1
|
Xu D, Fan W, Fu B, Nie H. HMGA1 Regulates IRS2 to Promote Inflammatory Responses and Oxidative Stress Injury in MPP +-Induced cells. Cell Biochem Biophys 2025; 83:783-792. [PMID: 39244689 DOI: 10.1007/s12013-024-01510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder for which novel treatment approaches are continuously sought. This study investigates the role of high-mobility group A1 (HMGA1) in modulating inflammatory responses and oxidative stress injury in PD. We utilized the murine dopaminergic neuronal cell line MN9D, treating cells with 1-methyl-4-phenylpyridinium ion (MPP+) to mimic PD conditions. The expression levels of HMGA1 and insulin receptor substrate 2 (IRS2) were measured using quantitative polymerase chain reaction and Western blot assay. Cell damage was assessed with cell counting kit-8 and lactate dehydrogenase assays. Inflammatory response and oxidative stress were evaluated by quantifying interleukin (IL)-1β, IL-6, tumor necrosis factor-α, reactive oxygen species, superoxide dismutase, and malondialdehyde (MDA) levels using enzyme-linked immunosorbent assay and commercial kits. The binding interaction between HMGA1 and IRS2 was analyzed using chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. Our findings revealed that MPP+ treatment increased the expression of HMGA1 and IRS2. Downregulation of HMGA1 enhanced cell viability, reduced inflammation, and mitigated oxidative stress in MPP+-induced cells. Further investigation demonstrated that HMGA1 bounded to the IRS2 promoter, enhancing IRS2 expression. Overexpression of IRS2 counteracted the protective effects of HMGA1 downregulation. In conclusion, HMGA1 exacerbates MPP+-induced cell damage by activating IRS2 transcription, which in turn heightens inflammation and oxidative stress. These findings suggest that targeting HMGA1 could be a potential therapeutic strategy for PD.
Collapse
Affiliation(s)
- Dongxun Xu
- Department of Neurology, Sichuan Taikang Hospital, Chengdu, 610213, Sichuan Province, P. R. China
| | - Wenhui Fan
- Department of Neurology, Sichuan Taikang Hospital, Chengdu, 610213, Sichuan Province, P. R. China
| | - Bing Fu
- Department of Neurology, The Second People's Hospital of Lianyungang, Lianyungang, 222006, Jiangsu Province, P. R. China
| | - Hongxia Nie
- Department of Neurology, The Second People's Hospital of Lianyungang, Lianyungang, 222006, Jiangsu Province, P. R. China.
| |
Collapse
|
2
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Ma K, Tian T, Li X, Pang H, Ning X, Li M, Li J, Luo Z, Liu T, Liu M, Wang M, Zhao C, Song X, Du H, Jin M. Silica Nanoparticles Induce SH-SY5Y Cells Death Via PARP and Caspase Signaling Pathways. Mol Neurobiol 2025:10.1007/s12035-025-04724-9. [PMID: 39907903 DOI: 10.1007/s12035-025-04724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
A growing stream of research indicates that exposure to Silica nanoparticles (SiNPs) can cause nervous system damage, leading to the occurrence of neurodegenerative diseases such as Alzheimer's disease. However, the specific mechanism by which SiNPs cause neuroblast injury remains unclear and requires further research. This study established an in vitro experimental model of SH-SY5Y cells exposed to SiNPs and observed cell growth through an inverted fluorescence microscope. Cell viability was measured using an MTT assay. The intracellular ROS and Ca2+ levels were detected by flow cytometry. Cell apoptosis was observed using both Hoechst33342 staining and TUNEL staining. The activities of SOD and ATPase and the content of ATP in the cells were tested by biochemical methods. The genes including parp-1, aif, par, ucp2, vdac and prdx3 were explored using quantitative real-time PCR. The expressions of PARP, AIF, PAR, Caspase-3, Caspase-9 and Cyt C proteins were evaluated by Western Blot. The immunofluorescence technique was used to observe the distribution of Parthanatos-related proteins induced by SiNPs. The results showed that SiNPs reduced cell survival rate, induced excessive ROS and Ca2+ overload, decreased SOD activity, ATPase activity, intracellular and mitochondrial ATP content, increased the expression of mitochondrial function and PARP pathway related genes, as well as PARP and Caspase pathway protein expression, ultimately inducing cell apoptosis. As a further test of the roles of PARP and Caspase pathways in SiNPs induced SH-SY5Y cells death, we selected the PARP inhibitor Olaparib and Caspase inhibitor Z-VAD, and the above effects were significantly improved after treatment with the inhibitors. Conclusively, this study confirmed that SiNPs can generate excessive ROS production in SH-SY5Y cells, alter mitochondrial function, and induce cell death through Parthanatos and caspase dependent apoptotic pathways, which can coexist and interact with each other.
