1
|
Hu G, Yu Q, Zhang Y, Zheng X, Gao S, Hao J. Development of two novel ELISAs based on Prussian blue nanoparticles for ultrasensitive detection of norfloxacin in milk. Food Chem 2025; 463:141206. [PMID: 39288459 DOI: 10.1016/j.foodchem.2024.141206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
The development of traditional enzyme-linked immunosorbent assay (ELISA) systems for the detection of small-molecule residues in foods is limited because of the poor stability of biological enzymes and the lower sensitivity of absorption-based signals. Herein, two ELISAs based on Prussian blue nanoparticles (PBNPs) were developed to establish ultrasensitive and stable methods for detecting norfloxacin (NOR) in milk. The results show that the detection limit (IC15) of NOR was 0.77 μg L-1 and the sensitivity (IC50) was 18.28 μg L-1 in the standard solution using the PBNPs-based nano-ELISA. When the fluorescence quenching ELISA based on PBNPs was used, the detection limit was 0.06 μg L-1 and the sensitivity was 4.21 μg L-1 in the standard solution. The recoveries and precision were good, as confirmed by analysis of real milk samples. The results were consistent with those of commercial ELISA kits, indicating the high accuracy of these two methods.
Collapse
Affiliation(s)
- Gaoshuang Hu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Qingxiu Yu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Yiqin Zhang
- Shijiazhuang Customs District P. R. China, Shijiazhuang, Hebei 050061, PR China
| | - Xuechao Zheng
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Shan Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China.
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China.
| |
Collapse
|
2
|
Hu G, Liu Z, Zhang Y, Gao S, Hao J. Simultaneous detection of enrofloxacin and florfenicol in animal-derived foods based on fluorescence quenching BELISA and a nanozyme catalytic strategy. Talanta 2024; 280:126759. [PMID: 39180878 DOI: 10.1016/j.talanta.2024.126759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Enrofloxacin (ENRO) and florfenicol (FF) are animal-specific drugs, but they present great harm to human health. Therefore, it is essential to rapidly and accurately detect ENRO and FF in animal-derived foods simultaneously. Herein, dual-template molecular imprinted polymers (MIPs) with specific recognition of ENRO and FF were prepared, meanwhile, the molar ratios of templates to monomer and cross-linker were optimized and then applied as a bionic antibody to experiment. Based on the principle that the fluorescence of QDs could be efficiently quenched by the enzymatic fabrication of Prussian blue nanoparticles (PBNPs), a novel and sensitive fluorescence quenching biomimetic enzyme-linked immunosorbent assay (BELISA) was established for simultaneous detection of ENRO and FF by the conversion of the absorption signal into fluorescent signals. Under optimal conditions, the detection limit (IC15) was 4.64 ng L-1 for ENRO and 1.33 ng L-1 for FF. Besides, matrix interference of chicken, eggs, milk and shrimp samples, was investigated in our study, and the result indicates that all of the sample matrices had a profound impact on the fluorescence of QDs, especially for milk samples (with Im of 94.10 %). After performing the matrix-elimination experiments, chicken, eggs, milk and shrimp samples spiked with ENRO and FF were extracted and detected by this proposed method, with recoveries ranging from 82.70 to 113.48 %. The results correlated well with those obtained using HPLC. In conclusion, the developed method could be an alternative and sensitive method for the simultaneous detection of ENRO and FF in animal-derived foods.
Collapse
Affiliation(s)
- Gaoshuang Hu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Ziyang Liu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Yiqin Zhang
- Shijiazhuang Customs District PR China, Shijiazhuang, Hebei 050061, China
| | - Shan Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| |
Collapse
|
3
|
Kim BJ, Yang SH, Choi H. Organophosphate Detection in Animal-Derived Foods Using a Modified Quick, Easy, Cheap, Effective, Rugged, and Safe Method with Liquid Chromatography-Mass Spectrometry. Foods 2024; 13:2642. [PMID: 39200569 PMCID: PMC11353787 DOI: 10.3390/foods13162642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Organophosphates are widely used in the livestock industry. In this study, we developed a method for detecting 27 organophosphate insecticides in animal-derived foods, including beef, pork, chicken, milk, and eggs, using liquid chromatography-tandem mass spectrometry. A modified QuEChERS method was optimized for sample pretreatment. A mixture of acetonitrile and acetone was used as the extraction solvent, and MgSO4 and NaCl were used as salts. Among the five different dispersive solid-phase extraction systems, MgSO4, primary secondary amines, and C18 were selected for purification because they had the highest recovery rates and least matrix effects. The matrix-dependent limit of quantitation was 0.0005-0.005 mg/kg, and the correlation coefficient of the matrix-matched calibration curve was >0.99, which was acceptable for quantifying residues below 0.01 mg/kg-the default maximum residue limit in a positive list system. The recovery efficiencies ranged from 71.9 to 110.5%, with standard deviations ranging from 0.2% to 12.5%, satisfying the SANTE guidelines. The established analytical method was used to monitor organophosphates in animal-derived foods obtained from a local market, and no pesticides were detected. With respect to industry standards, our proposed method is recommended for practical organophosphate detection in animal-derived foods.
