1
|
Shilnikova N, Momoli F, Karyakina N, Krewski D. Review of non-invasive biomarkers as a tool for exposure characterization in human health risk assessments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:122-150. [PMID: 39607011 DOI: 10.1080/10937404.2024.2428206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Blood and urine are historically the most frequent matrices used for measuring chemical levels in human biomonitoring studies. As biomonitoring programs are refreshed, consideration of specific priority substances and specific population targets provide opportunities for inclusion of alternative non- or minimally invasive matrices. This review describes methods used in health risk assessment to characterize exposure and risk based upon biomarkers from noninvasive matrices other than urine or blood, including human milk, hair, fingernails, toenails, exhaled breath, deciduous teeth, sweat, semen, meconium, and feces. Illustrative examples of these methods relevant to chemical management are provided. This review suggests that, although these alternative noninvasive biomarkers are not frequently used in human health risk assessment at present, these biomarkers may prove useful in (1) characterizing exposure and health risk in vulnerable populations, (2) cumulative risk assessments, and (3) community-based risk assessments, depending upon the substance of concern. To incorporate alternative noninvasive biomarkers into human health risk assessments with confidence, more research is needed to improve our knowledge of the relationships between external dose, internal dose, and biologic consequent effects in matrices other than blood and urine.
Collapse
Affiliation(s)
- N Shilnikova
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - F Momoli
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - N Karyakina
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - D Krewski
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
2
|
Yodsin N, Sriphumrat K, Mano P, Kongpatpanich K, Namuangruk S. Metal-organic framework MIL-100(Fe) as a promising sensor for COVID-19 biomarkers detection. MICROPOROUS AND MESOPOROUS MATERIALS : THE OFFICIAL JOURNAL OF THE INTERNATIONAL ZEOLITE ASSOCIATION 2022; 343:112187. [PMID: 35999991 PMCID: PMC9389852 DOI: 10.1016/j.micromeso.2022.112187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 05/22/2023]
Abstract
The development of fast and non-invasive techniques to detect SARS-CoV-2 virus at the early stage of the infection would be highly desirable to control the COVID-19 outbreak. Metal-organic frameworks (MOFs) are porous materials with uniform porous structures and tunable pore surfaces, which would be essential for the selective sensing of the specific COVID-19 biomarkers. However, the use of MOFs materials to detect COVID-19 biomarkers has not been demonstrated so far. In this work, for the first time, we employed the density functional theory calculations to investigate the specific interactions of MOFs and the targeted biomarkers, in which the interactions were confirmed by experiment. The five dominant COVID-19 biomarkers and common exhaled gases are comparatively studied by exposing them to MOFs, namely MIL-100(Al) and MIL-100(Fe). The adsorption mechanism, binding site, adsorption energy, recovery time, charge transfer, sensing response, and electronic structures are systematically investigated. We found that MIL-100(Fe) has a higher sensing performance than MIL-100(Al) in terms of sensitivity and selectivity. MIL-100(Fe) shows sensitive to COVID-19 biomarkers, namely 2-methylpent-2-enal and 2,4-octadiene with high sensing responses as 7.44 x 105 and 9 x 107 which are exceptionally higher than those of the common gases which are less than 6. The calculated recovery times of 0.19 and 1.84 x 10-4 s are short enough to be a resuable sensor. An experimental study also showed that the MIL-100(Fe) provides a sensitivity toward 2-methylpent-2-enal. In conclusion, we suggest that MIL-100(Fe) could be used as a potential sensor for the exhaled breath analysis. We hope that our research can aid in the development of a biosensor for quick and easy COVID-19 biomarker detection in order to control the current pandemic.
Collapse
Affiliation(s)
- Nuttapon Yodsin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kunlanat Sriphumrat
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Poobodin Mano
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kanokwan Kongpatpanich
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
3
|
Cai SH, Di D, Yuan ZC, Chen W, Hu B. Paper-in-Facemask Device for Direct Mass Spectrometry Analysis of Human Respiratory Aerosols and Environmental Exposures via Wearable Continuous-Flow Adsorptive Sampling: A Proof-of-Concept Study. Anal Chem 2021; 93:13743-13748. [PMID: 34609849 DOI: 10.1021/acs.analchem.1c03406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Facemasks are considered safe and wearable devices that cover the human mouth and nose for filtering exhaled aerosols and inhaled environmental exposures; various chemical and environmental residues thus can remain in facemasks. Therefore, direct analysis of residues in facemasks can be used to investigate the wearer's health and behavior. Here, we developed a simple paper-in-facemask sampling method for adsorbing a wearer's respiratory aerosol and environmental exposures by fixing paper strips at the outside and inside surfaces of facemasks, and the paper strips were then analyzed by paper spray mass spectrometry (PSMS) for directly detecting adsorbed analytes without any sample pretreatment. The applicability of this device was demonstrated by directly analyzing exhaled aerosolized saliva, breath metabolites, and inhalable environmental exposures. The technical aspects, including sampling time, sampling position, paper property, and spray solvent, were investigated. The sampling process was revealed to involve a continuous-flow adsorptive mechanism. These findings motivated us to extend this work and build a wearable sampling device that is capable of simultaneously monitoring both exhaled and inhaled biomarkers in situ to investigate human health and environmental exposure. This work highlights that facemasks are promising platforms for aerosol collection and direct MS analysis, which is expected to be a promising method for monitoring human health, diseases, and behaviors.
Collapse
Affiliation(s)
- Shen-Hui Cai
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Dandan Di
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Zi-Cheng Yuan
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Weini Chen
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Nol P, Ionescu R, Geremariam Welearegay T, Barasona JA, Vicente J, de Jesus Beleño-Sáenz K, Barrenetxea I, Jose Torres M, Ionescu F, Rhyan J. Evaluation of Volatile Organic Compounds Obtained from Breath and Feces to Detect Mycobacterium tuberculosis Complex in Wild Boar ( Sus scrofa) in Doñana National Park, Spain. Pathogens 2020; 9:pathogens9050346. [PMID: 32370281 PMCID: PMC7281121 DOI: 10.3390/pathogens9050346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/03/2022] Open
Abstract
The presence of Mycobacterium tuberculosis complex (MTBC) in wild swine, such as in wild boar (Sus scrofa) in Eurasia, is cause for serious concern. Development of accurate, efficient, and noninvasive methods to detect MTBC in wild swine would be highly beneficial to surveillance and disease management efforts in affected populations. Here, we describe the first report of identification of volatile organic compounds (VOC) obtained from the breath and feces of wild boar to distinguish between MTBC-positive and MTBC-negative boar. We analyzed breath and fecal VOC collected from 15 MTBC-positive and 18 MTBC-negative wild boar in Donaña National Park in Southeast Spain. Analyses were divided into three age classes, namely, adults (>2 years), sub-adults (12–24 months), and juveniles (<12 months). We identified significant compounds by applying the two-tailed statistical t-test for two samples assuming unequal variance, with an α value of 0.05. One statistically significant VOC was identified in breath samples from adult wild boar and 14 were identified in breath samples from juvenile wild boar. One statistically significant VOC was identified in fecal samples collected from sub-adult wild boar and three were identified in fecal samples from juvenile wild boar. In addition, discriminant function analysis (DFA) was used to build classification models for MTBC prediction in juvenile animals. Using DFA, we were able to distinguish between MTBC-positive juvenile wild boar and MTBC-negative juvenile wild boar using breath VOC or fecal VOC. Based on our results, further research is warranted and should be performed using larger sample sizes, as well as wild boar from various geographic locations, to verify these compounds as biomarkers for MTBC infection in this species. This new approach to detect MTBC infection in free-ranging wild boar potentially comprises a reliable and efficient screening tool for surveillance in animal populations.
