1
|
Alghamdi MA, Azam F, Sarfaraj Hussain M, Ali MAM, Jamir Anwar M, Mahmood D. Isolation, Characterization, and Anti-Inflammatory Effects of β-Sitosterol-β-D-Glucoside from Hygrophila auriculata: Experimental Validation, Molecular Docking, and Molecular Dynamics Simulations. Chem Biodivers 2025; 22:e202401927. [PMID: 39471254 DOI: 10.1002/cbdv.202401927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/01/2024]
Abstract
Hygrophila auriculata (K. Schum) Heine is known to treat various common aliment e. g. rheumatoid arthritis, kidney infections, jaundice, edema, and gout. This study aims to isolate bioactive components from the methanolic extract, assess their anti-inflammatory effects, and investigate their interactions with drug targets through docking and molecular dynamics simulations. Methanolic extract of H. auriculata furnished stigmast-5-en-3-ol-β-D-glucopyranoside (HA-06) which was characterized by using IR, NMR and mass spectral data. HA-06 alleviated carrageenan-induced inflammation in rats, while the methanolic extract of H. auriculata produced comparable results. The findings were similar to those of the positive control, indomethacin. The chemical structure of HA-06 was optimized using DFT at the B3LYP level and subsequently used for molecular docking against anti-inflammatory drug targets. HA-06 exhibited strong affinity towards phospholipase A2 and glucocorticoid receptor exhibiting binding energies of -11.25 kcal/mol and -11.07 kcal/mol, respectively. Molecular dynamics simulation was used to assess the dynamical stability of these two complexes and their native co-crystallized ligands. Principal component analysis, radius of gyration, free energy landscapes, solvent-accessible-surface-area, and root-mean square deviation/fluctuation all indicated stable interactions. Therefore, HA-06 could be a promising candidate for development into an effective therapy against inflammatory diseases targeting phospholipase A2 and glucocorticoid receptor.
Collapse
Affiliation(s)
- Mashael A Alghamdi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, (IMSIU), P.O. Box. 90950, Riyadh, 11623, Saudi Arabia
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Md Sarfaraj Hussain
- Department of Pharmacognosy, Lord Buddha Koshi Pharmacy College, Baijnathpur-NH-107, Sahasra, 852201, India
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, (IMSIU), P.O. Box. 90950, Riyadh, 11623, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
2
|
Mili S, Phonglo A, Begum T, Singh YR, Kalita JC. In Vivo Investigation of Root Extract of Paederia foetida Linn. on the Reproductive Functions of Female Albino Mice and In Silico Validation With Human Estrogen Receptors. Chem Biodivers 2025:e202403203. [PMID: 40014055 DOI: 10.1002/cbdv.202403203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 02/28/2025]
Abstract
Ethnic Mising women of northeast India uses the dried root of Paederia foetida Linn. for fertility regulation. However, there is no scientific literature regarding female reproductive concerns so far. Therefore, this study was undertaken to know the phytocompounds present in the root of P. foetida and investigate the effect of P. foetida on the estrous cycle, ovarian, and uterine histoarchitecture. Methanolic root extract (MRE) was prepared at the doses 250 and 500 mg/kg bw (compared to 17β-estradiol as a reference drug) and was tested in ovary-intact mice for 21 days. MRE at 500 mg/kg bw-treated mice resulted in degenerative ovarian histoarchitecture with a significant increase (p < 0.05) in atretic follicles and a significant decrease (p < 0.05) in a number of endometrial gland and disruptive reproductive hormones. Compounds like stigmasterol, having profound antifertility agents, were found in the GC-MS analysis. As per molecular docking, the phytocompounds that showed the highest binding affinity were γ-sitosterol (-11.25 kcal/mol) and ergosterol (-12.92 kcal/mol) against human estrogen receptor alpha and beta (hERα and hERβ), respectively. This study is the first-ever report of P. foetida roots extract on reproductive parameters and compounds of P. foetida showing binding affinity with hER. This study provides scientific evidence that supports the traditional usage of P. foetida Linn. for fertility regulation, which will further help in the standardization and development of drugs for fertility control.