Collapse
Affiliation(s)
- Kai Ma
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Tiantian Tian
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xinyue Li
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Huan Pang
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xiaofan Ning
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Meng Li
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Jiali Li
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Zhixuan Luo
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Tianxiang Liu
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Mengyue Liu
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Mingqian Wang
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Chao Zhao
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xiuling Song
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Haiying Du
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Minghua Jin
- School of Public, Health Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
4
|
Ding X, Tan D, Wang Z, Yin H. Ginkgolide B regulates apoptosis, oxidative stress, and mitochondrial dysfunction in MPP +-induced SK-N-SH cells by targeting HDAC4/JNK pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03815-7. [PMID: 39878815 DOI: 10.1007/s00210-025-03815-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
Ginkgolide B (GB) is a bioactive constituent found in Ginkgo biloba leaves that has been long recognized as a protective agent against many neurological disorders. Our study aimed to examine the effect of GB in an in vitro Parkinson's disease (PD) model and to investigate its neuroprotective mechanism as a primary objective. SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium (MPP+) to act as a PD-like model of neuronal damage. CCK-8 method, flow cytometry assay, and fluorescent probe JC-1 respectively measured cell viability, apoptosis, and mitochondrial membrane potential (MMP). Oxidative stress parameters were examined with assay kits. Nicotinamide adenine dinucleotide phosphate level and adenosine triphosphate (ATP) synthesis were also appraised. RT-qPCR examined mitochondrial DNA (mtDNA) release. Western blotting analyzed the proteins implicated in apoptosis and the histone deacetylase 4 (HDAC4)/Jun N-terminal kinase (JNK) pathway. GB concentration-dependently alleviated MPP+-stimulated viability loss, apoptosis, oxidative stress, and mitochondrial dysfunction in SK-N-SH cells. GB docked with HDAC4 and downregulated the HDAC4/JNK pathway. HDAC4 overexpression further reduced the viability and aggravated apoptosis, oxidative stress, and mitochondrial dysfunction in GB-treated SK-N-SH cells challenged with MPP+. Altogether, GB might inactivate the HDAC4/JNK pathway to protect against MPP+-triggered neuronal damage in PD.
Collapse
Affiliation(s)
- Xu Ding
- School of Traditional Chinese Medicine, Jiangsu College of Nursing, No. 9 Keji Avenue, Huai'an City, Jiangsu Province, China
| | - Dongming Tan
- School of Traditional Chinese Medicine, Jiangsu College of Nursing, No. 9 Keji Avenue, Huai'an City, Jiangsu Province, China
| | - Zhao Wang
- School of Traditional Chinese Medicine, Jiangsu College of Nursing, No. 9 Keji Avenue, Huai'an City, Jiangsu Province, China
| | - Hongying Yin
- Huai'an Hospital Affiliated to Yangzhou University, The Fifth People's Hospital of Huai'an), 1 Huaihe East Road, Huaiyin District, Huai'an City, Jiangsu Province, China.
| |
Collapse
|
5
|
Du K, Su Y, Song Q, Chen S, Wu R, Teng X, Huang R, Wang L, Zou C. 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP +-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells. Metab Brain Dis 2025; 40:113. [PMID: 39878879 DOI: 10.1007/s11011-025-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored. The present study aimed to investigate the protective effects and underlying mechanisms of DMDD in a cellular model of PD. In this study, SH-SY5Y cells were incubated with or without DMDD following intoxication with the parkinsonian neurotoxin 1-methyl-4-phenylpyridine (MPP+). Cell viability and apoptosis were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay and Hoechst 33,342 staining, respectively. The mitochondrial membrane potential (Δψm) was assessed through the JC-10 assay. The activities of superoxide dismutase (SOD) and the levels of reactive oxygen species (ROS) were measured using WST-8 and DCFH-DA assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore significant biological processes and pathways influenced by DMDD. Molecular docking was employed to predict the domains of potential protein targets interacting with DMDD. Western blotting was subsequently conducted to determine the protein expression levels of TH, Nrf2, Bax, Bcl-2, Caspase-3, Beclin-1, PARP, LC3-II, LC3-I, p-PI3K, PI3K, p-mTOR and mTOR. Our study showed that DMDD treatment significantly increased cell viability and reduced apoptosis in MPP+-treated SH-SY5Y cells. In addition, DMDD treatment reversed the loss of TH expression and Δψm in MPP+-exposed SH-SY5Y cells. Moreover, DMDD treatment reduced MPP+-induced ROS production by promoting SOD activity. Additionally, compared with those in the MPP+ group, the protein expression levels of Beclin-1, Caspase-3, and PARP and the LC3II/I ratio were significantly decreased, whereas the protein expression levels of Nrf2 and the Bcl-2/Bax, p-PI3K/PI3K, and p-mTOR/mTOR ratios were significantly increased in the DMDD-treated group. In conclusion, DMDD protects against MPP+-induced cytotoxicity by mitigating oxidative stress, apoptosis, and autophagy. PI3K/mTOR signaling at least partly mediates the cytoprotective effect of DMDD.