Collapse
Affiliation(s)
- Pauline Nol
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO 80526, USA
- Correspondence: ; Tel.: +1-970-218-1418
| | - Radu Ionescu
- Department of Electronics, Electrical and Automatic Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.I.); (I.B.); (F.I.)
- The Ångström Laboratory, Division of Solid State Physics, Department of Materials Science and Engineering Sciences, Uppsala University, 75121 Uppsala, Sweden;
| | - Tesfalem Geremariam Welearegay
- The Ångström Laboratory, Division of Solid State Physics, Department of Materials Science and Engineering Sciences, Uppsala University, 75121 Uppsala, Sweden;
| | - Jose Angel Barasona
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Joaquin Vicente
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC, ETSIA Ciudad Real, University Castilla La Mancha & CSIC, 13003 Ciudad Real, Spain;
| | - Kelvin de Jesus Beleño-Sáenz
- Faculty of Engineering, Universidad Autónoma del Caribe, Barranquilla 080020, Colombia;
- Department of Chemical Engineering, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irati Barrenetxea
- Department of Electronics, Electrical and Automatic Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.I.); (I.B.); (F.I.)
| | - Maria Jose Torres
- Biomedical Institute of Sevilla (IBiS), University of Seville, University Hospital Virgen del Rocío/CSIC, 41071 Seville, Spain;
| | - Florina Ionescu
- Department of Electronics, Electrical and Automatic Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.I.); (I.B.); (F.I.)
| | - Jack Rhyan
- National Veterinary Services Laboratory, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, Fort Collins, CO 80521 USA;
| |
Collapse
|
5
|
Cheng NY, Chuang HC, Shie RH, Liao WH, Hwang YH. Pilot Studies of VOC Exposure Profiles during Surgical Operations. Ann Work Expo Health 2020; 63:173-183. [PMID: 30551204 DOI: 10.1093/annweh/wxy099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 01/09/2023] Open
Abstract
Volatile organic chemical exposure resulting from surgical operations is common in operating room personnel. The potential risk of long-term exposure to these low-level chemicals is always a concern. This study was conducted in an area hospital located in northern Taiwan to investigate the internal exposure scenario for operating room personnel. Breath samples were collected before and after surgery, whereas area samples were collected during the surgeries in process. There were 18 volatile organic compounds identified in the samples with gas chromatography-mass spectrometry. The average concentrations of sevoflurane (P = 0.0082), dimethyl sulfide (P = 0.0550), and methyl methacrylate (P = 0.0606) in breath samples collected after surgical operations were significantly higher compared to those obtained before surgical operations, whereas only slight elevations were present for benzene and hexamethyldisiloxane (P < 0.100). In addition, electrosurgical smoke-related chemicals, such as benzene, toluene, ethylbenzene, and m/p-xylene, also presented higher levels in operating room samples compared to the control area. Specifically, the findings in this preliminary study suggested the associations of elevated exposure to sevoflurane across various surgeries to methyl methacrylate with orthopedic surgery and to hexamethyldisiloxane with conventional electrosurgical units. Future study is warranted to explore the short-term high-level chemical exposure in operating rooms and to propose effective preventive measures accordingly to keep any exposure to chemicals at the lowest practical level.
Collapse
Affiliation(s)
- Nai-Yun Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan, R.O.C.,Institute of Labor, Occupational Safety and Health, Ministry of Labor, Executive Yuan, Taipei, Taiwan, R.O.C
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Ruei-Hao Shie
- Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C
| | - Wei-Heng Liao
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, Executive Yuan, Taipei, Taiwan, R.O.C
| | - Yaw-Huei Hwang
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan, R.O.C.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan, R.O.C
| |
Collapse
|
6
|
Davis MD, Fowler SJ, Montpetit AJ. Exhaled breath testing - A tool for the clinician and researcher. Paediatr Respir Rev 2019; 29:37-41. [PMID: 29921519 DOI: 10.1016/j.prrv.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
Exhaled breath is a robust matrix of biomarkers divided between three fractions - gaseous breath, volatile breath, and breath condensate. Breath is collected non-invasively through bags (for gaseous breath), cold condensation chambers (breath condensate), and adsorbent traps (volatile breath). Due to the incredibly dilute nature of breath matrices, breath biomarker analysis requires precise analytical techniques, highly sensitive technology and often challenges the limit of detection of even the most advanced assays. Interest and advances in breath collection, analysis, and use have increased in recent years largely due to advances in analytical technology. Approved and validated breath tests are available as tools for researchers and clinicians. Novel development is ongoing. This article reviews the current applications for exhaled breath biomarkers.
Collapse
Affiliation(s)
- Michael D Davis
- Division of Pulmonary Medicine, Children's Hospital of Richmond at VCU, Hermes A. Kontos Medical Sciences Building - Room 215, 1217 E. Marshall Street, Richmond, VA 23298, USA.
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.
| | - Alison J Montpetit
- VCU Health, Department of Emergency Medicine, Adult Emergency Department, Richmond, VA, USA.
| |
Collapse
|
7
|
Chen H, Li J, Zhang X, Li X, Yao M, Zheng G. Automated in Vivo Nanosensing of Breath-Borne Protein Biomarkers. NANO LETTERS 2018; 18:4716-4726. [PMID: 29995423 DOI: 10.1021/acs.nanolett.8b01070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Toxicology and bedside medical condition monitoring is often desired to be both ultrasensitive and noninvasive. However, current biomarker analyses for these purposes are mostly offline and fail to detect low marker quantities. Here, we report a system called dLABer (detection of living animal's exhaled breath biomarker) that integrates living rats, breath sampling, microfluidics, and biosensors for the automated tracking of breath-borne biomarkers. Our data show that dLABer could selectively detect (online) and report differences (of up to 103-fold) in the levels of inflammation agent interleukin-6 (IL-6) exhaled by rats injected with different ambient particulate matter (PM). The dLABer system was further shown to have an up to 104 higher signal-to-noise ratio than that of the enzyme-linked immunosorbent assay (ELISA) when analyzing the same breath samples. In addition, both blood-borne IL-6 levels analyzed via ELISA in rats injected with different PM extracts and PM toxicity determined by a dithiothreitol (DTT) assay agreed well with those determined by the dLABer system. Video recordings further verified that rats exposed to PM with higher toxicity (according to a DTT assay and as revealed by dLABer) appeared to be less physically active. All the data presented here suggest that the dLABer system is capable of real-time, noninvasive monitoring of breath-borne biomarkers with ultrasensitivity. The dLABer system is expected to revolutionize pollutant health effect studies and bedside disease diagnosis as well as physiological condition monitoring at the single-protein level.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Jing Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Xiangyu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai 200438 , China
| |
Collapse
|
8
|
Stönner C, Edtbauer A, Williams J. Real-world volatile organic compound emission rates from seated adults and children for use in indoor air studies. INDOOR AIR 2018; 28:164-172. [PMID: 28683154 DOI: 10.1111/ina.12405] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/30/2017] [Indexed: 05/15/2023]
Abstract
Human beings emit many volatile organic compounds (VOCs) of both endogenous (internally produced) and exogenous (external source) origin. Here we present real-world emission rates of volatile organic compounds from cinema audiences (50-230 people) as a function of time in multiple screenings of three films. The cinema location and film selection allowed high-frequency measurement of human-emitted VOCs within a room flushed at a known rate so that emissions rates could be calculated for both adults and children. Gas-phase emission rates are analyzed as a function of time of day, variability during the film, and age of viewer. The average emission rates of CO2 , acetone, and isoprene were lower (by a factor of ~1.2-1.4) for children under twelve compared to adults while for acetaldehyde emission rates were equivalent. Molecules influenced by exogenous sources such as decamethylcyclopentasiloxanes and methanol tended to decrease over the course of day and then rise for late evening screenings. These results represent average emission rates of people under real-world conditions and can be used in indoor air quality assessments and building design. Averaging over a large number of people generates emission rates that are less susceptible to individual behaviors.
