1
|
Cai P, Dimopoulos G. Microbial biopesticides: A one health perspective on benefits and risks. One Health 2025; 20:100962. [PMID: 39867997 PMCID: PMC11762943 DOI: 10.1016/j.onehlt.2024.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Controlling insect pests that destroy crop and spread diseases will become increasingly crucial for addressing the food demands of a growing global population and the expansion of vector-borne diseases. A key challenge is the development of a balanced approach for sustainable food production and disease control in 2050 and beyond. Microbial biopesticides, derived from bacteria, viruses, fungi, protozoa, or nematodes, offer potentially significant benefits for promoting One Health and contributing to several United Nations Sustainable Development Goals (SDGs). This narrative review examines the benefits and risks of microbial biopesticides from a One Health perspective, focusing on the Americas and Europe, and aligned with respective SDGs. The value of biopesticides in sustainable agriculture and integrated pest management (IPM) approaches for food security, particularly SDG 2 (Zero Hunger) and SDG 1 (No Poverty) has been widely recognized, with relatively fewer adverse effects to people and the environment than synthetic pesticides. With increased demand and usage, microbial biopesticides can be expected to contribute further to additional SDGs such as SDG 12 (responsible consumption and production) through waste recycling for biopesticide production and remediation of polluted ecosystems, and by reducing vector-borne disease burdens such as malaria and dengue. Nevertheless, the prudent and judicious application of microbial biopesticides is crucial to ensuring their effectiveness and maximizing their One Health benefits while minimizing pest resistance and unintended impacts. From a One Health perspective, this goal involves incorporating microbial biopesticides into a comprehensive biological control strategy within an IPM framework for sustainable agriculture and for controlling vector-borne diseases.
Collapse
Affiliation(s)
- Panqin Cai
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
- Singapore Food Agency, Singapore, Singapore
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Li A, Wang C, Chai Y, Huang Z, Yao B, Lu C, Yu M, Chen H. Residue pattern and risk assessment of validamycin A and spinosyn A in tea using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. Food Chem 2025; 485:144555. [PMID: 40318336 DOI: 10.1016/j.foodchem.2025.144555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/11/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Validamycin A (VA) and spinosyn A (SA) have been utilized as antibiotic pesticides in tea plantations for the control of pests and diseases. Both pesticides pose significant risks to human health and have been listed as key controlled new pollutants in China. So far, there have been few reports for the risk assessment of antibiotic pesticides in tea. In this study, a hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry (HILIC-MS/MS) method was developed for the simultaneous detection of VA and SA residues in tea. Method validation demonstrated good accuracy and precision. During tea planting, SA and VA in tea shoots degraded fast, with the half-life of 0.36 to 0.43 days for SA and 0.72 to 0.92 days for VA. SA and VA in tea shoots degraded fast initially and then followed by a slower phase. Both SA and VA degraded rapidly during the withering and drying stages. Compared to green tea, the degradation rates of both pesticides were faster during black tea manufacturing. Transfer rates of VA and SA from tea into infusions had transfer rates of 76.7 % to 99.5 % and 1.5 % to 2.7 %, respectively. The chronic risk quotient (RQc) < 1 for both antibiotic pesticides indicated negligible consumer risk from tea.
Collapse
Affiliation(s)
- Aiping Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 310008, China; Natural Medicine Institute of Yangshengtang Co.,Ltd, Hangzhou 310024, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China; National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Hangzhou 310008, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China; National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Hangzhou 310008, China
| | - Zhiming Huang
- Natural Medicine Institute of Yangshengtang Co.,Ltd, Hangzhou 310024, China
| | - Binbin Yao
- Natural Medicine Institute of Yangshengtang Co.,Ltd, Hangzhou 310024, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China; National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Hangzhou 310008, China
| | - Miao Yu
- Zhejiang Provincial Plant Protection Quarantine and Pesticide Management Station, Hangzhou 310020, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China; National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 310008, China.
