1
|
Olaniyi OO, Oriade B, Lawal OT, Ayodeji AO, Olorunfemi YO, Igbe FO. Purification and biochemical characterization of pullulanase produced from Bacillus sp. modified by ethyl-methyl sulfonate for improved applications. Prep Biochem Biotechnol 2024; 54:455-469. [PMID: 37587838 DOI: 10.1080/10826068.2023.2245884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Strain improvement via chemical mutagen could impart traits with better enzyme production or improved characteristics. The present study sought to investigate the physicochemical properties of pullulanase produced from the wild Bacillus sp and the mutant. The pullulanases produced from the wild and the mutant Bacillus sp. (obtained via induction with ethyl methyl sulfonate) were purified in a-three step purification procedure and were also characterized. The wild and mutant pullulanases, which have molecular masses of 40 and 43.23 kDa, showed yields of 2.3% with 6.0-fold purification and 2.0% with 5.0-fold purification, respectively, and were most active at 50 and 40 °C and pH 7 and 8, respectively. The highest stability of the wild and mutant was between 40 and 50 °C after 1 h, although the mutant retained greater enzymatic activity between pH 6 and 9 than the wild. The mutant had a decreased Km of 0.03 mM as opposed to the wild type of 1.6 mM. In comparison to the wild, the mutant demonstrated a better capacity for tolerating metal ions and chelating agents. These exceptional characteristics of the mutant pullulanase may have been caused by a single mutation, which could improve its utility in industrial and commercial applications.
Collapse
Affiliation(s)
- Oladipo O Olaniyi
- Microbiology Department, Federal University of Technology, Akure, Nigeria
| | - Blessing Oriade
- Microbiology Department, Federal University of Technology, Akure, Nigeria
| | - Olusola T Lawal
- Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Adeyemi O Ayodeji
- Department of Biological Sciences, Joseph Ayo-Babalola University, Arakeji, Nigeria
| | | | - Festus O Igbe
- Biochemistry Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
2
|
Sanni DM, Jimoh MB, Lawal OT, Bamidele SO. Purification and biochemical characterization of phytase from Bacillus cereus isolated from gastrointestinal tract of African giant snail (Achatina fulica). Int Microbiol 2023; 26:961-972. [PMID: 37020067 DOI: 10.1007/s10123-023-00350-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Phytases are specialized enzymes meant for phytic acid degradation. They possess ability to prevent phytic acid indigestion, including its attendant environmental pollution. This study was aimed at investigating biochemical properties of purified phytase of B. cereus isolated from Achatina fulica. Phytase produced from Bacillus cereus that exhibited optimal phytate degrading-ability of all the bacteria isolated was purified in a three-step purification. The biochemical properties of the purified enzyme were also determined. The phytase homogeny of approximately 45 kDa exhibited 12.8-purification fold and 1.6% yield with optima phytate degrading efficiency and maximum stability at pH 7 and 50 °C. Remaining activity of 52 and 47% obtained between 60 and 70 °C after 2 h further established thermostability of the purified phytase. Mg2+ and Zn2+ enhanced phytate hydrolysis by the enzyme, while Na+ showed mild inhibition but Hg2+ severely inhibited the enzymatic activity. Km and Vmax were estimated to be 0.11 mM and 55.6 μmol/min/mL, displaying enzyme-high substrate affinity and catalytic efficiency, respectively. Phytase purified from Bacillus cereus, isolated from African giant snails, has shown excellent characteristics suitable for phytic acid hydrolysis and could be employed in industrial and biotechnological applications.
Collapse
Affiliation(s)
| | | | - Olusola Tosin Lawal
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | | |
Collapse
|
3
|
Djelid H, Flahaut S, Oudjama Y, Wauven CV, Kacem Chaouche N. High NaCl concentrations induce the resistance to thermal denaturation of an extremely halotolerant (salt-activated) β-mannanase from Bacillus velezensis H1. World J Microbiol Biotechnol 2023; 39:304. [PMID: 37691038 DOI: 10.1007/s11274-023-03754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
β-mannanase catalyzes the hydrolysis of mannans β-1,4-mannosidic linkages to produce industrially relevant oligosaccharides. These enzymes have numerous important applications in the detergent, food, and feed industries, particularly those that are resistant to harsh environmental conditions such as salts and heat. While, moderately salt-tolerant β-mannanases are already reported, existence of a high halotolerant β-mannanase is still elusive. This study aims to report the first purification and characterization of ManH1, an extremely halotolerant β-mannanase from the halotolerant B. velezensis strain H1. Electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) analysis revealed a single major peak with a molecular mass of 37.8 kDa demonstrating its purity. The purified enzyme showed a good thermostability as no activity was lost after a 48 h incubation under optimal conditions of 50 °C and pH 5.5. The enzyme's salt activation nature was revealed when its maximum activity was obtained in the presence of 4 M NaCl, it doubled compared to the no-salt condition. Moreover, NaCl strengthens its resistance to thermal denaturation, as its melting temperature (Tm) increased steadily with increasing NaCl concentrations reaching 75.5 °C in the presence of 2.5 M NaCl. The Km and Vmax values were 5.63 mg/mL and 333.33 µmol/min/mL, respectively, using carob galactomannan (CG) as a substrate. The enzyme showed a significant ability to produce manno-oligosaccharides (MOS) from lignocellulosic biomass releasing 13 mg/mL of reducing sugars from olive mill wastes (OMW) after 24 h incubation. The results revealed that this enzyme may have significant commercial values for agro-waste treatment, and other potential applications.
Collapse
Affiliation(s)
- Hadjer Djelid
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, FSNV, Université des Frères Mentouri, Constantine 1, Constantine, 25017, Algeria.
- Laboratoire de microbiologie appliquée, Ecole interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Campus du CERIA, Bât. 4B, 1 avenue Emile Gryson, Brussels, 1070, Belgium.
| | - Sigrid Flahaut
- Laboratoire de microbiologie appliquée, Ecole interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Campus du CERIA, Bât. 4B, 1 avenue Emile Gryson, Brussels, 1070, Belgium
| | | | | | - Noreddine Kacem Chaouche
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, FSNV, Université des Frères Mentouri, Constantine 1, Constantine, 25017, Algeria
| |
Collapse
|