Collapse
Affiliation(s)
- C Stönner
- Max Planck-Institute for Chemistry, Mainz, Germany
| | - A Edtbauer
- Max Planck-Institute for Chemistry, Mainz, Germany
| | - J Williams
- Max Planck-Institute for Chemistry, Mainz, Germany
| |
Collapse
|
9
|
Yang B, Zhang H, Shu J, Ma P, Zhang P, Huang J, Li Z, Xu C. Vacuum-Ultraviolet-Excited and CH2Cl2/H2O-Amplified Ionization-Coupled Mass Spectrometry for Oxygenated Organics Analysis. Anal Chem 2017; 90:1301-1308. [DOI: 10.1021/acs.analchem.7b04122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Bo Yang
- State
Key Laboratory of Environment Simulation and Pollution Control, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haixu Zhang
- State
Key Laboratory of Environment Simulation and Pollution Control, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinian Shu
- State
Key Laboratory of Environment Simulation and Pollution Control, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Pengkun Ma
- State
Key Laboratory of Environment Simulation and Pollution Control, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Peng Zhang
- State
Key Laboratory of Environment Simulation and Pollution Control, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jingyun Huang
- State
Key Laboratory of Environment Simulation and Pollution Control, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhen Li
- State
Key Laboratory of Environment Simulation and Pollution Control, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ce Xu
- State
Key Laboratory of Environment Simulation and Pollution Control, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
10
|
Winters BR, Pleil JD, Angrish MM, Stiegel MA, Risby TH, Madden MC. Standardization of the collection of exhaled breath condensate and exhaled breath aerosol using a feedback regulated sampling device. J Breath Res 2017; 11:047107. [PMID: 28894051 DOI: 10.1088/1752-7163/aa8bbc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exhaled breath condensate (EBC) and associated exhaled breath aerosols (EBA) are valuable non-invasive biological media used for the quantification of biomarkers. EBC contains exhaled water vapor, soluble gas-phase (polar) organic compounds, ionic species, plus other species including semi- and non-volatile organic compounds, proteins, cell fragments, DNA, dissolved inorganic compounds, ions, and microbiota (bacteria and viruses) dissolved in the co-collected EBA. EBC is collected from subjects who breathe 'normally' through a chilled tube assembly for approximately 10 min and is then harvested into small vials for analysis. Aerosol filters without the chilled tube assembly are also used to separately collect EBA. Unlike typical gas-phase breath samples used for environmental and clinical applications, the constituents of EBC and EBA are not easily characterized by total volume or carbon dioxide (CO2) concentration, because the gas-phase is vented. Furthermore, EBC and associated EBA are greatly affected by breathing protocol, more specifically, depth of inhalation and expelled breath velocity. We have tested a new instrument developed by Loccioni Gruppa Humancare (Ancona, Italy) for implementation of EBC collection from human subjects to assess EBC collection parameters. The instrument is the first EBC collection device that provides instantaneous visual feedback to the subjects to control breathing patterns. In this report we describe the operation of the instrument, and present an overview of performance and analytical applications.
Collapse
Affiliation(s)
- Brett R Winters
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, United States of America
| | | | | | | | | | | |
Collapse
|
11
|
Bouza M, Gonzalez-Soto J, Pereiro R, de Vicente JC, Sanz-Medel A. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients. J Breath Res 2017; 11:016015. [DOI: 10.1088/1752-7163/aa5e76] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Pleil JD. Breath biomarkers in toxicology. Arch Toxicol 2016; 90:2669-2682. [DOI: 10.1007/s00204-016-1817-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
|
13
|
Williams J, Pleil J. Crowd-based breath analysis: assessing behavior, activity, exposures, and emotional response of people in groups. J Breath Res 2016; 10:032001. [PMID: 27341381 DOI: 10.1088/1752-7155/10/3/032001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new concept for exhaled breath analysis has emerged wherein groups, or even crowds of people are simultaneously sampled in enclosed environments to detect overall trends in their activities and recent exposures. The basic idea is to correlate the temporal profile of known breath markers such as carbon dioxide, isoprene, or acetone with all other volatile organics in the air space. Those that trend similarly in time are designated as breath constituents. The ultimate goal of this work is to develop technology for assessing group based behaviors, chemical exposures or even changes in stress or mood. Applications are myriad ranging from chemical dose/toxicity screening to health and stress status for national security diagnostics. The basic technology employs real-time mass spectrometry capable of simultaneously measuring volatile chemicals and endogenous breath markers.
Collapse
|
14
|
Cavaleiro Rufo J, Madureira J, Oliveira Fernandes E, Moreira A. Volatile organic compounds in asthma diagnosis: a systematic review and meta-analysis. Allergy 2016; 71:175-88. [PMID: 26476125 DOI: 10.1111/all.12793] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2015] [Indexed: 01/01/2023]
Abstract
We aimed to assess the value and classification rate of exhaled volatile organic compounds (VOCs) in asthma diagnosis. A PRISMA-oriented systematic search for published studies regarding exhaled VOCs in asthma diagnosis was conducted based on predefined criteria. Studies presenting sensitivity and specificity values for the test were included in the meta-analysis. Pooled diagnosis odds ratios (DOR), area under the curve (AUC) and positive and negative likelihood ratios (LR) for exhaled VOC profiles were calculated; and publication bias, threshold effect and heterogeneity were estimated. Eighteen studies were selected for the qualitative analysis and six met the criteria for inclusion in the quantitative analysis. Mean (95% CI) pooled DOR, positive and negative LR were 49.3 (15.9-153.3), 5.86 (3.07-11.21) and 0.16 (0.10-0.26), respectively. The AUC value was 0.94. Only three of the 18 reviewed studies performed an external validation of the model using a different data set. The results from the revised studies suggest that exhaled VOCs are promising biomarkers for asthma diagnosis and that several compounds, mainly alkanes, may be significantly associated with asthma inflammation. However, there are still various constraints associated with standardization and externally validated studies are needed to introduce exhaled VOC profiling in a clinical scenario.