Collapse
Affiliation(s)
- Byung-Joon Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | - Seung-Hyun Yang
- Healthcare Advanced Chemical Research Institute, Environmental Toxicology & Chemistry Center, Hwasun-gun 58141, Republic of Korea;
| | - Hoon Choi
- Department of Life and Environmental Sciences, College of Agriculture and Food Sciences, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
4
|
Iram S, Nazar Z, Sajid M, William Chamberlain T, Furqan Nawaz M, Mahboob Ahmed M, Kashif M. In-tube solid phase extraction with graphitic-based polyurethane sponge as a superhydrophobic sorbent and determination of drug residues in foodstuffs using high-performance liquid chromatography. Food Chem 2024; 448:139022. [PMID: 38522298 DOI: 10.1016/j.foodchem.2024.139022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024]
Abstract
Veterinary drugs used in animal husbandry raise public health concerns due to their residues in the bodies of animals. This study employs a simple and quick sample preparation technique, in-tube solid phase extraction, to extract drug residues from foodstuffs, including eggs, honey, and water. This technique utilizes the synergy of graphitic-based materials and polyurethane sponges (PU) combined through dip coating method to make reusable sorbents for extracting drugs, including amoxicillin, paracetamol, ciprofloxacin, and cefixime. These prepared sorbents were characterized using FTIR, SEM, and XRD. HPLC analysis assessed the extraction efficiency, considering various parameters such as analyte concentration, sample solution pH, extraction time, type of eluting solvent, and graphitic-based polyurethane sponge reusability and stability. The proposed method exhibited a linear response for all three sorbents in the range of 0.03-1000 µg mL-1, with LOD 0.03-1.60 µg mL-1 and LOQ 0.18-4.84 µg mL-1. The % RSD ranged from 1.3 to 9.3 %, with recoveries of up to 98.42 %.
Collapse
Affiliation(s)
- Sidra Iram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zahra Nazar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Thomas William Chamberlain
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Muhammad Furqan Nawaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Muhammad Kashif
- Department of Chemistry, Emerson University, Multan 60000, Pakistan
| |
Collapse
|
5
|
Diab H, Calle A, Thompson J. Rapid and Online Microvolume Flow-Through Dialysis Probe for Sample Preparation in Veterinary Drug Residue Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3971. [PMID: 38931755 PMCID: PMC11207326 DOI: 10.3390/s24123971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
A rapid and online microvolume flow-through dialysis probe designed for sample preparation in the analysis of veterinary drug residues is introduced. This study addresses the need for efficient and green sample preparation methods that reduce chemical waste and reagent use. The dialysis probe integrates with liquid chromatography and mass spectrometry (LC-MS) systems, facilitating automated, high-throughput analysis. The dialysis method utilizes minimal reagent volumes per sample, significantly reducing the generation of solvent waste compared to traditional sample preparation techniques. Several veterinary drugs were spiked into tissue homogenates and analyzed to validate the probe's efficacy. A diagnostic sensitivity of >97% and specificity of >95% were obtained for this performance evaluation. The results demonstrated the effective removal of cellular debris and particulates, ensuring sample integrity and preventing instrument clogging. The automated dialysis probe yielded recovery rates between 27 and 77% for multiple analytes, confirming its potential to streamline veterinary drug residue analysis, while adhering to green chemistry principles. The approach highlights substantial improvements in both environmental impact and operational efficiency, presenting a viable alternative to conventional sample preparation methods in regulatory and research applications.