Collapse
Affiliation(s)
- Sivani Mili
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, Assam, India
| | - Ambalika Phonglo
- Catalysis and Molecular Modelling Lab (CMML), Department of Chemical Sciences, Tezpur University, Tezpur, Assam, India
| | - Taslema Begum
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, Assam, India
| | | | - Jogen Chandra Kalita
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
3
|
Soroush A, Pourhossein S, Hosseingholizadeh D, Hjazi A, Shahhosseini R, Kavoosi H, Kermanshahi N, Behnamrad P, Ghavamikia N, Dadashpour M, Karkon Shayan S. Anti-cancer potential of zerumbone in cancer and glioma: current trends and future perspectives. Med Oncol 2024; 41:125. [PMID: 38652207 DOI: 10.1007/s12032-024-02327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 04/25/2024]
Abstract
Plant-derived immunomodulators and antitumor factors have appealed lots of attention from natural product scientists for their efficiency and safety and their important contribution to well-designed targeted drug action and delivery mechanisms. Zerumbone (ZER), the chief component of Zingiber zerumbet rhizomes, has been examined for its wide-spectrum in the treatment of multi-targeted diseases. The rhizomes have been used as food flavoring agents in numerous cuisines and in flora medication. Numerous in vivo and in vitro experiments have prepared confirmation of ZER as a potent immunomodulator as well as a potential anti-tumor agent. This review is an interesting compilation of all the important results of the research carried out to date to investigate the immunomodulatory and anticancer properties of ZER. The ultimate goal of this comprehensive review is to supply updated information and a crucial evaluation on ZER, including its chemistry and immunomodulating and antitumour properties, which may be of principal importance to supply a novel pathway for subsequent investigation to discover new agents to treat cancers and immune-related sickness. In addition, updated information on the toxicology of ZER has been summarized to support its safety profile.
Collapse
Affiliation(s)
| | - Siavash Pourhossein
- Department of Pharmacy, Eastern Mediterranean University, via Mersin 10, Famagusta, North Cyprus, Turkey
| | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Haniyeh Kavoosi
- Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazgol Kermanshahi
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parisa Behnamrad
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nima Ghavamikia
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Semnan University of Medical Sciences, Semnan, Iran.
| | | |
Collapse
|
4
|
Atmaca U, Aksoy M, Öztekin A. A safe alternative synthesis of primary carbamates from alcohols; in vitro and in silico assessments as an alternative acetylcholinesterase inhibitors. J Biomol Struct Dyn 2023; 41:8191-8200. [PMID: 36224670 DOI: 10.1080/07391102.2022.2134209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
Carbamates are important molecules because they are used in various biochemical processes. In this study, effective alternative method for the synthesis of primary carbamates from alcohols was developed in the presence of chlorosulfonyl isocyanate (CSI) in pyridine at room temperature in mild conditions. The primary carbamates were synthesized excellent yield. This method is easy, practical, and inexpensive without any additive, metal, or catalyst. Alzheimer's disease (AD) is a neurodegenerative disease and has been reported to affect approximately 50 million people worldwide in 2020. Drugs that reversibly inhibit the acetylcholinesterase (AChE) activity are used for the treatment of AD. For this reason, there is a growing interest in developing alternative AChE inhibitors. Concordantly, Anti-anticholinesterase activity of synthesized carbamate derivatives was investigated as an alternative AChE inhibitors. In order to determine the inhibitory effect of these molecules, IC50, and Ki values and inhibition types were determined. According to the Ki results, the most effective inhibitors were 3 b and 3e with the Ki values of 22 and 38 µM, respectively. It was found that all molecules showed competitive inhibition type. For clarify the inhibitors-enzyme interactions, molecular docking studies were performed and possible binding interactions between the synthesized molecules and AChE were determined. Additionally, the pharmacokinetic and properties of the synthesized molecules were evaluated in silico.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ufuk Atmaca
- Oltu Vocational School, Atatürk University, Erzurum, Turkey
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mine Aksoy