Collapse
Affiliation(s)
- J. Cavaleiro Rufo
- GEAC; INEGI - Institute of Science and Innovation in Mechanical Engineering and Industrial Management; Porto Portugal
- Faculty of Medicine of the University of Porto; Portugal & Centro Hospitalar São João E.P.E.; Porto Portugal
| | - J. Madureira
- GEAC; INEGI - Institute of Science and Innovation in Mechanical Engineering and Industrial Management; Porto Portugal
| | - E. Oliveira Fernandes
- GEAC; INEGI - Institute of Science and Innovation in Mechanical Engineering and Industrial Management; Porto Portugal
| | - A. Moreira
- Faculty of Medicine of the University of Porto; Portugal & Centro Hospitalar São João E.P.E.; Porto Portugal
| |
Collapse
|
15
|
Pleil JD, Angrish MM, Madden MC. Immunochemistry for high-throughput screening of human exhaled breath condensate (EBC) media: implementation of automated quanterix SIMOA instrumentation. J Breath Res 2015; 9:047108. [DOI: 10.1088/1752-7155/9/4/047108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Stiegel MA, Pleil JD, Sobus JR, Angrish MM, Morgan MK. Kidney injury biomarkers and urinary creatinine variability in nominally healthy adults. Biomarkers 2015; 20:436-52. [DOI: 10.3109/1354750x.2015.1094136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- M. A. Stiegel
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA,
- ORISE, US EPA, Research Triangle Park, NC, USA, and
| | - J. D. Pleil
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - J. R. Sobus
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - M. K. Morgan
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
17
|
Trace detection of endogenous human volatile organic compounds for search, rescue and emergency applications. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.11.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
de Broucker V, Hulo S, Cherot-Kornobis N, Sobaszek A, Edme JL. Increased Levels of 8-Isoprostane in EBC of NO2-Exposed Rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:666-670. [PMID: 26039744 DOI: 10.1080/15287394.2015.1023915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Several epidemiological studies have shown the impact on respiratory health of pollution of nitrogen dioxide (NO2), particulate matter (PM10), and ozone (O3) as an environmental mixture. However, the influence of individual components of airborne pollutants is less well known. Our study examined the cumulative effects of a single pollutant, NO2, on sensitized rats by measurement of isoprostane release in exhaled breath condensate (EBC). Three groups of six rats were used: (1) controls (only exposed to air), (2) sensitized and challenged by ovalbumin and exposed to air, and (3) sensitized, challenged by ovalbumin, and exposed to NO(2). There was no marked change in 8-isoprostane levels in EBC of sensitized rats, whereas a significant increase of 8-isoprostane was found in rats sensitized and exposed to NO2. Data indicate effect of exposure to NO2 is evident as increased 8-isoprostane levels in EBC, a relevant marker for assessment of pulmonary inflammation or oxidant stress and conventionally found in EBC of asthmatic subjects.
Collapse
|
19
|
Cumeras R, Cheung WHK, Gulland F, Goley D, Davis CE. Chemical analysis of whale breath volatiles: a case study for non-invasive field health diagnostics of marine mammals. Metabolites 2014; 4:790-806. [PMID: 25222833 PMCID: PMC4192693 DOI: 10.3390/metabo4030790] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 12/20/2022] Open
Abstract
We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus) for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC) profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs). Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap). The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME) and gas chromatography/mass spectrometry (GC/MS). A total of 70 chemicals were identified (58 positively identified) in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research.
Collapse
Affiliation(s)
- Raquel Cumeras
- Department of Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue 95616, CA, USA.
| | - William H K Cheung
- Department of Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue 95616, CA, USA.
| | - Frances Gulland
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito 94965-2619, CA, USA.
| | - Dawn Goley
- Marine Mammal Education and Research Program, Marine Mammal Stranding Network, Humboldt State University, 1 Harpst Street, Arcata 95521, CA, USA.
| | - Cristina E Davis
- Department of Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue 95616, CA, USA.
| |
Collapse
|
20
|
Beauchamp J, Risby TH. A recognition of David Smith's unique contributions to the field of breath analysis. J Breath Res 2014; 8:030201. [PMID: 25189283 DOI: 10.1088/1752-7155/8/3/030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Herbig J, Beauchamp J. Towards standardization in the analysis of breath gas volatiles. J Breath Res 2014; 8:037101. [DOI: 10.1088/1752-7155/8/3/037101] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Pleil JD, Stiegel MA, Fent KW. Exploratory breath analyses for assessing toxic dermal exposures of firefighters during suppression of structural burns. J Breath Res 2014; 8:037107. [DOI: 10.1088/1752-7155/8/3/037107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Analysis of dose-response to hexanal-induced gene expression in A549 human alveolar cells. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8202-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Amann A, Costello BDL, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res 2014; 8:034001. [PMID: 24946087 DOI: 10.1088/1752-7155/8/3/034001] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer, but also during surgery and in intensive care units. The investigation of cell cultures opens up new possibilities for elucidation of the biochemical background of volatile compounds. In future studies, combined investigations of a particular compound with regard to human matrices such as breath, urine, saliva and cell culture investigations will lead to novel scientific progress in the field.
Collapse
Affiliation(s)
- Anton Amann
- Univ-Clinic for Anesthesia and Intensive Care, Innsbruck Medical University, Anichstr, 35, A-6020 Innsbruck, Austria. Breath Research Institute of the University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fent KW, Eisenberg J, Snawder J, Sammons D, Pleil JD, Stiegel MA, Mueller C, Horn GP, Dalton J. Systemic exposure to PAHs and benzene in firefighters suppressing controlled structure fires. ACTA ACUST UNITED AC 2014; 58:830-45. [PMID: 24906357 PMCID: PMC4124999 DOI: 10.1093/annhyg/meu036] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Turnout gear provides protection against dermal exposure to contaminants during firefighting; however, the level of protection is unknown. We explored the dermal contribution to the systemic dose of polycyclic aromatic hydrocarbons (PAHs) and other aromatic hydrocarbons in firefighters during suppression and overhaul of controlled structure burns. The study was organized into two rounds, three controlled burns per round, and five firefighters per burn. The firefighters wore new or laundered turnout gear tested before each burn to ensure lack of PAH contamination. To ensure that any increase in systemic PAH levels after the burn was the result of dermal rather than inhalation exposure, the firefighters did not remove their self-contained breathing apparatus until overhaul was completed and they were >30 m upwind from the burn structure. Specimens were collected before and at intervals after the burn for biomarker analysis. Urine was analyzed for phenanthrene equivalents using enzyme-linked immunosorbent assay and a benzene metabolite (s-phenylmercapturic acid) using liquid chromatography/tandem mass spectrometry; both were adjusted by creatinine. Exhaled breath collected on thermal desorption tubes was analyzed for PAHs and other aromatic hydrocarbons using gas chromatography/mass spectrometry. We collected personal air samples during the burn and skin wipe samples (corn oil medium) on several body sites before and after the burn. The air and wipe samples were analyzed for PAHs using a liquid chromatography with photodiode array detection. We explored possible changes in external exposures or biomarkers over time and the relationships between these variables using non-parametric sign tests and Spearman tests, respectively. We found significantly elevated (P < 0.05) post-exposure breath concentrations of benzene compared with pre-exposure concentrations for both rounds. We also found significantly elevated post-exposure levels of PAHs on the neck compared with pre-exposure levels for round 1. We found statistically significant positive correlations between external exposures (i.e. personal air concentrations of PAHs) and biomarkers (i.e. change in urinary PAH metabolite levels in round 1 and change in breath concentrations of benzene in round 2). The results suggest that firefighters wearing full protective ensembles absorbed combustion products into their bodies. The PAHs most likely entered firefighters' bodies through their skin, with the neck being the primary site of exposure and absorption due to the lower level of dermal protection afforded by hoods. Aromatic hydrocarbons could have been absorbed dermally during firefighting or inhaled during the doffing of gear that was off-gassing contaminants.
