1
|
Pigliasco F, Cafaro A, Barco S, Biondi M, Stella M, Mattioli F, Riva A, de Grazia U, Molteni L, Micalizzi E, Villani F, Striano P, Bandettini R, Cangemi G. A VAMS-based LC-MS/MS method for precise cenobamate quantification in epilepsy (patients). Epilepsia Open 2024; 9:2144-2153. [PMID: 39297399 PMCID: PMC11633685 DOI: 10.1002/epi4.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE Cenobamate (CNB), a recently approved antiseizure medication by the European Medicines Agency (EMA), serves as an adjunctive therapy for focal-onset seizures in adult patients unresponsive to at least two other treatments. Administered in polytherapy, CNB can potentially interact with co-administered drugs in epilepsy patients, necessitating dose adjustments and the need for effective therapeutic drug monitoring (TDM). METHODS In this study, we introduce a novel LC-MS/MS method for precise CNB quantification using Volumetric Absorptive Microsampling (VAMS), following validation according to ICH guidelines M10. VAMS samples are efficiently extracted with 200 μL of methanol, with chromatographic separation achieved using an Acquity UPLC HSS PFP column. The method's efficacy was confirmed through its application to real samples from adult CNB-treated patients. RESULTS Our results demonstrate that the method exhibits linearity within the range of 0.05-30 mg/L, with intra- and inter-run precision ranging from 1% to 8% and accuracy from 1% to 10% based on 30 μL of sample. Furthermore, CNB stability in VAMS is confirmed for up to 15 days at 25°C and -20°C. Importantly, no significant difference was observed between CNB concentrations in VAMS samples and those in plasma obtained from venous blood. SIGNIFICANCE This VAMS-based LC-MS/MS method presents a robust alternative for TDM in CNB-treated patients. Future investigations should explore CNB concentrations in capillary blood and assess their correlation with plasma levels to further enhance its clinical utility. PLAIN LANGUAGE SUMMARY Cenobamate is an antiepileptic drug and used for treatment of focal-onset seizures in adult patients (≥18 age). TDM can prevent drug interactions and minimize drug toxicity. The aim of this work is to evaluate volumetric absorptive microsampling (VAMS) from capillary blood as an alternative strategy for TDM in patients treated with the newly antiepileptic drug. Our method is suitable for TDM, and this study suggests that VAMS allows monitoring of cenobamate concentration and can offer valuable support for personalized therapy in refractory epilepsy.
Collapse
Affiliation(s)
- Federica Pigliasco
- Chromatography and Mass Spectrometry Section, Central Laboratory of AnalysisIRCCS Istituto Giannina GasliniGenoaItaly
| | - Alessia Cafaro
- Chromatography and Mass Spectrometry Section, Central Laboratory of AnalysisIRCCS Istituto Giannina GasliniGenoaItaly
| | - Sebastiano Barco
- Chromatography and Mass Spectrometry Section, Central Laboratory of AnalysisIRCCS Istituto Giannina GasliniGenoaItaly
| | - Margherita Biondi
- Chromatography and Mass Spectrometry Section, Central Laboratory of AnalysisIRCCS Istituto Giannina GasliniGenoaItaly
| | - Manuela Stella
- IRCCS Istituto Giannina GasliniGaslini Trial CentreGenovaItaly
- Pharmacology and Toxicology Unit, Department of Internal MedicineUniversity of GenoaGenoaItaly
| | - Francesca Mattioli
- Pharmacology and Toxicology Unit, Department of Internal MedicineUniversity of GenoaGenoaItaly
- Clinical Pharmacology UnitEnte Ospedaliero Ospedali GallieraGenoaItaly
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenoaItaly
| | - Ugo de Grazia
- SSD Laboratory Medicine – SMEL122Fondazione IRCCS Istituto Neurologico Carlo BestaMilanoItaly
- Present address:
Pharmacotoxicology UnitCentro Diagnostico Italiano C.D.I.MilanItaly
| | - Linda Molteni
- SSD Laboratory Medicine – SMEL122Fondazione IRCCS Istituto Neurologico Carlo BestaMilanoItaly
| | - Elisa Micalizzi
- Clinical Neurophysiology Unit and Epilepsy CenterIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Flavio Villani
- Clinical Neurophysiology Unit and Epilepsy CenterIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenoaItaly
- Paediatric Neurology and Muscular Disease UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | - Roberto Bandettini
- Chromatography and Mass Spectrometry Section, Central Laboratory of AnalysisIRCCS Istituto Giannina GasliniGenoaItaly