Collapse
Affiliation(s)
| | | | - Jonathan Thompson
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
6
|
Sajjad M, Almufarij R, Ali Z, Sajid M, Raza N, Manzoor S, Hayat M, Abdelrahman EA. Magnetic solid phase extraction of aminoglycosides residue in chicken egg samples using Fe 3O 4-GO-Agarose-Chitosan composite. Food Chem 2024; 430:137092. [PMID: 37544153 DOI: 10.1016/j.foodchem.2023.137092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Difficulties in identification of drug residues in food products arise due to their trace amounts in complex matrices. An eco-friendly and low-cost agarose-chitosan-magnetic graphene oxide based adsorbent was synthesized and employed for determination of aminoglycosides from chicken egg samples through HPLC. Synthesized adsorbent was characterized by SEM, FTIR, XRD, and VSM. Among two investigated aminoglycosides, streptomycin was derivatized with ninhydrin while gentamicin was detected without its derivatization. Impact of experimental variables such as adsorbent dose, extraction time, temperature, pH, and analyte concentration on extraction efficiency was investigated. Statistical analysis for determination of streptomycin and gentamicin demonstrated excellent linearity in the range of 0.2-1.6 µg kg-1, LOQ of 0.3 and 0.6 µg kg-1 for streptomycin and gentamicin, respectively and LOD of 0.1 and 0.19 µg kg-1 for streptomycin and gentamicin, respectively with RSD of 2.5% and recoveries up to 94%. Regeneration studies revealed that composite film can be used four times without considerable reduction in its extraction efficiency.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Rasmiah Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Zeeshan Ali
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Chemistry, Govt. Alamdar Hussain Islamia Degree College, Multan, Pakistan.
| | - Suryyia Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Hayat
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
7
|
Pratiwi R, Ramadhanti SP, Amatulloh A, Megantara S, Subra L. Recent Advances in the Determination of Veterinary Drug Residues in Food. Foods 2023; 12:3422. [PMID: 37761131 PMCID: PMC10527676 DOI: 10.3390/foods12183422] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The presence of drug residues in food products has become a growing concern because of the adverse health risks and regulatory implications. Drug residues in food refer to the presence of pharmaceutical compounds or their metabolites in products such as meat, fish, eggs, poultry and ready-to-eat foods, which are intended for human consumption. These residues can come from the use of drugs in the field of veterinary medicine, such as antibiotics, antiparasitic agents, growth promoters and other veterinary drugs given to livestock and aquaculture with the aim of providing them as prophylaxis, therapy and for promoting growth. Various analytical techniques are used for this purpose to control the maximum residue limit. Compliance with the maximum residue limit is very important for food manufacturers according to the Food and Drug Administration (FDA) or European Union (EU) regulations. Effective monitoring and control of drug residues in food requires continuous advances in analytical techniques. Few studies have been reviewed on sample extraction and preparation techniques as well as challenges and future directions for the determination of veterinary drug residues in food. This current review focuses on the overview of regulations, classifications and types of food, as well as the latest analytical methods that have been used in recent years (2020-2023) for the determination of drug residues in food so that appropriate methods and accurate results can be used. The results show that chromatography is still a widely used technique for the determination of drug residue in food. Other approaches have been developed including immunoassay, biosensors, electrophoresis and molecular-based methods. This review provides a new development method that has been used to control veterinary drug residue limit in food.
Collapse
Affiliation(s)
- Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Shinta Permata Ramadhanti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Asyifa Amatulloh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Laila Subra
- Faculty of Bioeconomic, Food and Health Sciences, University of Geomatika Malaysia, Kuala Lumpur 54200, Malaysia;
| |
Collapse
|
8
|
Zhu Y, Jiang X, Shen D, Mao J, Cao Y, Zhang K, Peng J, Dong F, Wang N, He K. A one-step solid-phase extraction with UHPLC-MS/MS for fast and accurate determination of multi-class veterinary drugs in animal muscles. Food Chem 2023; 428:136712. [PMID: 37441938 DOI: 10.1016/j.foodchem.2023.136712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Excessive use of veterinary drugs in livestock growth poses a threat to food safety. It is, however, challenging to quantify these multi-class veterinary drugs within animal muscles, because of their varied physicochemical properties. In this work, we presented a simple, efficient and sensitive method for the simultaneous determination of multi-class veterinary drugs with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The method involves a highly efficient extraction using a EDTA (pH 7)-ACN (30:70, v/v) solvent system, followed by a one-step solid-phase extraction cleanup approach with PRiME HLB sorbent (Reversed-phase N-vinylpyrrolidone and divinylbenzene copolymer). For all the analytes, over a wide range of polarity, satisfactory recoveries were obtained between 70% and 120%, with relative standard deviations <15%. Excellent sensitivities were achieved with the limits of quantification ranging from 0.2 μg/kg to 3.0 μg/kg. This developed method provides a new targeted strategy for the analysis of multi-class veterinary drugs in muscle matrices.