Collapse
Affiliation(s)
- Kenneth W Fent
- 1.Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, 4676 Columbia Parkway, Cincinnati, OH 45226, USA
| | - Judith Eisenberg
- 1.Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, 4676 Columbia Parkway, Cincinnati, OH 45226, USA
| | - John Snawder
- 2.Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 4676 Columbia Parkway, Cincinnati, OH 45226, USA
| | - Deborah Sammons
- 2.Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 4676 Columbia Parkway, Cincinnati, OH 45226, USA
| | - Joachim D Pleil
- 3.Human Exposure and Atmospheric Sciences Division, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Matthew A Stiegel
- 4.Oak Ridge Institute for Science and Education/U.S. Environmental Protection Agency Research Fellow, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles Mueller
- 1.Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, 4676 Columbia Parkway, Cincinnati, OH 45226, USA
| | - Gavin P Horn
- 5.Illinois Fire Service Institute, University of Illinois-Urbana/Champaign, 11 Gerty Drive, Champaign, IL 61820, USA
| | - James Dalton
- 6.Research and Development Section, Training Division, Chicago Fire Department, 558 West DeKoven Street, Chicago, IL 60607, USA
| |
Collapse
|
26
|
Pleil JD, Sobus JR, Stiegel MA, Hu D, Oliver KD, Olenick C, Strynar M, Clark M, Madden MC, Funk WE. Estimating common parameters of lognormally distributed environmental and biomonitoring data: harmonizing disparate statistics from publications. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:341-68. [PMID: 25333994 DOI: 10.1080/10937404.2014.956854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The progression of science is driven by the accumulation of knowledge and builds upon published work of others. Another important feature is to place current results into the context of previous observations. The published literature, however, often does not provide sufficient direct information for the reader to interpret the results beyond the scope of that particular article. Authors tend to provide only summary statistics in various forms, such as means and standard deviations, median and range, quartiles, 95% confidence intervals, and so on, rather than providing measurement data. Second, essentially all environmental and biomonitoring measurements have an underlying lognormal distribution, so certain published statistical characterizations may be inappropriate for comparisons. The aim of this study was to review and develop direct conversions of different descriptions of data into a standard format comprised of the geometric mean (GM) and the geometric standard deviation (GSD) and then demonstrate how, under the assumption of lognormal distribution, these parameters are used to answer questions of confidence intervals, exceedance levels, and statistical differences among distributions. A wide variety of real-world measurement data sets was reviewed, and it was demonstrated that these data sets are indeed of lognormal character, thus making them amenable to these methods. Potential errors incurred from making retrospective estimates from disparate summary statistics are described. In addition to providing tools to interpret "other people's data," this review should also be seen as a cautionary tale for publishing one's own data to make it as useful as possible for other researchers.
Collapse
Affiliation(s)
- Joachim D Pleil
- a Human Exposure and Atmospheric Science Division, NERL/ORD , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Amann A, Miekisch W, Schubert J, Buszewski B, Ligor T, Jezierski T, Pleil J, Risby T. Analysis of exhaled breath for disease detection. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:455-482. [PMID: 25014347 DOI: 10.1146/annurev-anchem-071213-020043] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.
Collapse
Affiliation(s)
- Anton Amann
- Breath Research Institute of the University of Innsbruck, A-6850 Dornbirn, Austria;
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Amal H, Leja M, Broza YY, Tisch U, Funka K, Liepniece-Karele I, Skapars R, Xu ZQ, Liu H, Haick H. Geographical variation in the exhaled volatile organic compounds. J Breath Res 2013; 7:047102. [PMID: 24184568 DOI: 10.1088/1752-7155/7/4/047102] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breath-gas analysis has demonstrated that concentration profiles of volatile organic compounds (VOCs) could be used for detecting a variety of diseases, among them gastric cancer (GC) and peptic ulcer disease (PUD). Here, we explore how geographical variation affects the disease-specific changes in the chemical composition of breath samples, as compared to control states (less severe gastric conditions). Alveolar exhaled breath samples from 260 patients were collected at two remotely different geographic locations (China and Latvia), following similar breath-collection protocols. Each cohort included 130 patients that were matched in terms of diagnosis (37 GC/32 PUD/61 controls), average age, gender ratio and smoking habits. Helicobacter Pylori infection, which is a major cause for GC and PUD, was found in part of the patients, as well as in part of the controls, at both locations. The breath samples were analyzed by gas chromatography/mass spectrometry, using the same equipment and protocol-of-experiment. We observed similar characteristic differences in the chemical composition of the breath samples between the study groups at the two locations, even though the exact composition of the breath samples differed. Both in China and Latvia, the GC patients and controls could be distinguished by differences in the average levels of 6-methyl-5-hepten-2-one; PUD patients were distinguished from controls by the levels of aromatic compounds and alcohols; GC and PUD patients could not be distinguished at either site. This pilot study indicates the limitations of chemical breath-gas analysis alone for identifying gastric diseases based on the concentration profiles of separate VOCs in international patient cohorts. We assume that these limitations would apply to other diseases as well. The presented data could potentially be useful for developing an alternative, universally applicable diagnostic method that relies on the detection of changes in the collective patterns of the disease-specific classes of exhaled VOCs.
Collapse
Affiliation(s)
- Haitham Amal
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ghimenti S, Di Francesco F, Onor M, Stiegel MA, Trivella MG, Comite C, Catania N, Fuoco R, Pleil JD. Post-operative elimination of sevoflurane anesthetic and hexafluoroisopropanol metabolite in exhaled breath: pharmacokinetic models for assessing liver function. J Breath Res 2013; 7:036001. [PMID: 23735676 DOI: 10.1088/1752-7155/7/3/036001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sevoflurane (SEV), a commonly used anesthetic agent for invasive surgery, is directly eliminated via exhaled breath and indirectly by metabolic conversion to inorganic fluoride and hexafluoroisopropanol (HFIP), which is also eliminated in the breath. We studied the post-operative elimination of SEV and HFIP of six patients that had undergone a variety of surgeries lasting between 2.5 to 8.5 h using exhaled breath analysis. A classical three compartments pharmacokinetic model developed for the study of environmental contaminants was fitted to the breath data. We found that SEV kinetic behavior following surgery (for up to six days) is consistent across all subjects whereas the production and elimination of HFIP varies to some extent. We developed subject specific parameters for HFIP metabolism and interpreted the differences in the context of timing and dose of anesthesia, type of surgery, and specific host factors. We propose methods for assessing individual patient liver function using SEV as a probe molecule for assessing efficiency of liver metabolism to HFIP. This work is valuable not only for the clinical study of metabolism recovery, but potentially also for the study of the interaction of other manufactured and environmental compounds with human systems biology in controlled exposure and observational studies.