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Aykut Öztekin
- Medical Services and Techniques Department, Vocational School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
5
|
Aati HY, Anwar M, Al-Qahtani J, Al-Taweel A, Khan KUR, Aati S, Usman F, Ghalloo BA, Asif HM, Shirazi JH, Abbasi A. Phytochemical Profiling, In Vitro Biological Activities, and In-Silico Studies of Ficus vasta Forssk.: An Unexplored Plant. Antibiotics (Basel) 2022; 11:antibiotics11091155. [PMID: 36139935 PMCID: PMC9495161 DOI: 10.3390/antibiotics11091155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/31/2022] Open
Abstract
Ficus vasta Forssk. (Moraceae family) is an important medicinal plant that has not been previously investigated for its phytochemical and biological potential. Phytochemical screening, total bioactive content, and GCMS analysis were used to determine its phytoconstituents profile. Antioxidant, antibacterial, antifungal, anti-viral, cytotoxicity, thrombolytic, and enzyme inhibition activities were examined for biological evaluation. The plant extract exhibited the maximum total phenolic (89.47 ± 3.21 mg GAE/g) and total flavonoid contents (129.2 ± 4.14 mg QE/g), which may be related to the higher antioxidant potential of the extract. The extract showed strong α-amylase (IC50 5 ± 0.21 µg/mL) and α-glucosidase inhibition activity (IC50 5 ± 0.32 µg/mL). Significant results were observed in the case of antibacterial, antifungal, and anti-viral activities. The F. vasta extract inhibited the growth of HepG2 cells in a dose-dependent manner. The GCMS analysis of the extract provided the preliminary identification of 28 phytocompounds. In addition, the compounds identified by GCMS were subjected to in silico molecular docking analysis in order to identify any interactions between the compounds and enzymes (α-amylase and α-glucosidase). After that, the best-docked compounds were subjected to ADMET studies which provide information on pharmacokinetics, drug-likeness, physicochemical properties, and toxicity. The present study highlighted that the ethanol extract of F. vasta has antidiabetic, antimicrobial, anti-viral, and anti-cancer potentials that can be further explored for novel drug development.
Collapse
Affiliation(s)
- Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: (H.Y.A.); (K.-u.-R.K.)
| | - Mariyam Anwar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jawaher Al-Qahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Areej Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (H.Y.A.); (K.-u.-R.K.)
| | - Sultan Aati
- UWA, University of Western Australia, Nedland, WA 6009, Australia
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hafiz Muhammad Asif
- Faculty of Medicine and Allied Health Sciences, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jafir Hussain Shirazi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aliza Abbasi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
6
|
Cabral MB, Dela Cruz CJ, Sato Y, Oyong G, Rempillo O, Galvez MC, Vallar E. In Silico Approach in the Evaluation of Pro-Inflammatory Potential of Polycyclic Aromatic Hydrocarbons and Volatile Organic Compounds through Binding Affinity to the Human Toll-Like Receptor 4. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148360. [PMID: 35886213 PMCID: PMC9318662 DOI: 10.3390/ijerph19148360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) are widespread across the globe, existing in the environment in complex mixtures potentially capable of initiating respiratory illnesses. Here, we use an in silico approach to evaluate the potential pro-inflammatory effects of various carcinogenic PAHs and VOCs through their binding affinity towards the human toll-like receptor 4 (TLR4). For receptors and ligands, RCSB Protein Data Bank and PubChem were used in obtaining their 3D structures, respectively. Autodock Vina was utilized to obtain the best docking poses and binding affinities of each PAH and VOC. Out of the 14 PAHs included in this study, indeno(1,2,3-cd)pyrene, benzo(ghi)perylene, and benzo[a]pyrene had the highest binding affinity values of −10, −9, and −8.9 kcal/mol, respectively. For the VOCs, out of the 10 compounds studied, benzene, 1,4-dichlorobenzene, and styrene had the highest binding affinity values of −3.6, −3.9, and −4.6 kcal/mol, respectively. Compounds with higher affinity than LPS (−4.1 kcal/com) could potentially induce inflammation, while compounds with lower affinity would be less likely to induce an inflammatory response. Meanwhile, molecular dynamics simulation and RMSF statistical analysis proved that the protein, TLR4, stably preserve its conformation despite ligand interactions. Overall, the structure of the TLR4 was considered inflexible.