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of AnalysisIRCCS Istituto Giannina GasliniGenoaItaly
| |
Collapse
|
2
|
El-Malla SF, Mansour FR, Elbastawissy ABB, Elagamy SH. Development of a stability indicating high-performance liquid chromatography method for determination of cenobamate: study of basic degradation kinetics. BMC Chem 2024; 18:74. [PMID: 38615027 PMCID: PMC11016219 DOI: 10.1186/s13065-024-01177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/28/2024] [Indexed: 04/15/2024] Open
Abstract
This study presents a stability indicating high-performance liquid chromatography HPLC method for the determination of cenobamate (CNB) in presence of its main impurity (CNB H-impurity) and degradation products. The chromatographic separation was carried out on a Thermo BDS Hypersil-C18 column (150 × 4.6 mm; 5 μm) with a mobile phase consisting of a 50:50 (%v/v) ratio of methanol and purified water. The flow rate was maintained at 1.0 mL. min- 1. CNB was detected at 210 nm using a PDA detector. The column temperature was held at 40 °C.The retention time of the drug was found to be 3.2 min. Furthermore, the study investigates the degradation behavior of CNB under various stress conditions, including acidic, basic, oxidative, and light-induced degradation. The results indicate that CNB is particularly susceptible to basic degradation. Consequently, a comprehensive study of the basic degradation kinetics was conducted. The method was also successfully applied for the determination of CNB in its dosage form. The results also show that there is no co-elution from degradation products or excipients as indicated by the mass balance and peak purity values confirming the specificity of the proposed method and its applicability for routine analysis of CNB.
Collapse
Affiliation(s)
- Samah F El-Malla
- Department of pharmaceutical analytical chemistry, Faculty of pharmacy, Tanta University, Tanta, Egypt
| | - Fotouh R Mansour
- Department of pharmaceutical analytical chemistry, Faculty of pharmacy, Tanta University, Tanta, Egypt
| | | | - Samar H Elagamy
- Department of pharmaceutical analytical chemistry, Faculty of pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
3
|
Molteni L, Charlier B, Coglianese A, Izzo V, Assenza G, Menna P, de Grazia U, D’Urso A. Quantitative Analysis of Cenobamate and Concomitant Anti-Seizure Medications in Human Plasma via Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2024; 29:884. [PMID: 38398636 PMCID: PMC10892084 DOI: 10.3390/molecules29040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Cenobamate (CNB) is a new anti-seizure medication (ASM) recently introduced in clinical practice after approval by the FDA and EMA for the add-on treatment of focal onset seizures in adult patients. Although its mechanism of action has not been fully understood, CNB showed promising clinical efficacy in patients treated with concomitant ASMs. The accessibility of CNB could pave a way for the treatment of refractory or drug-resistant epilepsies, which still affect at least one-third of the patients under pharmacological treatment. In this context, therapeutic drug monitoring (TDM) offers a massive opportunity for better management of epileptic patients, especially those undergoing combined therapy. Here, we describe the first fully validated ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the quantification of CNB and concomitant ASMs in human plasma, with samples extracted either manually or by means of a liquid handler. Our method was validated according to the most recent ICH International Guideline M10 for Bioanalytical Method Validation and Study Sample Analysis. The method proved to be selective for CNB and displayed a linear range from 0.8 to 80 mg/L; no matrix effect was found (98.2 ± 4.1%), while intra-day and inter-day accuracy and precision were within the acceptance range. Also, CNB short- and long-term stability in plasma under different conditions was assessed. Leftover human plasma samples were employed as study samples for method validation. Our method proved to be highly sensitive and selective to quantify CNB and concomitant ASMs in human plasma; therefore, this method can be employed for a routinely TDM-based approach to support physicians in the management of an epileptic patient.