Collapse
Affiliation(s)
- Kechen Du
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ying Su
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiong Song
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shuai Chen
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ribao Wu
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiahong Teng
- School of International Education, Guangxi Medical University, Nanning, Guangxi, China
- School of International Education, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Renbin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lihui Wang
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Chunlin Zou
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
6
|
Huyut Z, Yildizhan K, Altındağ F. The effects of berberine and curcumin on cardiac, lipid profile and fibrosis markers in cyclophosphamide-induced cardiac damage: The role of the TRPM2 channel. J Biochem Mol Toxicol 2024; 38:e23783. [PMID: 39056209 DOI: 10.1002/jbt.23783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/02/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Cyclophosphamide (CYP) is widely used to treat various types of cancer. In addition to the therapeutic properties of this drug, unfortunately, its side effects are still not fully understood. This study investigated the protective effect of curcumin (CURC) and berberine (BER) on CYP-induced cardiac damage. Thirty-six male rats were equally divided into the control, dimethyl sulfoxide (DMSO), CYP, CYP + CURC, CYP + BER and CYP + BER + CURC groups. Troponin-I, Creatine kinase-myocardial band (CK-MB), total cholesterol, triglyceride levels in serum samples, and reactive oxygen species (ROS), poly(ADP-ribose) polymerase-1 (PARP-1), and transient receptor potential melastatin 2 (TRPM2) channel levels in heart tissue were measured using an enzyme-linked immunoassay (ELISA) kit. In addition, histopathological examination and immunohistochemical investigation of the TRPM2 channel, fibroblast specific protein-1 (FSP1), transforming growth factor-beta- 1 (TGF-β1) and α-smooth muscle actin (α-SMA) expressions were determined in heart tissue. The CYP group's troponin-I, total cholesterol, triglyceride, CK-MB, ROS, PARP-1 and TRPM2 channel levels were higher than in the other groups in the ELISA measurements (p < 0.05). In contrast, these parameters in the group treated with CURC and BER together with CYP were lower than in the CYP group (p < 0.05). Additionally, CUR and BER reduced CYP-induced pathological damage, TRPM2, FSP1, TGF-β1 and α-SMA expressions. The data showed that CYP administration can cause cardiac damage by increasing the TRPM2 channel, TGF-β1, FSP1 and α-SMA expression levels. Therefore, we concluded that CURC and BER administration following CYP application may be used as therapeutic agents to prevent CYP-induced cardiac damage.
Collapse
Affiliation(s)
- Zübeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Kenan Yildizhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
7
|
Bayir MH, Yıldızhan K, Altındağ F. Effect of Hesperidin on Sciatic Nerve Damage in STZ-Induced Diabetic Neuropathy: Modulation of TRPM2 Channel. Neurotox Res 2023; 41:638-647. [PMID: 37439953 DOI: 10.1007/s12640-023-00657-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/07/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Diabetic neuropathy (DNP) is a severe complication of diabetes mellitus. In this study, we examined the potential of hesperidin (HES) to attenuate DNP and the involvement of the TRPM2 channel in this process. The rats were given a single dose of 45 mg/kg of streptozotocin (STZ) intraperitoneally to induce diabetic neuropathic pain. On the third day, we confirmed the development of diabetes in the DNP and DNP + HES groups. The HES groups were treated with 100 mg/kg and intragastric gavage daily for 14 days. The results showed that treatment with HES in diabetic rats decreased STZ-induced hyperglycemia and thermal hyperalgesia. Furthermore, in the histopathological examination of the sciatic nerve, HES treatment reduced STZ-induced damage. The immunohistochemical analysis also determined that STZ-induced increased TRPM2 channel, type-4 collagen, and fibrinogen immunoactivity decreased with HES treatment. In addition, we investigated the TRPM2 channel activation in the sciatic nerve damage mechanism of DNP model rats created by STZ application using the ELISA method. We determined the regulatory effect of HES on increased ROS, and PARP1 and TRPM2 channel activation in the sciatic nerves of DNP model rats. These findings indicated that hesperidin treatment could attenuate diabetes-induced DNP by reducing TRPM2 channel activation.