Collapse
Affiliation(s)
- Marie Beatriz Cabral
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (M.B.C.); (C.J.D.C.); (Y.S.); (O.R.); (M.C.G.)
| | - Celine Joy Dela Cruz
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (M.B.C.); (C.J.D.C.); (Y.S.); (O.R.); (M.C.G.)
| | - Yumika Sato
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (M.B.C.); (C.J.D.C.); (Y.S.); (O.R.); (M.C.G.)
| | - Glenn Oyong
- Molecular Science Unit Laboratory, Center for Natural Sciences and Ecological Research, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines;
| | - Ofelia Rempillo
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (M.B.C.); (C.J.D.C.); (Y.S.); (O.R.); (M.C.G.)
| | - Maria Cecilia Galvez
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (M.B.C.); (C.J.D.C.); (Y.S.); (O.R.); (M.C.G.)
| | - Edgar Vallar
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (M.B.C.); (C.J.D.C.); (Y.S.); (O.R.); (M.C.G.)
- Correspondence:
| |
Collapse
|
7
|
|
8
|
Faheem M, Althobaiti YS, Khan AW, Ullah A, Ali SH, Ilyas U. Investigation of 1, 3, 4 Oxadiazole Derivative in PTZ-Induced Neurodegeneration: A Simulation and Molecular Approach. J Inflamm Res 2021; 14:5659-5679. [PMID: 34754213 PMCID: PMC8572052 DOI: 10.2147/jir.s328609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Objective The study investigated the effect 5-[(naphthalen-2-yloxy) methyl]-1,3,4-oxadiaszole2-thiol (B3) in animal model of acute epileptic shock. Methods The pharmacokinetics profile of B3 was checked through SwissADME software. The binding affinities of B3, diazepam, and flumazenil (FLZ) were obtained through Auto Dock and PyRx. Post docking analysis and interpretation of hydrogen bonds were performed through Discovery Studio Visualizer 2016. Molecular dynamics simulations of three complexes were carried out through Desmond software package. B3 was then proceeded in PTZ-induced acute seizures models. Flumazenil was used in animal studies for elucidation of possible mechanism of B3. After behavioral studies, the animals were sacrificed, and the brain samples were isolated and stored in 4% formalin for molecular investigations including H and E staining, IHC staining and Elisa etc. Results The results demonstrate that B3 at 20 and 40 mg/kg prolonged the onset time of generalized seizures. B3 considerably increased the expression of protective glutathione S-transferase and glutathione reductase and reduced lipid peroxidation and inducible nitric oxide synthase (P < 0.001) in the cortex. B3 significantly suppressed (P < 0.01) the over expression of the inflammatory mediator tumor necrosis factor–α, whose up-regulation is reported in acute epileptic shocks. Conclusion Hence, it is concluded from the aforementioned results that B3 provides neuroprotective effects PTZ-induced acute epileptic model. FLZ pretreatment resulted in inhibition of the anticonvulsant effect of B3. B3 possesses anticonvulsant effect which may be mediated through GABAA mediated antiepileptic pathway.
Collapse
Affiliation(s)
- Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia.,Addiction and Neuroscience Research Unit, Taif University, Taif, 21944, Saudi Arabia
| | - Abdul Waheed Khan
- Department of Pharmacy, The University of Lahore, Islamabad, Pakistan
| | - Aman Ullah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Syed Hussain Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Umair Ilyas
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
9
|
Bioactive Compounds from Zingiber montanum and Their Pharmacological Activities with Focus on Zerumbone. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The genus Zingiber consists of about 85 species and many of these species are used as food, spices, and medicines. One of the species, Zingiber montanum (J. Koenig) Link ex A. Dietr. is native to Southeast Asia and has been extensively used as traditional medicines and food. The aim of this review was to collect and critically analyze the scientific information about the bioactive compounds and pharmacological activities of Z. montanum with focus on one of the main components, zerumbone (ZER). Various studies have reported the analysis of volatile constituents of the essential oils from Z. montanum. Similarly, many phenylbutanoids, flavonoids and terpenes were also isolated from rhizomes. These essential oils, extracts and compounds showed potent antimicrobial, anti-inflammatory and antioxidant activities among others. Zerumbone has been studied widely for its anticancer, anti-inflammatory, and other pharmacological activities. Future studies should focus on the exploration of various pharmacological activities of other compounds including phenylbutanoids and flavonoids. Bioassay guided isolation may result in the separation of other active components from the extracts. Z. montanum could be a promising source for the development of pharmaceutical products and functional foods.