Collapse
Affiliation(s)
- S Ghimenti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via del Risorgimento, 35 56126 Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pleil JD, Stiegel MA, Risby TH. Clinical breath analysis: discriminating between human endogenous compounds and exogenous (environmental) chemical confounders. J Breath Res 2013; 7:017107. [PMID: 23445880 DOI: 10.1088/1752-7155/7/1/017107] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Volatile organic compounds (VOCs) in exhaled breath originate from current or previous environmental exposures (exogenous compounds) and internal metabolic (anabolic and catabolic) production (endogenous compounds). The origins of certain VOCs in breath presumed to be endogenous have been proposed to be useful as preclinical biomarkers of various undiagnosed diseases including lung cancer, breast cancer, and cardio-pulmonary disease. The usual approach is to develop difference algorithms comparing VOC profiles from nominally healthy controls to cohorts of patients presenting with a documented disease, and then to apply the resulting rules to breath profiles of subjects with unknown disease status. This approach to diagnosis has a progression of sophistication; at the most rudimentary level, all measurable VOCs are included in the model. The next level corrects exhaled VOC concentrations for current inspired air concentrations. At the highest level, VOCs exhibiting discriminatory value also require a plausible biochemical pathway for their production before inclusion. Although these approaches have all shown some level of success, there is concern that pattern recognition is prone to error from environmental contamination and between-subject variance. In this paper, we explore the underlying assumptions for the interpretation and assignment of endogenous compounds with probative value for assessing changes. Specifically, we investigate the influence of previous exposures, elimination mechanisms and partitioning of exogenous compounds as confounders of true endogenous compounds. We provide specific examples based on a simple classical pharmacokinetic approach to identify potential misinterpretations of breath data and propose some remedies.
Collapse
Affiliation(s)
- Joachim D Pleil
- Human Exposure and Atmospheric Sciences Division, NERL/ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | | | | |
Collapse
|
31
|
Hunt KE, Moore MJ, Rolland RM, Kellar NM, Hall AJ, Kershaw J, Raverty SA, Davis CE, Yeates LC, Fauquier DA, Rowles TK, Kraus SD. Overcoming the challenges of studying conservation physiology in large whales: a review of available methods. CONSERVATION PHYSIOLOGY 2013; 1:cot006. [PMID: 27293590 PMCID: PMC4806609 DOI: 10.1093/conphys/cot006] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/22/2013] [Accepted: 03/27/2013] [Indexed: 05/15/2023]
Abstract
Large whales are subjected to a variety of conservation pressures that could be better monitored and managed if physiological information could be gathered readily from free-swimming whales. However, traditional approaches to studying physiology have been impractical for large whales, because there is no routine method for capture of the largest species and there is presently no practical method of obtaining blood samples from free-swimming whales. We review the currently available techniques for gathering physiological information on large whales using a variety of non-lethal and minimally invasive (or non-invasive) sample matrices. We focus on methods that should produce information relevant to conservation physiology, e.g. measures relevant to stress physiology, reproductive status, nutritional status, immune response, health, and disease. The following four types of samples are discussed: faecal samples, respiratory samples ('blow'), skin/blubber samples, and photographs. Faecal samples have historically been used for diet analysis but increasingly are also used for hormonal analyses, as well as for assessment of exposure to toxins, pollutants, and parasites. Blow samples contain many hormones as well as respiratory microbes, a diverse array of metabolites, and a variety of immune-related substances. Biopsy dart samples are widely used for genetic, contaminant, and fatty-acid analyses and are now being used for endocrine studies along with proteomic and transcriptomic approaches. Photographic analyses have benefited from recently developed quantitative techniques allowing assessment of skin condition, ectoparasite load, and nutritional status, along with wounds and scars from ship strikes and fishing gear entanglement. Field application of these techniques has the potential to improve our understanding of the physiology of large whales greatly, better enabling assessment of the relative impacts of many anthropogenic and ecological pressures.
Collapse
Affiliation(s)
- Kathleen E. Hunt
- John H. Prescott Marine Laboratory, Research Department, New England Aquarium, Boston, MA 02110, USA
- Corresponding author: New England Aquarium, Central Wharf, Boston, MA 02110, USA. Tel: +1 617 226 2175.
| | - Michael J. Moore
- Biology Department, Woods Hole Oceanographic Insitution, Woods Hole, MA 02543, USA
| | - Rosalind M. Rolland
- John H. Prescott Marine Laboratory, Research Department, New England Aquarium, Boston, MA 02110, USA
| | - Nicholas M. Kellar
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA
| | - Ailsa J. Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, St Andrews KY16 8LB, UK
| | - Joanna Kershaw
- Sea Mammal Research Unit, Scottish Oceans Institute, St Andrews KY16 8LB, UK
| | | | - Cristina E. Davis
- Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| | | | - Deborah A. Fauquier
- Marine Mammal Health and Stranding Response Program, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, MD 20910, USA
| | - Teresa K. Rowles
- Marine Mammal Health and Stranding Response Program, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, MD 20910, USA
| | - Scott D. Kraus
- John H. Prescott Marine Laboratory, Research Department, New England Aquarium, Boston, MA 02110, USA
| |
Collapse
|
32
|
Miekisch W, Herbig J, Schubert JK. Data interpretation in breath biomarker research: pitfalls and directions. J Breath Res 2012; 6:036007. [DOI: 10.1088/1752-7155/6/3/036007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
King J, Mochalski P, Unterkofler K, Teschl G, Klieber M, Stein M, Amann A, Baumann M. Breath isoprene: muscle dystrophy patients support the concept of a pool of isoprene in the periphery of the human body. Biochem Biophys Res Commun 2012; 423:526-30. [PMID: 22683640 DOI: 10.1016/j.bbrc.2012.05.159] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 05/30/2012] [Indexed: 01/18/2023]
Abstract
Breath isoprene accounts for most of the hydrocarbon removal via exhalation and is thought to serve as a non-invasive indicator for assaying several metabolic effects in the human body. The primary objective of this paper is to introduce a novel working hypothesis with respect to the endogenous source of this compound in humans: the idea that muscle tissue acts as an extrahepatic production site of substantial amounts of isoprene. This new perspective has its roots in quantitative modeling studies of breath isoprene dynamics under exercise conditions and is further investigated here by presenting pilot data from a small cohort of late stage Duchenne muscle dystrophy patients (median age 21, 4 male, 1 female). For these prototypic test subjects isoprene concentrations in end-tidal breath and peripheral venous blood range between 0.09-0.47 and 0.11-0.72 nmol/l, respectively, amounting to a reduction by a factor of 8 and more as compared to established nominal levels in normal healthy adults. While it remains unclear whether isoprene can be ascribed a direct physiological mechanism of action, some indications are given as to why isoprene production might have evolved in muscle.
