above, systemic and localized effects on this organ chronically increase oxidative damage and tissue inflammation. This narrative review describes both the deleterious effects of chronic spinal cord injury on the functional effects of the respiratory system as well as the role of oxidative damage/inflammation in this clinical context. In addition, the evidence for the effect of general and respiratory muscular training on the skeletal muscle as a possible preventive and treatment strategy for both functional effects and underlying tissue mechanisms is summarized.
Collapse
Affiliation(s)
- Oscar F Araneda
- Integrative Laboratory of Biomechanics and Physiology of Effort (LIBFE), Kinesiology School, Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo, Las Condes, Santiago 12455, Chile
| | - Cristián Rosales-Antequera
- Physical Medicine and Rehabilitation Unit, Clínica Universidad de los Andes, Santiago 8320000, Chile
- Physiology Section, Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Felipe Contreras-Briceño
- Laboratory of Exercise Physiology, Department of Health Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna #4860, Santiago 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Av. Vicuña Mackenna #4860, Santiago 7820436, Chile
| | - Marcelo Tuesta
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile
| | - Rafael Rossi-Serrano
- Physical Medicine and Rehabilitation Unit, Clínica Universidad de los Andes, Santiago 8320000, Chile
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|