Collapse
|
10
|
Navyashree V, Kant K, Kumar A. Natural chemical entities from Arisaema genus might be a promising break-through against Japanese encephalitis virus infection: a molecular docking and dynamics approach. J Biomol Struct Dyn 2021; 39:1404-1416. [PMID: 32072856 DOI: 10.1080/07391102.2020.1731603] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Japanese encephalitis virus (JEV) infection affects millions of population worldwide whose incidence is increasing year by year and currently, no specific drugs are available for its treatment. However, vaccines are available for its prevention but not effective against all the clinical isolates. Thus, there is an urgent need for new chemical entities or exploration of existing molecules for its treatment. In the current study, we have undertaken virtual ligand screening (VLS) method to screen out selected phytoconstituents of Genus Arisaema against various targets (NS5, NS3 helicase, and NS2B-NS3 protease) of JEVs which exhibits vital role in replication, infection cycle and host interaction by using molecular docking followed by molecular dynamics (MD) simulations. Screened natural chemical entities displayed good binding affinity as well as optimum stability toward NS5 and NS3 helicase. Further, the drug likeliness evaluated by Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis was found to be in the acceptable range. In conclusion, these natural chemical entities could be considered as promising candidates for the development of anti-JEV drugs. However, further investigation is required to confirm their exact role in JEV infection through in vitro and in vivo experiments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V Navyashree
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, India
| | - Kamal Kant
- Department of Pharmaceutical Chemistry, Birla Institute of Technology (B.I.T) Mesra, Ranchi, Jharkhand, India
| | - Anoop Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, India
| |
Collapse
|
11
|
Kiyama R. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. J Nutr Biochem 2020; 86:108486. [PMID: 32827666 DOI: 10.1016/j.jnutbio.2020.108486] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/01/2020] [Accepted: 08/05/2020] [Indexed: 12/30/2022]
Abstract
Ginger (Zingiber officinale Roscoe) has been used as a food, spice, supplement and flavoring agent and in traditional medicines due to its beneficial characteristics such as pungency, aroma, nutrients and pharmacological activity. Ginger and ginger extracts were reported to have numerous effects, such as those on diabetes and metabolic syndrome, cholesterol levels and lipid metabolism, and inflammation, revealed by epidemiological studies. To understand the beneficial characteristics of ginger, especially its physiological and pharmacological activities at the molecular level, the biological effects of ginger constituents, such as monoterpenes (cineole, citral, limonene and α/β-pinenes), sesquiterpenes (β-elemene, farnesene and zerumbone), phenolics (gingerols, [6]-shogaol, [6]-paradol and zingerone) and diarylheptanoids (curcumin), and the associated signaling pathways are summarized. Ginger constituents are involved in biological activities, such as apoptosis, cell cycle/DNA damage, chromatin/epigenetic regulation, cytoskeletal regulation and adhesion, immunology and inflammation, and neuroscience, and exert their effects through specific signaling pathways associated with cell functions/mechanisms such as autophagy, cellular metabolism, mitogen-activated protein kinase and other signaling, and development/differentiation. Estrogens, such as phytoestrogens, are one of the most important bioactive materials in nature, and the molecular mechanisms of estrogen actions and the assays to detect them have been discussed. The molecular mechanisms of estrogen actions induced by ginger constituents and related applications, such as the chemoprevention of cancers, and the improvement of menopausal syndromes, osteoporosis, endometriosis, prostatic hyperplasia, polycystic ovary syndrome and Alzheimer's disease, were summarized by a comprehensive search of references to understand more about their health benefits and associated health risks.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo Univ., 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| |