Collapse
Affiliation(s)
- Mehmet Hafit Bayir
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
8
|
Kocak Y, Oto G, Huyut Z, Alp HH, Turkan F, Onay E. Effects of fluoride on oxidative DNA damage, nitric oxide level, lipid peroxidation and cholinesterase enzyme activity in a rotenone-induced experimental Parkinson's model. Neurol Res 2023; 45:979-987. [PMID: 37699078 DOI: 10.1080/01616412.2023.2257452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/29/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVE Environmental toxins are known to be one of the important factors in the development of Parkinson's disease (PD). This study was designed to investigate the possible contribution of fluoride (F) exposure to oxidative stress and neurodegeneration in rats with PD induced by rotenone (ROT). MATERIALS AND METHODS A total of 72 Wistar albino male rats were used in the experiment and 9 groups were formed with 8 animals in each group. ROT (2 mg/kg) was administered subcutaneously (sc) for 28 days. Different doses of sodium fluoride (NaF) (25, 50 and 100 ug/mL) were given orally (po) for 4 weeks. Malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO), oxidative DNA damage (8-OHdG) and cholinesterase (AChE/BChE) enzyme activities were evaluated in serum and brain tissue homogenates. RESULTS Rats treated with ROT and NaF had significant increases in serum and brain MDA, NO content, and decreases in GSH. In addition, the combination of ROT and NaF triggered oxidative DNA damage and resulted in increased AChE/BChE activity. CONCLUSIONS Findings suggest that NaF and ROT may interact synergistically leading to oxidative damage and neuronal cell loss. As a result, we believe that exposure to pesticides in combination with NaF is one of the environmental factors that should not be ignored in the etiology of neurological diseases such as PD in populations in areas with endemic fluorosis.
Collapse
Affiliation(s)
- Yilmaz Kocak
- Department of Physical therapy and rehabilitation, Faculty of Health Sciences, Van Yuzuncu Yil University, Van, Turkey
- Department of Pharmacology-Toxicology, Van Yuzuncu Yil University, Van, Turkey
| | - Gokhan Oto
- Department of Pharmacology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Hamit Hakan Alp
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Fikret Turkan
- Department of Basic Sciences Faculty of Dentistry, Igdir University, Iğdır, Turkey
| | - Ezgi Onay
- Department of Pharmacology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
9
|
Ali ES, Chakrabarty B, Ramproshad S, Mondal B, Kundu N, Sarkar C, Sharifi-Rad J, Calina D, Cho WC. TRPM2-mediated Ca 2+ signaling as a potential therapeutic target in cancer treatment: an updated review of its role in survival and proliferation of cancer cells. Cell Commun Signal 2023; 21:145. [PMID: 37337283 DOI: 10.1186/s12964-023-01149-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 06/21/2023] Open
Abstract
The transient receptor potential melastatin subfamily member 2 (TRPM2), a thermo and reactive oxygen species (ROS) sensitive Ca2+-permeable cation channel has a vital role in surviving the cell as well as defending the adaptability of various cell groups during and after oxidative stress. It shows higher expression in several cancers involving breast, pancreatic, prostate, melanoma, leukemia, and neuroblastoma, indicating it raises the survivability of cancerous cells. In various cancers including gastric cancers, and neuroblastoma, TRPM2 is known to conserve viability, and several underlying mechanisms of action have been proposed. Transcription factors are thought to activate TRPM2 channels, which is essential for cell proliferation and survival. In normal physiological conditions with an optimal expression of TRPM2, mitochondrial ROS is produced in optimal amounts while regulation of antioxidant expression is carried on. Depletion of TRPM2 overexpression or activity has been shown to improve ischemia-reperfusion injury in organ levels, reduce tumor growth and/or viability of various malignant cancers like breast, gastric, pancreatic, prostate, head and neck cancers, melanoma, neuroblastoma, T-cell and acute myelogenous leukemia. This updated and comprehensive review also analyzes the mechanisms by which TRPM2-mediated Ca2+ signaling can regulate the growth and survival of different types of cancer cells. Based on the discussion of the available data, it can be concluded that TRPM2 may be a unique therapeutic target in the treatment of several types of cancer. Video Abstract.