Collapse
Affiliation(s)
- J King
- Breath Research Institute, Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
King J, Kupferthaler A, Frauscher B, Hackner H, Unterkofler K, Teschl G, Hinterhuber H, Amann A, Högl B. Measurement of endogenous acetone and isoprene in exhaled breath during sleep. Physiol Meas 2012; 33:413-28. [PMID: 22370046 DOI: 10.1088/0967-3334/33/3/413] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This explorative study aims at characterizing the breath behavior of two prototypic volatile organic compounds, acetone and isoprene, during normal human sleep and to possibly relate changes in the respective concentration time courses to the underlying sleep architecture. For this purpose, six normal healthy volunteers (two females, four males, age 20-29 years) were monitored over two consecutive nights (the first one being an adaption night) by combining real-time proton-transfer-reaction mass spectrometry measurements from end-tidal exhalation segments with laboratory-based polysomnographic data. Breath acetone concentrations increased overnight in all measurements, with an average relative change by a factor of up to 4 (median 2.5). Nighttime concentration maxima were usually recorded 2-3 h before lights on. For breath isoprene, a nocturnal increase in baseline concentrations of about 74% was observed, with individual changes ranging from 36-110%. Isoprene profiles exhibited pronounced concentration peaks, which were highly specific for leg movements as scored by tibial electromyography. Furthermore, relative to a linear trend, baseline isoprene concentrations decreased during the transition from the NREM to the REM phase of a complete sleep cycle.
Collapse
Affiliation(s)
- Julian King
- Breath Research Institute, Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
King J, Unterkofler K, Teschl G, Teschl S, Mochalski P, Koç H, Hinterhuber H, Amann A. A modeling-based evaluation of isothermal rebreathing for breath gas analyses of highly soluble volatile organic compounds. J Breath Res 2012; 6:016005. [DOI: 10.1088/1752-7155/6/1/016005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Pleil JD. Categorizing biomarkers of the human exposome and developing metrics for assessing environmental sustainability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2012; 15:264-80. [PMID: 22571221 DOI: 10.1080/10937404.2012.672148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The concept of maintaining environmental sustainability broadly encompasses all human activities that impact the global environment, including the production of energy, use and management of finite resources such as petrochemicals, metals, food production (farmland, fresh and ocean waters), and potable water sources (rivers, lakes, aquifers), as well as preserving the diversity of the surrounding ecosystems. The ultimate concern is how one can manage Spaceship Earth in the long term to sustain the life, health, and welfare of the human species and the planet's flora and fauna. On a more intimate scale, one needs to consider the human interaction with the environment as expressed in the form of the exposome, which is defined as all exogenous and endogenous exposures from conception onward, including exposures from diet, lifestyle, and internal biology, as a quantity of critical interest to disease etiology. Current status and subsequent changes in the measurable components of the exposome, the human biomarkers, could thus conceivably be used to assess the sustainability of the environmental conditions with respect to human health. The basic theory is that a shift away from sustainability will be reflected in outlier measurements of human biomarkers. In this review, the philosophy of long-term environmental sustainability is explored in the context of human biomarker measurements and how empirical data can be collected and interpreted to assess if solutions to existing environmental problems might have unintended consequences. The first part discusses four conventions in the literature for categorizing environmental biomarkers and how different types of biomarker measurements might fit into the various grouping schemes. The second part lays out a sequence of data management strategies to establish statistics and patterns within the exposome that reflect human homeostasis and how changes or perturbations might be interpreted in light of external environmental stressors. The underlying concept is to identify probative outliers from the "unremarkable exposome" in individuals or subpopulations that could be used for discerning deviations from the healthy environment, much like current diagnostic medicine uses batteries of blood and urine tests to screen for preclinical disease conditions. Such empirically derived human in vivo data could subsequently be integrated into high-throughput in vitro and in silico testing of environmental and manufactured chemicals to support real-world toxicity evaluations.
Collapse
Affiliation(s)
- Joachim D Pleil
- HEASD/NERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| |
Collapse
|
38
|
Pleil JD, Stiegel MA, Sobus JR. Breath biomarkers in environmental health science: exploring patterns in the human exposome. J Breath Res 2011; 5:046005. [DOI: 10.1088/1752-7155/5/4/046005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Pleil JD, Stiegel MA, Sobus JR, Liu Q, Madden MC. Observing the human exposome as reflected in breath biomarkers: heat map data interpretation for environmental and intelligence research. J Breath Res 2011; 5:037104. [PMID: 21654022 DOI: 10.1088/1752-7155/5/3/037104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Over the past decade, the research of human system biology and the interactions with the external environment has permeated all phases of environmental, medical and public health research. Similar to the fields of genomics and proteomics research, the advent of new instrumentation for measuring breath biomarkers and their associated meta-data also provide very useful, albeit complex, data structures. The biomarker research community is beginning to invoke tools from system biology to assess the impact of environmental exposures, as well as from internal health states, on the expression of suites of chemicals in exhaled breath. This new approach introduces the concept of the exposome as a complement to the genome in exploring the environment-gene interaction. In addition to answering questions regarding health status for the medical community, breath biomarker patterns are useful for assessing public health risks from environmental exposures. Furthermore, breath biomarker patterns can inform security risks from suspects via covert interrogation of blood borne chemical levels that reflect previous activities. This paper discusses how different classes of exhaled breath biomarker measurements can be used to rapidly assess patterns in complex data. We present exhaled breath data sets to demonstrate the value of the graphical 'heat map' approach for hypothesis development and subsequent guidance for stochastic and mixed effect data interpretation. We also show how to graphically interpret exhaled breath measurements of exogenous jet fuel components, as well as exhaled breath condensate measurements of endogenous chemicals.
Collapse
Affiliation(s)
- Joachim D Pleil
- Human Exposure and Atmospheric Sciences Division, NERL/ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | | | | | | | | |
Collapse
|
40
|
Koc H, King J, Teschl G, Unterkofler K, Teschl S, Mochalski P, Hinterhuber H, Amann A. The role of mathematical modeling in VOC analysis using isoprene as a prototypic example. J Breath Res 2011; 5:037102. [DOI: 10.1088/1752-7155/5/3/037102] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Beauchamp J. Inhaled today, not gone tomorrow: pharmacokinetics and environmental exposure of volatiles in exhaled breath. J Breath Res 2011; 5:037103. [DOI: 10.1088/1752-7155/5/3/037103] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Pleil JD, Sheldon LS. Adapting concepts from systems biology to develop systems exposure event networks for exposure science research. Biomarkers 2010; 16:99-105. [DOI: 10.3109/1354750x.2010.541565] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Joachim D. Pleil
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC 27711
| | - Linda S. Sheldon
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC 27711
| |
Collapse
|
43
|
King J, Koc H, Unterkofler K, Mochalski P, Kupferthaler A, Teschl G, Teschl S, Hinterhuber H, Amann A. Physiological modeling of isoprene dynamics in exhaled breath. J Theor Biol 2010; 267:626-37. [PMID: 20869370 DOI: 10.1016/j.jtbi.2010.09.028] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/31/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
Abstract
Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath dynamics associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs. Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in response to variations in ventilation and perfusion. Here, a valid compartmental description of these profiles is developed. By comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented. Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected to aid further investigations regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.