Collapse
|
12
|
Gopalsamy B, Chia JSM, Farouk AAO, Sulaiman MR, Perimal EK. Zerumbone-Induced Analgesia Modulated via Potassium Channels and Opioid Receptors in Chronic Constriction Injury-Induced Neuropathic Pain. Molecules 2020; 25:molecules25173880. [PMID: 32858809 PMCID: PMC7503342 DOI: 10.3390/molecules25173880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Zerumbone, a monocyclic sesquiterpene from the wild ginger plant Zingiber zerumbet (L.) Smith, attenuates allodynia and hyperalgesia. Currently, its mechanisms of action in neuropathic pain conditions remain unclear. This study examines the involvement of potassium channels and opioid receptors in zerumbone-induced analgesia in a chronic constriction injury (CCI) neuropathic pain mice model. Male Institute of Cancer Research (ICR) mice were subjected to CCI and behavioral responses were tested on day 14. Responses toward mechanical allodynia and thermal hyperalgesia were tested with von Frey's filament and Hargreaves' tests, respectively. Symptoms of neuropathic pain were significantly alleviated following treatment with zerumbone (10 mg/kg; intraperitoneal, i.p.). However, when the voltage-dependent K+ channel blocker tetraethylammonium (TEA, 4 mg/kg; i.p.), ATP-sensitive K+ channel blocker, glibenclamide (GLIB, 10 mg/kg; i.p.); small-conductance Ca2+-activated K+ channel inhibitor apamin (APA, 0.04 mg/kg; i.p.), or large-conductance Ca2+-activated K+ channel inhibitor charybdotoxin (CHAR, 0.02 mg/kg; i.p.) was administered prior to zerumbone (10 mg/kg; i.p.), the antiallodynic and antihyperalgesic effects of zerumbone were significantly reversed. Additionally, non-specific opioid receptors antagonist, naloxone (NAL, 10 mg/kg; i.p.), selective µ-, δ- and κ-opioid receptor antagonists; β-funaltrexamine (β-FN, 40 mg/kg; i.p.), naltrindole (20 mg/kg; s.c.), nor-binaltorphamine (10 mg/kg; s.c.) respectively attenuated the antiallodynic and antihyperalgesic effects of zerumbone. This outcome clearly demonstrates the participation of potassium channels and opioid receptors in the antineuropathic properties of zerumbone. As various clinically used neuropathic pain drugs also share this similar mechanism, this compound is, therefore, a highly potential substitute to these therapeutic options.
Collapse
Affiliation(s)
- Banulata Gopalsamy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (B.G.); (A.A.O.F.); (M.R.S.)
| | - Jasmine Siew Min Chia
- Centre for Community Health Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Ahmad Akira Omar Farouk
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (B.G.); (A.A.O.F.); (M.R.S.)
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (B.G.); (A.A.O.F.); (M.R.S.)
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (B.G.); (A.A.O.F.); (M.R.S.)
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide 5000, Australia
- Correspondence: ; Tel./Fax: +61-603-8947-2774
| |
Collapse
|
13
|
Wang Y, Yang Q, Shen S, Zhang L, Xiang Y, Weng X. Mst1 promotes mitochondrial dysfunction and apoptosis in oxidative stress-induced rheumatoid arthritis synoviocytes. Aging (Albany NY) 2020; 12:16211-16223. [PMID: 32692720 PMCID: PMC7485731 DOI: 10.18632/aging.103643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/19/2020] [Indexed: 01/09/2023]
Abstract
In this study, we investigated the role of macrophage stimulating 1 (Mst1) and the AMPK-Sirt1 signaling pathway in the oxidative stress-induced mitochondrial dysfunction and apoptosis seen in rheumatoid arthritis-related fibroblast-like synoviocytes (RA-FLSs). Mst1 mRNA and protein expression was significantly higher in hydrogen peroxide (H2O2)-treated RA-FLSs than untreated controls. H2O2 treatment induced the mitochondrial apoptotic pathway by activating caspase3/9 and Bax in the RA-FLSs. Moreover, H2O2 treatment significantly reduced mitochondrial membrane potential and mitochondrial state-3 and state-4 respiration, but increased reactive oxygen species (ROS). Mst1 silencing significantly reduced oxidative stress-induced mitochondrial dysfunction and apoptosis in RA-FLSs. Sirt1 expression was significantly reduced in the H2O2-treated RA-FLSs, but was higher in the H2O2-treated Mst1-silenced RA-FLSs. Pretreatment with selisistat (Sirt1-specific inhibitor) or compound C (AMPK antagonist) significantly reduced the viability and mitochondrial function in H2O2-treated Mst1-silenced RA-FLSs by inhibiting Sirt1 function or Sirt1 expression, respectively. These findings demonstrate that oxidative stress-related upregulation and activation of Mst1 promotes mitochondrial dysfunction and apoptosis in RA-FLSs by inhibiting the AMPK-Sirt1 signaling pathway. This suggests the Mst1-AMPK-Sirt1 axis is a potential target for RA therapy.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Qi Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China.,Department of Orthopedic Surgery, First Hospital of Harbin, Harbin 150010, China