Collapse
Affiliation(s)
- Linda Molteni
- SSD Laboratory Medicine, Fondazione IRCCS “Istituto Neurologico Carlo Besta”, 20133 Milan, Italy;
| | - Bruno Charlier
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (B.C.); (A.C.); (V.I.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Albino Coglianese
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (B.C.); (A.C.); (V.I.)
- Graduate School in Clinical Pathology and Clinical Biochemistry, University of Salerno, Baronissi, 84081 Salerno, Italy
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (B.C.); (A.C.); (V.I.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Giovanni Assenza
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (G.A.); (P.M.)
| | - Pierantonio Menna
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (G.A.); (P.M.)
- Department of Science and Technology for Sustainable Development and One Health, University Campus Biomedico di Roma, 00128 Rome, Italy
| | - Ugo de Grazia
- SSD Laboratory Medicine, Fondazione IRCCS “Istituto Neurologico Carlo Besta”, 20133 Milan, Italy;
| | - Annachiara D’Urso
- SSD Laboratory Medicine, Fondazione IRCCS “Istituto Neurologico Carlo Besta”, 20133 Milan, Italy;
| |
Collapse
|
4
|
Rissardo JP, Fornari Caprara AL. Cenobamate (YKP3089) and Drug-Resistant Epilepsy: A Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1389. [PMID: 37629678 PMCID: PMC10456719 DOI: 10.3390/medicina59081389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Cenobamate (CNB), ([(R)-1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethyl], is a novel tetrazole alkyl carbamate derivative. In November 2019, the Food and Drug Administration approved Xcopri®, marketed by SK Life Science Inc., (Paramus, NJ, USA) for adult focal seizures. The European Medicines Agency approved Ontozry® by Arvelle Therapeutics Netherlands B.V.(Amsterdam, The Neatherlands) in March 2021. Cenobamate is a medication that could potentially change the perspectives regarding the management and prognosis of refractory epilepsy. In this way, this study aims to review the literature on CNB's pharmacological properties, pharmacokinetics, efficacy, and safety. CNB is a highly effective drug in managing focal onset seizures, with more than twenty percent of individuals with drug-resistant epilepsy achieving seizure freedom. This finding is remarkable in the antiseizure medication literature. The mechanism of action of CNB is still poorly understood, but it is associated with transient and persistent sodium currents and GABAergic neurotransmission. In animal studies, CNB showed sustained efficacy and potency in the 6 Hz test regardless of the stimulus intensity. CNB was revealed to be the most cost-effective drug among different third-generation antiseizure medications. Also, CNB could have neuroprotective effects. However, there are still concerns regarding its potential for abuse and suicidality risk, which future studies should clearly assess, after which protocols should be changed. The major drawback of CNB therapy is the slow and complex titration and maintenance phases preventing the wide use of this new agent in clinical practice.
Collapse
Affiliation(s)
- Jamir Pitton Rissardo
- Medicine Department, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
| | | |
Collapse
|
5
|
Charlier B, Coglianese A, Operto FF, Coppola G, de Grazia U, Menna P, Filippelli A, Dal Piaz F, Izzo V. Development and Validation of a UHPLC-MS/MS-Based Method to Quantify Cenobamate in Human Plasma Samples. Molecules 2022; 27:7325. [PMID: 36364153 PMCID: PMC9656984 DOI: 10.3390/molecules27217325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 08/27/2023] Open
Abstract
Cenobamate (CNB) is the newest antiseizure medication (ASM) approved by the FDA in 2019 to reduce uncontrolled partial-onset seizures in adult patients. Marketed as Xcopri in the USA or Ontozry in the EU (tablets), its mechanism of action has not been fully understood yet; however, it is known that it inhibits voltage-gated sodium channels and positively modulates the aminobutyric acid (GABA) ion channel. CNB shows 88% of oral bioavailability and is responsible for modifying the plasma concentrations of other co-administered ASMs, such as lamotrigine, carbamazepine, phenytoin, phenobarbital and the active metabolite of clobazam. It also interferes with CYP2B6 and CYP3A substrates. Nowadays, few methods are reported in the literature to quantify CNB in human plasma. The aim of this study was to develop and validate, according to the most recent guidelines, an analytical method using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) to evaluate CNB dosage in plasma samples. Furthermore, we provided a preliminary clinical application of our methodology by evaluating the pharmacokinetic parameters of CNB in two non-adult patients. Plasma levels were monitored for two months. Preliminary data showed a linear increase in plasma CNB concentrations, in both patients, in agreement with the increase in CNB dosage. A seizure-free state was reported for both patients at the dose of 150 mg per day.