Collapse
Affiliation(s)
- Eunus S Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Australia
- Gaco Pharmaceuticals, Dhaka, 1000, Bangladesh
- Present Address: Department of Biochemistry and Molecular Genetics, and Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, 303 E Superior St, Chicago, IL, 60611, USA
| | | | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Neloy Kundu
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|
10
|
Zhang R, Teng L, Zhong Y, Ma P, Xu L, Xiao P. Neuroprotection of isookanin against MPTP-induced cell death of SH-SY5Y cells via BCL2/BAX and PI3K/AKT pathways. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06383-x. [PMID: 37256377 DOI: 10.1007/s00213-023-06383-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/07/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND PURPOSE Isookanin, an important antioxidant component in Coreopsis tinctoria Nutt., has shown remarkable hypolipidemic, hypoglycemic, and hypotensive effects. However, the neuroprotective effect of isookanin has not been reported yet. Here, the neuroprotective effects and relevant molecular mechanisms of isookanin are explored for the first time. METHODS The SH-SY5Y cells were exposed to neurotoxic H2O2, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and Aβ25-35, respectively. Cell viability and apoptosis were evaluated by MTT, lactate dehydrogenase (LDH), and TUNEL assays. Intercellular ROS and mitochondrial membrane potential were assessed by DCFH-DA and JC-1 assay. Western blot and qRT-PCR were used to explore the perturbed signaling at the gene and protein levels. Molecular docking analysis and in vitro assay were further applied to confirm potential target. RESULTS Among the three in vitro models, isookanin showed the best neuroprotection against MPTP-induced damage. Isookanin attenuated the levels of LDH, intracellular ROS, and mitochondrial membrane potential. Isookanin upregulated phosphorylation of AKT and PI3K, and increased BCL2/BAX ratio. Isookanin possessed a powerful affinity toward AKT. Besides, the protective effects of isookanin disappeared when cells were co-treated with an AKT inhibitor (AZD5363). CONCLUSION Isookanin regulated BCL2/BAX and PI3K/AKT pathways to reduce mitochondrial damage and cellular apoptosis. Isookanin may be a new protector for neurodegenerative diseases.
Collapse
Affiliation(s)
- Rong Zhang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, 100193, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, 100193, Beijing, China
| | - Lili Teng
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, 100193, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, 100193, Beijing, China
| | - Yi Zhong
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, 100193, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, 100193, Beijing, China
| | - Pei Ma
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, 100193, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, 100193, Beijing, China.
| | - Lijia Xu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, 100193, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, 100193, Beijing, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, 100193, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, 100193, Beijing, China
| |
Collapse
|
11
|
Rani L, Ghosh B, Ahmad MH, Mondal AC. Evaluation of Potential Neuroprotective Effects of Vanillin Against MPP +/MPTP-Induced Dysregulation of Dopaminergic Regulatory Mechanisms in SH-SY5Y Cells and a Mouse Model of Parkinson's Disease. Mol Neurobiol 2023:10.1007/s12035-023-03358-z. [PMID: 37145378 DOI: 10.1007/s12035-023-03358-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition. The pathogenesis of PD is still unknown, and drugs available for PD treatment either have side effects or have suboptimal efficacy. Flavonoids are potent antioxidants having little toxicity with extended use, suggesting they might hold promising therapeutic potential against PD. Vanillin (Van) is a phenolic compound that has exhibited neuroprotective properties in various neurological disorders, including PD. However, the neuroprotective role of Van in PD and its underlying mechanisms are scarce and therefore need more exploration. Here, we evaluated the neuroprotective potential of Van and its associated mechanisms against MPP+/MPTP-induced neuronal loss in differentiated human neuroblastoma (SH-SY5Y) cells and the mouse model of PD. In the present study, Van treatment significantly enhanced the cell viability and alleviated oxidative stress, mitochondrial membrane potential, and apoptosis in MPP+-intoxicated SH-SY5Y cells. Moreover, Van significantly ameliorated the MPP+-induced dysregulations in protein expression of tyrosine hydroxylase (TH) and mRNA expressions of GSK-3β, PARP1, p53, Bcl-2, Bax, and Caspase-3 genes in SH-SY5Y cells. Similar to our in vitro results, Van significantly alleviated MPTP-induced neurobehavioral dysregulations, oxidative stress, aberrant TH protein expressions, and immunoreactivity in SNpc of mice brains. Treatment of Van also prevented MPTP-mediated loss of TH-positive intrinsic dopaminergic neurons to SNpc and TH-fibers projecting to the striatum of mice. Thus, Van exhibited promising neuroprotective properties in the current study against MPP+/MPTP-intoxicated SH-SY5Y cells and mice, indicating its potential therapeutic properties against PD pathology.