| | - Songpo Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China.,Department of Orthopedic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Linjie Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Yongbo Xiang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|
14
|
Shang X, Zhang Y, Xu J, Li M, Wang X, Yu R. SRV2 promotes mitochondrial fission and Mst1-Drp1 signaling in LPS-induced septic cardiomyopathy. Aging (Albany NY) 2020; 12:1417-1432. [PMID: 31951593 PMCID: PMC7053598 DOI: 10.18632/aging.102691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial fission is associated with cardiomyocyte death and myocardial depression, and suppressor of ras val-2 (SRV2) is a newly discovered pro-fission protein. In this study, we examined the mechanisms of SRV2-mediated mitochondrial fission in septic cardiomyopathy. Western blotting, ELISA, and immunofluorescence were used to evaluate mitochondrial function, oxidative balance, energy metabolism and caspase-related death, and siRNA and adenoviruses were used to perform loss- and gain-of-function assays. Our results demonstrated that increased SRV2 expression promotes, while SRV2 knockdown attenuates, cardiomyocyte death in LPS-induced septic cardiomyopathy. Mechanistically, SRV2 activation promoted mitochondrial fission and physiological abnormalities by upregulating oxidative injury, ATP depletion, and caspase-9-related apoptosis. Our results also demonstrated that SRV2 promotes mitochondrial fission via a Mst1-Drp1 axis. SRV2 knockdown decreased Mst1 and Drp1 levels, while Mst1 overexpression abolished the mitochondrial protection and cardiomyocyte survival-promoting effects of SRV2 knockdown. SRV2 is thus a key novel promotor of mitochondrial fission and Mst1-Drp1 axis activity in septic cardiomyopathy.
Collapse
Affiliation(s)
- Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Yingrui Zhang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jingqing Xu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Min Li
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Rongguo Yu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
15
|
Fahmy NM, Al-Sayed E, Moghannem S, Azam F, El-Shazly M, Singab AN. Breaking Down the Barriers to a Natural Antiviral Agent: Antiviral Activity and Molecular Docking of Erythrina speciosa Extract, Fractions, and the Major Compound. Chem Biodivers 2020; 17:e1900511. [PMID: 31800173 DOI: 10.1002/cbdv.201900511] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
The in vitro cytotoxic activity in Vero cells and the antiviral activity of Erythrina speciosa methanol extract, fractions, and isolated vitexin were studied. The results revealed that E. speciosa leaves ethyl acetate soluble fraction of the methanol extract (ESLE) was the most active against herpes simplex virus type 1 (HSV-1). Bioactivity-guided fractionation was performed on ESLE to isolate the bioactive compounds responsible for this activity. One sub-fraction from ESLE (ESLE IV) showed the highest activity against HSV-1 and Hepatitis A HAV-H10 viruses. Vitexin isolated from ESLE VI exhibited a significant antiviral activity (EC50 =35±2.7 and 18±3.3 μg/mL against HAV-H10 and HSV-1 virus, respectively), which was notably greater than the activity of the extract and the fractions. Molecular docking studies were carried out to explore the molecular interactions of vitexin with different macromolecular targets. Analysis of the in silico data together with the in vitro studies validated the antiviral activity associated with vitexin. These outcomes indicated that vitexin is a potential candidate to be utilized commendably in lead optimization for the development of antiviral agents.
