1
|
Auddy I, Maurikaa CS, Hariharan N, Manoj D, Nimbkar S, Shanmugasundaram S. Development of amperometric enzyme‐based biosensor to evaluate the adulteration in virgin coconut oil. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ishita Auddy
- Planning and Monitoring Cell Indian Institute of Food Processing Technology Thanjavur India
| | - C. S. Maurikaa
- Planning and Monitoring Cell Indian Institute of Food Processing Technology Thanjavur India
| | - N. Hariharan
- Planning and Monitoring Cell Indian Institute of Food Processing Technology Thanjavur India
| | - D. Manoj
- Planning and Monitoring Cell Indian Institute of Food Processing Technology Thanjavur India
| | - Shubham Nimbkar
- Planning and Monitoring Cell Indian Institute of Food Processing Technology Thanjavur India
| | - S. Shanmugasundaram
- Planning and Monitoring Cell Indian Institute of Food Processing Technology Thanjavur India
| |
Collapse
|
2
|
Asav E. Development of a functional impedimetric immunosensor for accurate detection of thyroid-stimulating hormone. Turk J Chem 2021; 45:819-834. [PMID: 34385869 PMCID: PMC8329345 DOI: 10.3906/kim-2012-69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/26/2021] [Indexed: 12/03/2022] Open
Abstract
Thyroid-stimulating hormone (TSH), which regulates the synthesis of thyroid gland hormones affecting the whole metabolism, is a pituitary hormone. Determination of TSH is crucial for monitoring thyroid gland-related disorders and some metabolic diseases.In this study, a nonlabeled immunosensor based on covalent immobilization of anti-TSH antibody by using the formation of self-assembled monolayers (SAM) of 4-mercaptophenylacetic acid (4-MPA) and functionalization of carboxyl ends with 1-ethyl-3-(3-dimetilaminopropil) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) was fabricated for detection of TSH. Immobilization steps including the concentration of 4-MPA, the concentration of anti-TSH antibody, and duration of anti-TSH antibody incubation were optimized by utilizing electrochemical impedance spectroscopy. Under optimal conditions, a sensitive, rapid, and accurate determination of TSH at a concentration range between 0.7 and 3.5 mIU/L was accomplished with a notable linearity and LOD value of 0.034 mIU/L, as well as reproducibility and repeatability. Moreover, for comparison, linear range experiments were also carried out by using other electrochemical methods, including linear sweep voltammetry, cyclic voltammetry, and capacitance spectroscopy. Finally, the constructed immunosensor was used for analyzing TSH levels spiked in the artificial serum samples.
Collapse
Affiliation(s)
- Engin Asav
- Department of Nutrition and Dietetics, School of Health, Kırklareli University Turkey
| |
Collapse
|
3
|
Development of Screen-Printed Electrode Biosensor for Rapid Determination of Triglyceride Content in Coconut Milk. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:1696201. [PMID: 32455128 PMCID: PMC7229538 DOI: 10.1155/2020/1696201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
Abstract
The screen-printed electrode biosensor was developed for triglyceride determination in coconut milk. The biosensor was developed by adding lipase, glycerol-3-phosphate (GPO), and glycerol kinase (GK), which is immobilized to a gelatin solution. The concentration of triglyceride is found to be linear to the current produced. The developed screen-printed electrode biosensor showed the optimum response for pH 7.0, 45 mg amount of gelatin, 2.5% glutaraldehyde concentration solution. The developed biosensor was able to find triolein concentrations 0.1 to 1.5 mM. The correlation obtained between these two methods was 93% which was found to be good.
Collapse
|
4
|
Ibadullaeva SZ, Appazov NO, Tarahovsky YS, Zamyatina EA, Fomkina MG, Kim YA. Amperometric Multi-Enzyme Biosensors: Development and Application, a Short Review. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
5
|
Hasanah U, Sani NDM, Heng LY, Idroes R, Safitri E. Construction of a Hydrogel Pectin-Based Triglyceride Optical Biosensor with Immobilized Lipase Enzymes. BIOSENSORS-BASEL 2019; 9:bios9040135. [PMID: 31766218 PMCID: PMC6956241 DOI: 10.3390/bios9040135] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022]
Abstract
A novel and simple optical biosensor to detect triglycerides (TGs) has been successfully constructed by using pectin hydrogel membrane as the indicator pH and chromoionophore ETH 5294 (CI), with lipase as the catalyst. The enzymatic working system against TGs releasing H+ ions will affect the color absorbance of CI. The characterization results show that a TG biosensor has the optimum condition and sensitivity at the phosphate buffer concentration of 50 mM, pH 7, and enzyme loading of 60 μg. The biosensor works at the tripalmitin (TP) concentration range of 100–400 mg/dL. With the sensitivity of 0.001 (∆A/(mg/dL)), the biosensor response reaches stability after five minutes, and the limit of detection (LOD) of the TG optical biosensor is 15 mg/dL. Relative standard deviation (RSD) in a reproducibility test was 2.5%, with a 15-day lifespan.