Collapse
Affiliation(s)
- Linchi Rani
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Balaram Ghosh
- Midnapore Medical College and Hospital, West Medinipur, Kolkata, West Bengal, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067.
| |
Collapse
|
12
|
Yıldızhan K, Huyut Z, Altındağ F. Involvement of TRPM2 Channel on Doxorubicin-Induced Experimental Cardiotoxicity Model: Protective Role of Selenium. Biol Trace Elem Res 2023; 201:2458-2469. [PMID: 35922740 DOI: 10.1007/s12011-022-03377-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/30/2022] [Indexed: 12/31/2022]
Abstract
Doxorubicin (DOXR) is an important chemotherapeutic drug used in cancer treatment for many years. Several studies reported that the use of DOXR increased toxicity by causing an increase in oxidative stress (OS), especially in the heart. In this study, we investigated the protective effect of selenium (Se) and the role of transient receptor potential melastatin-2 (TRPM2) channel activation by using N-(p-amylcinnamoyl) anthranilic acid (ACA) in a model of DOXR-induced cardiotoxicity. Sixty female rats were equally divided into the control, dimethyl sulfoxide (DMSO), DOXR, DOXR + Se, DOXR + ACA, and DOXR + Se + ACA groups. Glutathione (GSH), glutathione peroxidase (GSH-Px), caspases (Cas) 3 and 9, interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), reactive oxygen species (ROS), poly [ADP-ribose] polymerase 1 (PARP-1), and TRPM2 channel levels were measured by ELISA. In addition, histopathological examination was performed in cardiac tissues and TNF-α, caspase 3, and TRPM2 channel expression levels were determined immunohistochemically. The levels of GSH, GSH-Px, caspases 3 and 9, IL-1β, TNF-α, ROS, PARP-1, and TRPM2 channel in serum, and cardiac tissue in the DOXR group were higher than in the control and DMSO groups (p < 0.05). However, these parameters in Se and/or ACA treatment groups were lower than in the DOXR group (p < 0.05). Also, we determined that Se and/or ACA treatment together with DOXR application decreased the TNF-α, Cas-3, and TRPM2 channel expression levels in the cardiac tissue. The data showed that administration of Se and/or ACA treatment together with DOXR may be used as a therapeutic agent in preventing DOXR-induced cardiotoxicity.
Collapse
Affiliation(s)
- Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, TR-65090, Van, Turkey.
| | - Zübeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
13
|
Miyazaki I, Asanuma M. Multifunctional Metallothioneins as a Target for Neuroprotection in Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12040894. [PMID: 37107269 PMCID: PMC10135286 DOI: 10.3390/antiox12040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by motor symptoms based on a loss of nigrostriatal dopaminergic neurons and by non-motor symptoms which precede motor symptoms. Neurodegeneration accompanied by an accumulation of α-synuclein is thought to propagate from the enteric nervous system to the central nervous system. The pathogenesis in sporadic PD remains unknown. However, many reports indicate various etiological factors, such as oxidative stress, inflammation, α-synuclein toxicity and mitochondrial impairment, drive neurodegeneration. Exposure to heavy metals contributes to these etiopathogenesis and increases the risk of developing PD. Metallothioneins (MTs) are cysteine-rich metal-binding proteins; MTs chelate metals and inhibit metal-induced oxidative stress, inflammation and mitochondrial dysfunction. In addition, MTs possess antioxidative properties by scavenging free radicals and exert anti-inflammatory effects by suppression of microglial activation. Furthermore, MTs recently received attention as a potential target for attenuating metal-induced α-synuclein aggregation. In this article, we summarize MTs expression in the central and enteric nervous system, and review protective functions of MTs against etiopathogenesis in PD. We also discuss neuroprotective strategies for the prevention of central dopaminergic and enteric neurodegeneration by targeting MTs. This review highlights multifunctional MTs as a target for the development of disease-modifying drugs for PD.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
14
|
Yıldızhan K, Nazıroğlu M. NMDA Receptor Activation Stimulates Hypoxia-Induced TRPM2 Channel Activation, Mitochondrial Oxidative Stress, and Apoptosis in Neuronal Cell Line: Modular Role of Memantine. Brain Res 2023; 1803:148232. [PMID: 36610553 DOI: 10.1016/j.brainres.2023.148232] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
TRPM2 channel is activated by the increase of hypoxia (HYP)-mediated excessive mitochondrial (mROS) and cytosolic (cROS) free reactive oxygen species generation and intracellular free Ca2+ ([Ca2+]i) influx. The stimulations of the N-methyl-d-aspartate(NMDA) receptor and TRPM2 channel induce mROS and apoptosis in the neurons, although their inhibitions via the treatments of memantine (MEM) and MK-801 decrease mROS and apoptosis. However, the molecular mechanisms underlying MEM treatment and NMDA inhibition' neuroprotection via TRPM2 inhibition in the HYP remain elusive. We investigated the modulator role of MEM and NMDA via the modulation of TRPM2 on oxidative neurodegeneration and apoptosis in SH-SY5Y neuronal cells. Six groups were induced in the SH-SY5Y and HEK293 cells as follows: Control, MEM, NMDA blocker (MK-801), HYP (CoCl2), HYP + MEM, and HYP + MK-801. The HYP caused to the increases of TRPM2 and PARP-1 expressions, and TRPM2 agonist (H2O2 and ADP-ribose)-induced TRPM2 current density and [Ca2+]i concentration via the upregulation of mitochondrial membrane potential, cROS, and mROS generations. The alterations were not observed in the absence of TRPM2 in the HEK293 cells. The increase of cROS, mROS, lipid peroxidation, cell death (propidium iodide/Hoechst) rate, apoptosis, caspase -3, caspase -8, and caspase -9 were restored via upregulation of glutathione and glutathione peroxidase by the treatments of TRPM2 antagonists (ACA or 2-APB), MEM, and MK-801. In conclusion, the inhibition of NMDA receptor via MEM treatment modulated HYP-mediated mROS, apoptosis, and TRPM2-induced excessive [Ca2+]i and may provide an avenue for protecting HYP-mediated neurodegenerative diseases associated with the increase of mROS, [Ca2+]i, and apoptosis.