Collapse
Affiliation(s)
- Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abassia, 11566, Cairo, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abassia, 11566, Cairo, Egypt
| | - Saad Moghannem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884, Cairo, Egypt
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911, Unaizah, Saudi Arabia
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abassia, 11566, Cairo, Egypt.,Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abassia, 11566, Cairo, Egypt.,Center for Drug Discovery and Development Research, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| |
Collapse
|
16
|
Azam F, Abodabos HS, Taban IM, Rfieda AR, Mahmood D, Anwar MJ, Khan S, Sizochenko N, Poli G, Tuccinardi T, Ali HI. Rutin as promising drug for the treatment of Parkinson’s disease: an assessment of MAO-B inhibitory potential by docking, molecular dynamics and DFT studies. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1662003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Faizul Azam
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Honiwa Suliman Abodabos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Misurata University, Misurata, Libya
| | - Ismail M. Taban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Misurata University, Misurata, Libya
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Abdalla R. Rfieda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Misurata University, Misurata, Libya
| | - Danish Mahmood
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Md Jamir Anwar
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Shamshir Khan
- Department of Pharmacognosy & Medicinal Chemistry, Buraidah College of Dentistry & Pharmacy, Al-Qassim, Saudi Arabia
| | - Natalia Sizochenko
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Hamed I. Ali
- Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, TX, USA
| |
Collapse
|
17
|
E M Eid E, S Alanazi A, Koosha S, A Alrasheedy A, Azam F, M Taban I, Khalilullah H, Sadiq Al-Qubaisi M, A Alshawsh M. Zerumbone Induces Apoptosis in Breast Cancer Cells by Targeting αvβ3 Integrin upon Co-Administration with TP5-iRGD Peptide. Molecules 2019; 24:molecules24142554. [PMID: 31337024 PMCID: PMC6680663 DOI: 10.3390/molecules24142554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/24/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are highly promising tools to deliver therapeutic molecules into tumours. αVβ3 integrins are cell-matrix adhesion receptors, and are considered as an attractive target for anticancer therapies owing to their roles in the process of metastasis and angiogenesis. Therefore, this study aims to assess the effect of co-administration of zerumbone (ZER) and ZERencapsulated in hydroxypropyl-β-cyclodextrin with TP5-iRGD peptide towards cell cytotoxicity, apoptosis induction, and proliferation of normal and cancerous breast cells utilizing in vitro assays, as well as to study the molecular docking of ZER in complex with TP5-iRGD peptide. Cell viability assay findings indicated that ZER and ZERencapsulated in hydroxypropyl-β-cyclodextrin (ZER-HPβCD) inhibited the growth of estrogen receptor positivebreast cancer cells (ER+ MCF-7) at 72 h treatment with an inhibitory concentration (IC)50 of 7.51 ± 0.2 and 5.08 ± 0.2 µg/mL, respectively, and inhibited the growth of triple negative breast cancer cells (MDA-MB-231) with an IC50 of 14.96 ± 1.52 µg/mL and 12.18 ± 0.7 µg/mL, respectively. On the other hand, TP5-iRGD peptide showed no significant cytotoxicity on both cancer and normal cells. Interestingly, co-administration of TP5-iRGD peptide in MCF-7 cells reduced the IC50 of ZER from 7.51 ± 0.2 µg/mL to 3.13 ± 0.7 µg/mL and reduced the IC50 of ZER-HPβCD from 5.08 ± 0.2 µg/mL to 0.49 ± 0.004 µg/mL, indicating that the co-administration enhances the potency and increases the efficacy of ZER and ZER-HPβCD compounds. Acridine orange (AO)/propidium iodide (PI) staining under fluorescence microscopy showed evidence of early apoptosis after 72 h from the co-administration of ZER or ZER-HPβCD with TP5-iRGD peptide in MCF-7 breast cancer cells. The findings of the computational modelling experiment provide novel insights into the ZER interaction with integrin αvβ3 in the presence of TP5-iRGD, and this could explain why ZER has better antitumor activities when co-administered with TP5-iRGD peptide.
Collapse
Affiliation(s)
- Eltayeb E M Eid
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911 Unaizah, Saudi Arabia.
| | | | - Sanaz Koosha
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Alian A Alrasheedy
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911 Unaizah, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911 Unaizah, Saudi Arabia
| | - Ismail M Taban
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911 Unaizah, Saudi Arabia
| | | | - Mohammed A Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|