Collapse
Affiliation(s)
- Yingjie Zhu
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Xin Jiang
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Danning Shen
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Jie Mao
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Yanqing Cao
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Kang Zhang
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Jing Peng
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Fangting Dong
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Na Wang
- National Center of Biomedical Analysis, Beijing 100850, China.
| | - Kun He
- National Center of Biomedical Analysis, Beijing 100850, China.
| |
Collapse
|
9
|
Getahun M, Abebe RB, Sendekie AK, Woldeyohanis AE, Kasahun AE. Evaluation of Antibiotics Residues in Milk and Meat Using Different Analytical Methods. Int J Anal Chem 2023; 2023:4380261. [PMID: 37424721 PMCID: PMC10328735 DOI: 10.1155/2023/4380261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
Veterinary drugs are pharmacologically and biologically active chemical agents. At present, veterinary drugs are extensively used to prevent and treat animal diseases, to promote animal growth, and to improve the conversion rate of feed. However, the use of veterinary drugs in food-producing animals may leave residues of the parent compounds and/or their metabolites in food products resulting in harmful effects on humans. To ensure food safety, sensitive and effective analytical methods have been developing rapidly. This review describes sample extraction and cleanup methods, and different analytical techniques are used for the determination of veterinary drug residues in milk and meat. Sample extraction methods, such as solvent extraction, liquid-liquid extraction, and cleanup methods such as dispersive solid-phase extraction and immunoaffinity chromatography, were summarized. Different types of analytical methods such as microbial, immunological, biosensor, thin layer chromatography, high-performance liquid chromatography, and liquid chromatography-tandem mass spectrometry were discussed for the analysis of veterinary drug residues in animal-derived foods. Liquid chromatography-tandem mass spectrometry is the most widely used analytical technique for the determination of antibiotic drug residues. This is due to the powerful separation of LC and accurate identification of MS, and LC-MS/MS is more popular in the analysis of veterinary drug residues.
Collapse
Affiliation(s)
- Melaku Getahun
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia
| | - Rahel Belete Abebe
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia
| | - Ashenafi Kibret Sendekie
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia
| | - Alem Endeshaw Woldeyohanis
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia
| | - Asmamaw Emagn Kasahun
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia
| |
Collapse
|
10
|
Luo L, Pan Y, Li Q, Zhang Y, Chen C, Shen J, Wang Z. Current progress in the detection of adrenergic receptor agonist residues in animal-derived foods. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Teng X, Ding X, She Z, Li Y, Xiong X. Preparation of Functionalized Magnetic Polystyrene Microspheres and Their Application in Food Safety Detection. Polymers (Basel) 2022; 15:polym15010077. [PMID: 36616427 PMCID: PMC9824087 DOI: 10.3390/polym15010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Based on the specific binding of sulfonic acid groups to melamine, β-agonists and other compounds, Fe3O4 nano-magnetic beads were coated with polystyrene using an improved micro-suspension emulsion polymerization method, thus forming core-shell magnetic polystyrene microspheres (Fe3O4@PS) with Fe3O4 as the core and polystyrene as the shell. These functionalized microspheres, which can be used as magnetic solid-phase extraction (MSPE) adsorbent, were prepared after further sulfonation. These microspheres were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), particle size analysis and saturation magnetization measurement. The results showed that these sulfonated magnetic polystyrene microspheres had favorable sphericity. The particle size of these microspheres ranged from 1 μm to 10 μm. Additionally, these microspheres had good dispersion and magnetic responses in both inorganic and organic solvents. Moreover, these functionalized magnetic polystyrene microspheres were tested and evaluated by high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The results indicated that these sulfonated magnetic polystyrene microspheres (Fe3O4@SPS) could effectively adsorb such illegal additives as β-agonists and melamine in the food matrix.