Collapse
Affiliation(s)
- Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey; Drug Discovery Unit, BSN Health, Analyses, Innov., Consult., Org., Agricul., Trade Ltd, Isparta, Turkey; Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
15
|
Dai HY, Chang MX, Sun L. HOTAIRM1 knockdown reduces MPP +-induced oxidative stress injury of SH-SY5Y cells by activating the Nrf2/HO-1 pathway. Transl Neurosci 2023; 14:20220296. [PMID: 37529170 PMCID: PMC10388137 DOI: 10.1515/tnsci-2022-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023] Open
Abstract
Objective Parkinson's disease (PD) is the second most common neurodegenerative disease with complex pathogenesis. Although HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) is upregulated in PD, its exact role in HOTAIRM1 is seldom reported. The purpose of this study is to research the effect of HOTAIRM1 on 1-methyl-4-phenylpyridonium (MPP+)-induced cytotoxicity and oxidative stress in SH-SY5Y cells. Methods SH-SY5Y cells were treated with MPP+ at various concentrations or time points to induce SH-SY5Y cytotoxicity, so as to determine the optimal MPP+ concentration and time point. HOTAIRM1 expression upon MPP+ treatment was analyzed through qRT-PCR. Next, HOTAIRM1 was downregulated to observe the variance of SH-SY5Y cell viability, apoptosis, oxidative stress-related indexes, and protein levels of the Nrf2/HO-1 pathway. In addition, rescue experiments were carried out to assess the role of Nrf2 silencing in HOTAIRM1 knockdown on MPP+-induced oxidative stress in SH-SY5Y cells. Results MPP+ treatment-induced cytotoxicity and upregulated HOTAIRM1 expression in SH-SY5Y cells in a dose- and time-dependent manner. Mechanically, HOTAIRM1 knockdown enhanced cell viability, limited apoptosis, and oxidative stress, therefore protecting SH-SY5Y cells from MPP+-induced SH-SY5Y cytotoxicity. On the other hand, HOTAIRM1 knockdown activated the protein levels of Nrf2 and HO-1. Nrf2 silencing could counteract the neuroprotective effect of HOTAIRM1 knockdown on in vitro PD model. Conclusion Our data demonstrated that HOTAIRM1 knockdown could inhibit apoptosis and oxidative stress and activated the Nrf2/HO-1 pathway, therefore exerting neuroprotective effect on the PD cell model.
Collapse
Affiliation(s)
- Hui-Yu Dai
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ming-Xiu Chang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ling Sun
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
16
|
Ahlatcı A, Yıldızhan K, Tülüce Y, Bektaş M. Valproic Acid Attenuated PTZ-induced Oxidative Stress, Inflammation, and Apoptosis in the SH-SY5Y Cells via Modulating the TRPM2 Channel. Neurotox Res 2022; 40:1979-1988. [PMID: 36536269 DOI: 10.1007/s12640-022-00622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Valproic acid (VPA) is one of the most widely used antiepileptic drugs. The protective role of VPA and the role of the TRPM2 channel in this mechanism in developing neuronal damage due to increased pentylenetetrazol (PTZ)-induced neurotoxicity in SH-SY5Y cells were not clarified. Here, we investigated the role of VPA via modulation of TRPM2 channel on cell death and oxidative neurotoxicity in SH-SY5Y cells. The SH-SY5Y cell toxicity model was constructed by treating SH-SY5Y cells with PTZ. The VPA and TRPM2 channel antagonist N-(p-amylcinnamoyl) anthranilic acid (ACA) were added to prevent neurotoxicity in PTZ-induced SH-SY5Y cells. The role of the VPA and TRPM2 channel was evaluated using an ELISA kit and patch-clamp. Primarily, antioxidant (GSH and GSH-Px) and oxidative stress (MDA and ROS) levels and inflammatory factors (IL-1β, IL-6, and TNF-α) in cells were determined by ELISA kits. Then, TRPM2 channel activation in cells was detected using both the ELISA kit and patch-clamp methods. In addition, apoptosis and cell viability levels in cells were determined by performing PARP1, caspase-3, caspase-9, and CCK-8 assays by ELISA kits. Our results showed that the TRPM2 channel is vital in damage formation in PTZ-induced cells. Furthermore, we observed that VPA attenuated PTZ-induced neurotoxicity by suppressing cells' oxidative stress and inflammation, and reducing TRPM2 channel activation. In our study, in which the protective effect of VPA and the role of the TRPM2 channel in PTZ-induced SH-SY5Y cells were investigated for the first time, we can conclude that VPA treatment and TRPM2 channel blockade can suppress PTZ-induced neurotoxicity.