Collapse
Affiliation(s)
- Bruno Charlier
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Albino Coglianese
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy
- Graduate School in Clinical Pathology and Clinical Biochemistry, University of Salerno, Baronissi, 84081 Salerno, Italy
| | - Francesca Felicia Operto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Giangennaro Coppola
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Ugo de Grazia
- Laboratory of Neurological Biochemistry and Neuropharmacology, Fondazione IRCCS “Istituto Neurologico Carlo Besta”, 20133 Milano, Italy
| | - Pierantonio Menna
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
- Operative Research Unit of Clinical Pharmacology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Roma, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
6
|
ALSaeedy M, Hasan A, Al-Adhreai A, Alrabie A, Qaba H, Mashrah A, Öncü-Kaya EM. An overview of liquid chromatographic methods for analyzing new generation anti-epileptic drugs. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2134146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mohammed ALSaeedy
- Department of Chemistry, Faculty of Applied Sciences, Dhamar University, Dhamar, Yemen
- Department of Chemistry, Faculty of Sciences, Eskisehir Technical University, Eskisehir, Turkey
- Department of Chemistry, Faculty of Education-Albaydha, Albaydha University, Albaydha, Yemen
| | - Ahmed Hasan
- Department of Pharmacology, Graduation School of Health Science, Anadolu University, Eskisehir, Turkey
| | - Arwa Al-Adhreai
- Department of Chemistry, Faculty of Applied Sciences, Dhamar University, Dhamar, Yemen
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, India
| | - Ali Alrabie
- Department of Chemistry, Faculty of Education-Albaydha, Albaydha University, Albaydha, Yemen
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, India
| | - Hafsah Qaba
- Department of Analytical Chemistry, Graduation School of Health Sciences, Anadolu University, Eskisehir, Turkey
| | - Abdulrahman Mashrah
- Department of Food Science and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb, Yemen
- Department of Food Engineering, Institute of Natural Sciences-Sakarya, Sakarya University, Sakarya, Turkey
| | - Elif Mine Öncü-Kaya
- Department of Chemistry, Faculty of Sciences, Eskisehir Technical University, Eskisehir, Turkey
| |
Collapse
|
7
|
Sommerfeld-Klatta K, Zielińska-Psuja B, Karaźniewcz-Łada M, Główka FK. New Methods Used in Pharmacokinetics and Therapeutic Monitoring of the First and Newer Generations of Antiepileptic Drugs (AEDs). Molecules 2020; 25:E5083. [PMID: 33147810 PMCID: PMC7663638 DOI: 10.3390/molecules25215083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
The review presents data from the last few years on bioanalytical methods used in therapeutic drug monitoring (TDM) of the 1st-3rd generation and the newest antiepileptic drug (AEDs) cenobamate in patients with various forms of seizures. Chemical classification, structure, mechanism of action, pharmacokinetic data and therapeutic ranges for total and free fractions and interactions were collected. The primary data on bioanalytical methods for AEDs determination included biological matrices, sample preparation, dried blood spot (DBS) analysis, column resolution, detection method, validation parameters, and clinical utility. In conclusion, the most frequently described method used in AED analysis is the LC-based technique (HPLC, UHPLC, USLC) combined with highly sensitive mass detection or fluorescence detection. However, less sensitive UV is also used. Capillary electrophoresis and gas chromatography have been rarely applied. Besides the precipitation of proteins or LLE, an automatic SPE is often a sample preparation method. Derivatization was also indicated to improve sensitivity and automate the analysis. The usefulness of the methods for TDM was also highlighted.
Collapse
Affiliation(s)
- Karina Sommerfeld-Klatta
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (K.S.-K.); (B.Z.-P.)
| | - Barbara Zielińska-Psuja
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (K.S.-K.); (B.Z.-P.)
| | - Marta Karaźniewcz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Poznań, Poland;
| | - Franciszek K. Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Poznań, Poland;
| |
Collapse
|