Collapse
|
12
|
Combination of mixed mode dispersive solid phase extraction with magnetic ionic liquids based dispersive liquid–liquid microextraction for the extraction of anticoagulant drugs from urine samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Kochameshki BK, Javadi A, Afshar Mogaddam MR, Mirzaee H, Farajzadeh MA. Combination of microwave‐assisted extraction with dispersive micro solid‐phase extraction as an efficient sample pretreatment method for the extraction of some antiparasitic drugs from cow liver, meat, and kidney samples. J Sep Sci 2022; 45:3974-3984. [DOI: 10.1002/jssc.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | - Afshin Javadi
- Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical Sciences Islamic Azad University Tabriz Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Hamid Mirzaee
- Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical Sciences Islamic Azad University Tabriz Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
- Engineering Faculty Near East University Mersin 10 Turkey
| |
Collapse
|
14
|
Guo X, Tian H, Yang F, Fan S, Zhang J, Ma J, Ai L, Zhang Y. Rapid determination of 103 common veterinary drug residues in milk and dairy products by ultra performance liquid chromatography tandem mass spectrometry. Front Nutr 2022; 9:879518. [PMID: 35938118 PMCID: PMC9354588 DOI: 10.3389/fnut.2022.879518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
A multi-residue method has been developed for the identification and quantification of 103 common veterinary drug residues in milk and dairy Products. This method was based on QuEChERS with dispersive solid-phase where C18 sorbent and anhydrous sodium sulfate were used to sample purification. After evaporation and reconstitution, the samples were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry. The mean recovery results were all higher than 60% except ampicillin, pipemidic acid, enoxacin, and estriol, and the relative standard deviation was <20.0%. The limit of quantification ranged between 0.1 and 5 μg/kg for milk and between 0.5 and 25 μg/kg for milk powder. It was successfully used to detect residues of veterinary drug in real samples. This study proposes a simple and fast analytical method for monitoring multi-class veterinary drug residues to ensure food safety.
Collapse
Affiliation(s)
- Xiujuan Guo
- Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hao Tian
- Technology Center of Shijiazhuang Customs District, Shijiazhuang, China
| | - Fan Yang
- Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Sufang Fan
- Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Jingwen Zhang
- Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Junmei Ma
- Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Lianfeng Ai
- Technology Center of Shijiazhuang Customs District, Shijiazhuang, China
- *Correspondence: Lianfeng Ai
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Yan Zhang
| |
Collapse
|
15
|
Yang SH, Choi H. Simultaneous determination of nereistoxin insecticides in foods of animal origins by combining pH-dependent reversible partitioning with hydrophilic interaction chromatography-mass spectrometry. Sci Rep 2022; 12:10208. [PMID: 35715575 PMCID: PMC9205972 DOI: 10.1038/s41598-022-14520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Although nereistoxin insecticides (NIs) are banned for animal husbandry operations, they are still used because of their high insecticidal activities. Therefore, a reliable residue analysis method for the simultaneous detection of cartap, bensultap, thiocyclam, and nereistoxin in foods of animal origins, including beef, pork, chicken, milk, and eggs, was developed using hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-LC-MS/MS). The NIs were extracted with an acidic cysteine and formate buffer solution and hydrolyzed to nereistoxin. The molarity and pH of the buffer were optimized at 20 mM and 3, respectively, to keep the pH of the extracts at 4-5. pH-dependent acid-base partitioning coupled with salting-out-assisted liquid-liquid extraction using acetonitrile was performed for purification and for the direct introduction of the extracts to LC. The optimal pH values were 5 and 9 for the acid-base partitioning. Nereistoxin quantitation was achieved with consistent column retention (RSD < 0.6%) and a high degree of separation (N > 106). The matrix-dependent method limit of quantitation was 2 μg nereistoxin/kg, and the calibration curve showed good linearity (R2 > 0.998). The recovery efficiencies were in the range of 89.2-109.9% with relative standard deviations less than 10%, and matrix effects did not exceed ± 10%, which satisfied the criteria outlined in the European SANTE/12682/2019 guidelines.