Collapse
Affiliation(s)
- Adem Ahlatcı
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, TR- 65080, Van, Turkey.
| | - Yasin Tülüce
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Muhammet Bektaş
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Daldal H, Nazıroğlu M. Selenium and Resveratrol Attenuated Diabetes Mellitus-Mediated Oxidative Retinopathy and Apoptosis via the Modulation of TRPM2 Activity in Mice. Biol Trace Elem Res 2022; 200:2283-2297. [PMID: 35384580 DOI: 10.1007/s12011-022-03203-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/11/2022] [Indexed: 01/14/2023]
Abstract
Diabetes mellitus induces optic nerve injury via the excessive generation of mitochondria reactive free oxygen radical (mitROS). TRPM2 channel is activated by mitROS, although it is inhibited by selenium (Se) and resveratrol (RSV). The activation of TRPM2 induces apoptosis and oxidative injury in the optic nerve. The inhibition of TRPM2 may decrease the optic nerve injury action of diabetes mellitus after the treatments of Se and RSV. Present study aimed to investigate the protective actions of Se and RSV on the excessive Ca2+ influx and mitROS generation-mediated optic nerve oxidative injury via the modulation of TRPM2. Fifty-six C57BL/6j male mice were divided into seven groups as control, Se, RSV, streptozotocin (STZ), STZ + Se, STZ + RSV, and STZ + Se + RSV. The STZ-mediated stimulation of TRPM2 increased the cytosolic Ca2+, lipid peroxidation, mitROS, cytosolic ROS, apoptosis, caspase-3, caspase-8, and caspase-9 concentrations in the mice, although their concentrations were decreased in the optic nerve by the treatments of Se and RSV. The STZ-induced decrease of optic nerve viability, glutathione, glutathione peroxidase, vitamin A, and vitamin E concentrations was also upregulated by the treatments of Se and RSV. The STZ-induced increase of TRPM2, PARP-1, caspase-3, and caspase-9 protein band expressions was diminished by the treatments of Se and RSV. In conclusion, STZ induced the optic nerve oxidative injury and apoptosis via the upregulation of TRPM2 stimulation, although the treatments of Se and RSV decreased the injury and apoptosis via the downregulation of TRPM2 activity.
Collapse
Affiliation(s)
- Hatice Daldal
- Department of Ophthalmology, Faculty of Medicine, Usak University, TR-64100, Usak, Turkey.
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, TR-32260, Isparta, Turkey
- Drug Discovery Unit, BSN Health, Analyses, Innov., Consult., Org., Agricul., Ltd., TR-32260, Isparta, Turkey
| |
Collapse
|
18
|
Vaccaro JA, Naser SA. The Role of Methyl Donors of the Methionine Cycle in Gastrointestinal Infection and Inflammation. Healthcare (Basel) 2021; 10:healthcare10010061. [PMID: 35052225 PMCID: PMC8775811 DOI: 10.3390/healthcare10010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Abstract
Vitamin deficiency is well known to contribute to disease development in both humans and other animals. Nonetheless, truly understanding the role of vitamins in human biology requires more than identifying their deficiencies. Discerning the mechanisms by which vitamins participate in health is necessary to assess risk factors, diagnostics, and treatment options for deficiency in a clinical setting. For researchers, the absence of a vitamin may be used as a tool to understand the importance of the metabolic pathways in which it participates. This review aims to explore the current understanding of the complex relationship between the methyl donating vitamins folate and cobalamin (B12), the universal methyl donor S-adenosyl-L-methionine (SAM), and inflammatory processes in human disease. First, it outlines the process of single-carbon metabolism in the generation of first methionine and subsequently SAM. Following this, established relationships between folate, B12, and SAM in varying bodily tissues are discussed, with special attention given to their effects on gut inflammation.
Collapse
|