Collapse
Affiliation(s)
- Uswatun Hasanah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Fisheries, Faculty of Fisheries and Marine Sciences, Universitas Teuku Umar, West Aceh 23615, Indonesia
| | - Nor Diyana Md Sani
- Sanichem Resources Sdn. Bhd. No 7 & 7A Jalan Timur 6/1A Mercato @Enstek, Bandar Enstek NSN 71060, Malaysia;
| | - Lee Yook Heng
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi SGR 43600 UKM, Malaysia;
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Eka Safitri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Correspondence: ; Tel.: +62-853-7282-9295
| |
Collapse
|
6
|
Development of an electrochemical biosensor for the determination of triglycerides in serum samples based on a lipase/magnetite-chitosan/copper oxide nanoparticles/multiwalled carbon nanotubes/pectin composite. Talanta 2018; 190:30-37. [DOI: 10.1016/j.talanta.2018.07.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 01/23/2023]
|
7
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. J Pharm Biomed Anal 2018; 161:344-376. [PMID: 30205301 DOI: 10.1016/j.jpba.2018.08.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Early diagnosis of cardiovascular disease (CVD) is critically important for successful treatment and recovery of patients. At present, detection of CVD at early stages of its progression becomes a major issue for world health. The nanoscale electrochemical biosensors exhibit diverse outstanding properties, rendering them extremely suitable for the determination of CVD biomarkers at very low concentrations in biological fluids. The unique advantages offered by electrochemical biosensors in terms of sensitivity and stability imparted by nanostructuring the electrode surface together with high affinity and selectivity of bioreceptors have led to the development of new electrochemical biosensing strategies that have introduced as interesting alternatives to conventional methodologies for clinical diagnostics of CVD. This review provides an updated overview of selected examples during the period 2005-2018 involving electrochemical biosensing approaches and signal amplification strategies based on nanomaterials, which have been applied for determination of CVD biomarkers. The studied CVD biomarkers include AXL receptor tyrosine kinase, apolipoproteins, cholesterol, C-reactive protein (CRP), D-dimer, fibrinogen (Fib), glucose, insulin, interleukins, lipoproteins, myoglobin, N-terminal pro-B-type natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α) and troponins (Tns) on electrochemical transduction format. Identification of new specific CVD biomarkers, multiplex bioassay for the simultaneous determination of biomarkers, emergence of microfluidic biosensors, real-time analysis of biomarkers and point of care validation with high sensitivity and selectivity are the major challenges for future research.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran.
| | - Leila Samandari
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran
| |
Collapse
|
8
|
Hooda V, Gahlaut A, Gothwal A, Hooda V. Recent trends and perspectives in enzyme based biosensor development for the screening of triglycerides: a comprehensive review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:626-635. [DOI: 10.1080/21691401.2018.1465946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Vinita Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | | | - Ashish Gothwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
9
|
Biosensing methods for determination of triglycerides: A review. Biosens Bioelectron 2018; 100:214-227. [DOI: 10.1016/j.bios.2017.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 01/06/2023]
|
10
|
Abstract
A biosensor is a device composed by a biological recognition element and a transducer that delivers selective information about a specific analyte. Technological and scientific advances in the area of biology, bioengineering, catalysts, electrochemistry, nanomaterials, microelectronics, and microfluidics have improved the design and performance of better biosensors. Enzymatic biosensors based on lipases, esterases, and phospholipases are valuable analytical apparatus which have been applied in food industry, oleochemical industry, biodegradable polymers, environmental science, and overall the medical area as diagnostic tools to detect cholesterol and triglyceride levels in blood samples. This chapter reviews recent developments and applications of lipase-, esterase-, and phospholipase-based biosensors.
Collapse
Affiliation(s)
- Georgina Sandoval
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Enrique J Herrera-López
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Zapopan, Jalisco, Mexico.
| |
Collapse
|
11
|
Amperometric triglyceride bionanosensor based on nanoparticles of lipase, glycerol kinase, glycerol-3-phosphate oxidase. Anal Biochem 2017; 517:56-63. [DOI: 10.1016/j.ab.2016.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023]
|