Collapse
Affiliation(s)
- Seung-Hyun Yang
- Department of Life and Environmental Sciences, Wonkwang University, Iksan, 54538, Republic of Korea.,Institute of Life Science and Natural Resources, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hoon Choi
- Department of Life and Environmental Sciences, Wonkwang University, Iksan, 54538, Republic of Korea. .,Institute of Life Science and Natural Resources, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
16
|
Quantification and Determination of Stability of Tylvalosin in Pig Plasma by Ultra-High Liquid Chromatography with Ultraviolet Detection. Animals (Basel) 2022; 12:ani12111385. [PMID: 35681849 PMCID: PMC9179391 DOI: 10.3390/ani12111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tylvalosin (TV) is a macrolide antibiotic that is used for treating respiratory and enteric bacterial infections in swine and in poultry. In the coming years, the use of this drug will probably be widely studied in different species, but before its use in each veterinary species, macrolide analytical determination in various biological fluids is a pre-requisite step for the rational dose calculation of TV based on specific pharmacokinetic information. Its quantification is essential for detecting and avoiding the appearance of residues in animal products intended for human consumption. Therefore, a robust chromatographic method coupled with an ultraviolet detector was fully validated for the quantification of TV in pig plasma. A mixture (78:22) of (A) 0.3% formic acid in water and (B) acetonitrile was used as the mobile phase. TV and enrofloxacin (internal standard) were eluted at 14.1 and 5.9 min, respectively. Calibration curves ranged from 0.1 to 5 μg/mL. The accuracy and precision parameters for the quality controls were always <13.0%. Recovery ranged from 89.66 to 96.92%. The detection and quantification limits were found to be 0.05 μg/mL and 0.1 μg/mL, respectively. This method could be applied to develop pharmacokinetic studies.
Collapse
|
17
|
Aghris S, Alaoui OT, Laghrib F, Farahi A, Bakasse M, Saqrane S, Lahrich S, El Mhammedi M. Extraction and determination of flubendiamide insecticide in food samples: A review. Curr Res Food Sci 2022; 5:401-413. [PMID: 35243353 PMCID: PMC8861570 DOI: 10.1016/j.crfs.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
Flubendiamide (FBD) is the first commercially available phthalic acid diamide that targets ryanodine receptors (RyRs) in insects, which play a major role in lepidoptera control. However, excessive use of FBD can influence the quality of treated products leading to toxic effects on human health. The availability of rapid and convenient methods for evaluating FBD amount in the environment is necessary. Therefore, analytical methods were developed for the determination of residues of FBD and its metabolite desiodo in different food matrices like tomato, cabbage, pigeon pea, apple, chilli and rice. The current review carries forward methods for FBD residues analysis in foods by using several chromatographic techniques including sample preparation steps. The comparison between the different methods employed for quantitative and qualitative analysis of food quality and safety is also discussed. Liquid chromatography (LC) is the predominant analytical method for assessing the quality of foods treated with FBD. Studies related to LC coupled multichannel detector (Ultraviolet (UV), Mass spectrometry (MS)) are also applied to detect pesticide residues. Extraction and clean up steps are essential to obtain reliable results. Moreover, this review reports the allowed limits of residues for the safety of consuming products treated with FBD.