Collapse
Affiliation(s)
- Julian King
- Breath Research Institute, Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mieth M, Schubert JK, Gröger T, Sabel B, Kischkel S, Fuchs P, Hein D, Zimmermann R, Miekisch W. Automated Needle Trap Heart-Cut GC/MS and Needle Trap Comprehensive Two-Dimensional GC/TOF-MS for Breath Gas Analysis in the Clinical Environment. Anal Chem 2010; 82:2541-51. [DOI: 10.1021/ac100061k] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maren Mieth
- Department of Anesthesiology and Intensive Care Medicine, University Rostock, Schillingallee 35, 18057 Rostock, Germany, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen, Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany, PAS Technology Deutschland GmbH, Richard-Wagner-Strasse 10, 99441 Magdala, Germany, and Analytical Chemistry, Institute of Chemistry, University Rostock, Albert-Einstein-Strasse 3a 18051 Rostock, Germany
| | - Jochen K. Schubert
- Department of Anesthesiology and Intensive Care Medicine, University Rostock, Schillingallee 35, 18057 Rostock, Germany, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen, Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany, PAS Technology Deutschland GmbH, Richard-Wagner-Strasse 10, 99441 Magdala, Germany, and Analytical Chemistry, Institute of Chemistry, University Rostock, Albert-Einstein-Strasse 3a 18051 Rostock, Germany
| | - Thomas Gröger
- Department of Anesthesiology and Intensive Care Medicine, University Rostock, Schillingallee 35, 18057 Rostock, Germany, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen, Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany, PAS Technology Deutschland GmbH, Richard-Wagner-Strasse 10, 99441 Magdala, Germany, and Analytical Chemistry, Institute of Chemistry, University Rostock, Albert-Einstein-Strasse 3a 18051 Rostock, Germany
| | - Bastian Sabel
- Department of Anesthesiology and Intensive Care Medicine, University Rostock, Schillingallee 35, 18057 Rostock, Germany, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen, Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany, PAS Technology Deutschland GmbH, Richard-Wagner-Strasse 10, 99441 Magdala, Germany, and Analytical Chemistry, Institute of Chemistry, University Rostock, Albert-Einstein-Strasse 3a 18051 Rostock, Germany
| | - Sabine Kischkel
- Department of Anesthesiology and Intensive Care Medicine, University Rostock, Schillingallee 35, 18057 Rostock, Germany, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen, Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany, PAS Technology Deutschland GmbH, Richard-Wagner-Strasse 10, 99441 Magdala, Germany, and Analytical Chemistry, Institute of Chemistry, University Rostock, Albert-Einstein-Strasse 3a 18051 Rostock, Germany
| | - Patricia Fuchs
- Department of Anesthesiology and Intensive Care Medicine, University Rostock, Schillingallee 35, 18057 Rostock, Germany, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen, Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany, PAS Technology Deutschland GmbH, Richard-Wagner-Strasse 10, 99441 Magdala, Germany, and Analytical Chemistry, Institute of Chemistry, University Rostock, Albert-Einstein-Strasse 3a 18051 Rostock, Germany
| | - Dietmar Hein
- Department of Anesthesiology and Intensive Care Medicine, University Rostock, Schillingallee 35, 18057 Rostock, Germany, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen, Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany, PAS Technology Deutschland GmbH, Richard-Wagner-Strasse 10, 99441 Magdala, Germany, and Analytical Chemistry, Institute of Chemistry, University Rostock, Albert-Einstein-Strasse 3a 18051 Rostock, Germany
| | - Ralf Zimmermann
- Department of Anesthesiology and Intensive Care Medicine, University Rostock, Schillingallee 35, 18057 Rostock, Germany, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen, Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany, PAS Technology Deutschland GmbH, Richard-Wagner-Strasse 10, 99441 Magdala, Germany, and Analytical Chemistry, Institute of Chemistry, University Rostock, Albert-Einstein-Strasse 3a 18051 Rostock, Germany
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care Medicine, University Rostock, Schillingallee 35, 18057 Rostock, Germany, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen, Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany, PAS Technology Deutschland GmbH, Richard-Wagner-Strasse 10, 99441 Magdala, Germany, and Analytical Chemistry, Institute of Chemistry, University Rostock, Albert-Einstein-Strasse 3a 18051 Rostock, Germany
| |
Collapse
|
45
|
Pleil JD. Influence of systems biology response and environmental exposure level on between-subject variability in breath and blood biomarkers. Biomarkers 2009; 14:560-71. [DOI: 10.3109/13547500903186460] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Hubbard H, Sobus J, Pleil J, Madden M, Tabucchi S. Application of novel method to measure endogenous VOCs in exhaled breath condensate before and after exposure to diesel exhaust. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3652-8. [DOI: 10.1016/j.jchromb.2009.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/08/2009] [Accepted: 09/09/2009] [Indexed: 01/05/2023]
|
47
|
Giusti L. A review of waste management practices and their impact on human health. WASTE MANAGEMENT (NEW YORK, N.Y.) 2009; 29:2227-39. [PMID: 19401266 DOI: 10.1016/j.wasman.2009.03.028] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/17/2009] [Accepted: 03/25/2009] [Indexed: 05/04/2023]
Abstract
This work reviews (i) the most recent information on waste arisings and waste disposal options in the world, in the European Union (EU), in Organisation for Economic Co-operation and Development (OEDC) countries, and in some developing countries (notably China) and (ii) the potential direct and indirect impact of waste management activities on health. Though the main focus is primarily on municipal solid waste (MSW), exposure to bioaerosols from composting facilities and to pathogens from sewage treatment plants are considered. The reported effects of radioactive waste are also briefly reviewed. Hundreds of epidemiological studies reported on the incidence of a wide range of possible illnesses on employees of waste facilities and on the resident population. The main conclusion of the overall assessment of the literature is that the evidence of adverse health outcomes for the general population living near landfill sites, incinerators, composting facilities and nuclear installations is usually insufficient and inconclusive. There is convincing evidence of a high risk of gastrointestinal problems associated with pathogens originating at sewage treatment plants. In order to improve the quality and usefulness of epidemiological studies applied to populations residing in areas where waste management facilities are located or planned, preference should be given to prospective cohort studies of sufficient statistical power, with access to direct human exposure measurements, and supported by data on health effect biomarkers and susceptibility biomarkers.
Collapse
Affiliation(s)
- L Giusti
- Faculty of Health and Life Sciences, UWE Bristol, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom.
| |
Collapse
|
48
|
Thekedar B, Szymczak W, Höllriegl V, Hoeschen C, Oeh U. Investigations on the variability of breath gas sampling using PTR-MS. J Breath Res 2009; 3:027007. [DOI: 10.1088/1752-7155/3/2/027007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|