Collapse
Affiliation(s)
- S. Aghris
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - O. Tahiri Alaoui
- Moulay Ismail University, Laboratory of Physical Chemistry, Materials and Environment, Sciences and Technologies Faculty, Errachidia, Morocco
| | - F. Laghrib
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
- Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of sciences, Fes, Morocco
| | - A. Farahi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M. Bakasse
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
- Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S. Saqrane
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - S. Lahrich
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M.A. El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| |
Collapse
|
18
|
Xu J, Zhou J, Bu T, Dou L, Liu K, Wang S, Liu S, Yin X, Du T, Zhang D, Wang Z, Wang J. Self-Assembling Antibody Network Simplified Competitive Multiplex Lateral Flow Immunoassay for Point-of-Care Tests. Anal Chem 2022; 94:1585-1593. [DOI: 10.1021/acs.analchem.1c03484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingke Xu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Jing Zhou
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kai Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| |
Collapse
|
19
|
Oyedeji AO, Msagati TA, Williams AB, Benson NU. Detection and quantification of multiclass antibiotic residues in poultry products using solid-phase extraction and high-performance liquid chromatography with diode array detection. Heliyon 2021; 7:e08469. [PMID: 34917790 PMCID: PMC8646174 DOI: 10.1016/j.heliyon.2021.e08469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/19/2021] [Accepted: 11/19/2021] [Indexed: 01/11/2023] Open
Abstract
This article describes the initial study on the simultaneous determination of multiclass antibiotic residues in imported and local frozen poultry specimens, including turkey gizzard and muscle tissues, and chicken muscle tissues, commonly consumed in Ogun State, Nigeria. Minced tissues were treated with phosphate buffer adjusted to pH 7 that was cleaned using C18 SPE-column (Supelclean™) cartridge. For the determination of six antibiotic residues including fluoroquinolones, sulfonamides, and macrolides, a solid-phase extraction method was used, followed by extract analysis using high-performance liquid chromatography-diode array detection (HPLC-DAD). The coefficient of determination (R2) for the external standards for all the analytes ranged between 0.963 and 0.999. The limit of detection (LOD) and quantification (LOQ) ranged between 5.37 - 55.4 μg/kg, and 17.9-185 μg/kg, respectively. Enrofloxacin, sulfadimethoxine, sulfamerazine, and tylosin showed high concentration levels in the frozen poultry beyond acceptable maximum residue limits (MRLs). The six drugs considered in this study were present at higher concentrations in domestic chicken tissues than the permissible level. This suggests that farmers do not observe the cessation period before poultry birds previously treated with antibiotics are sold to consumers thus exposing them to potentially hazardous antibiotic residues.
Collapse
Affiliation(s)
- Abdulrasaq O. Oyedeji
- Department of Science Laboratory Technology, The Federal Polytechnic, Ilaro, Nigeria
| | - Titus A.M. Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science Engineering and Technology, University of South Africa, Roodepoort, South Africa
| | - Akan B. Williams
- Department of Chemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Nsikak U. Benson
- Department of Chemistry, Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
20
|
Quantum and carbon dots conjugated molecularly imprinted polymers as advanced nanomaterials for selective recognition of analytes in environmental, food and biomedical applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116306] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Rahman MM, Lee DJ, Jo A, Yun SH, Eun JB, Im MH, Shim JH, Abd El-Aty AM. Onsite/on-field analysis of pesticide and veterinary drug residues by a state-of-art technology: A review. J Sep Sci 2021; 44:2310-2327. [PMID: 33773036 DOI: 10.1002/jssc.202001105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/08/2022]
Abstract
Pesticides and veterinary drugs are generally employed to control pests and insects in crop and livestock farming. However, remaining residues are considered potentially hazardous to human health and the environment. Therefore, regular monitoring is required for assessing and legislation of pesticides and veterinary drugs. Various approaches to determining residues in various agricultural and animal food products have been reported. Most analytical methods involve sample extraction, purification (cleanup), and detection. Traditional sample preparation is time-consuming labor-intensive, expensive, and requires a large amount of toxic organic solvent, along with high probability for the decomposition of a compound before the analysis. Thus, modern sample preparation techniques, such as the quick, easy, cheap, effective, rugged, and safe method, have been widely accepted in the scientific community for its versatile application; however, it still requires a laboratory setup for the extraction and purification processes, which also involves the utilization of a toxic solvent. Therefore, it is crucial to elucidate recent technologies that are simple, portable, green, quick, and cost-effective for onsite and infield residue detections. Several technologies, such as surface-enhanced Raman spectroscopy, quantum dots, biosensing, and miniaturized gas chromatography, are now available. Further, several onsite techniques, such as ion mobility-mass spectrometry, are now being upgraded; some of them, although unable to analyze field sample directly, can analyze a large number of compounds within very short time (such as time-of-flight and Orbitrap mass spectrometry). Thus, to stay updated with scientific advances and analyze organic contaminants effectively and safely, it is necessary to study all of the state-of-art technology.
Collapse
Affiliation(s)
- Md Musfiqur Rahman
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Dong Ju Lee
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Ara Jo
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Seung Hee Yun
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology and BK 21 plus Program, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Moo-Hyeog Im
- Department of Food Engineering, Daegu University, Gyeongbuk, Republic of Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|