| |
Collapse
|
3
|
Su T, Liu H. History and future perspectives of spinosad for mosquito control. PEST MANAGEMENT SCIENCE 2025. [PMID: 40277006 DOI: 10.1002/ps.8820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/16/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025]
Abstract
Since the initial discovery of the soil-dwelling actinomycete Saccharopolyspora spinosa in 1982, its metabolites spinosyns and modified spinosoids have been developed to control a wide variety of arthropod pests of economic importance. The most intensively studied are spinosad consisting of natural spinosyn A and D, as well as spinetoram comprising modified spinosyn J and L. The unique mode-of-action, high bioactivity and generally benign environmental safety profile of spinosyns add significant value to this class of pesticides of natural origin. Currently, products based on spinosad and spinetoram are available in >85 countries since initial global registration in 1996. In the US, spinosad and spinetoram are found in >80 registered pesticide products, mostly being used on agricultural crops, ornamental plants, stored grains, urban environments, and pets. Some spinosad products are approved for use in organic farming. Since the earliest recognition and registration of spinosad products for mosquito control in the 2000s, numerous customized formulations have been developed and registered for controlling different mosquito species in diverse habitats. Thus far, satisfactory bioactivities and effectiveness against mosquitoes by available products have been documented worldwide. At the same time, concerns over nontarget aquatic invertebrate fauna have gradually emerged when considering spinosad as a relatively selective pesticide. Resistance and cross-resistance following repeated applications, and their management are of pressing concern. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianyun Su
- EcoZone International LLC, Riverside, CA, USA
| | - Hongxia Liu
- Department of Vector Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
4
|
Malaquias Souto P, Sarmento A, Capela N, Aguilar A, Azevedo-Pereira HM, Carvalho CR, Darrouzet E, Haouzi M, Henriques LA, Leston S, Ramos F, de Sousa JP. Acute contact toxicity of insecticides for the chemical control of the invasive yellow-legged hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). PLoS One 2025; 20:e0320769. [PMID: 40238793 PMCID: PMC12002430 DOI: 10.1371/journal.pone.0320769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/24/2025] [Indexed: 04/18/2025] Open
Abstract
The yellow-legged hornet, Vespa velutina subs. nigrithorax Buysson, 1905, originally from Southeast Asia, has become an invasive species in Europe since its introduction in France around 2004. Its rapid proliferation and voracious predatory behavior pose a significant threat to native insects, particularly honeybees and other pollinators, impacting agricultural production, biodiversity, and human safety. Eradication in Europe seems now impossible, and the control efforts are hindered by the lack of standardized application protocols, including for insecticide use, leading to potential indiscriminate pesticide application and, consequently, environmental damages. Our study evaluated the acute contact toxicity on V. v. nigrithorax workers of four commercially available formulations containing acetamiprid, cypermethrin, a mix of natural pyrethrins, and Spinosad as active ingredients. These tests were performed in laboratory conditions, offering novel data for the chemical control of this invasive species. Our results suggest acetamiprid and spinosad as promising candidates for the yellow-legged hornet control. Further research is needed to validate their efficacy under field conditions and assess ecological impacts of these pesticides on non-target organisms. Integrated pest management strategies should prioritize insecticides with low non-target toxicity and minimal environmental persistence to mitigate resistance development and ensure effective pest control. Comprehensive assessments considering multiple factors beyond mortality are essential for informing sustainable pest control strategies.
Collapse
Affiliation(s)
- Paula Malaquias Souto
- Department of Life Sciences, Centre for Functional Ecology, Associated Laboratory TERRA, University of Coimbra, Coimbra, Portugal
| | - Artur Sarmento
- Department of Life Sciences, Centre for Functional Ecology, Associated Laboratory TERRA, University of Coimbra, Coimbra, Portugal
| | - Nuno Capela
- Department of Life Sciences, Centre for Functional Ecology, Associated Laboratory TERRA, University of Coimbra, Coimbra, Portugal
| | - António Aguilar
- Department of Life Sciences, Centre for Functional Ecology, Associated Laboratory TERRA, University of Coimbra, Coimbra, Portugal
| | - Henrique M.V.S. Azevedo-Pereira
- Department of Life Sciences, Centre for Functional Ecology, Associated Laboratory TERRA, University of Coimbra, Coimbra, Portugal
- Município de Cantanhede, Praça Marquês de Marialva, Cantanhede, Portugal
| | | | - Eric Darrouzet
- Institut de Recherche sur la Biologie de l’Insecte, UMR CNRS, University of Tours, Parc de Grandmont Tours, 37200, France
| | - Mélissa Haouzi
- Institut de Recherche sur la Biologie de l’Insecte, UMR CNRS, University of Tours, Parc de Grandmont Tours, 37200, France
| | - Luís António Henriques
- Department of Life Sciences, Centre for Functional Ecology, Associated Laboratory TERRA, University of Coimbra, Coimbra, Portugal
| | - Sara Leston
- Department of Life Sciences, Centre for Functional Ecology, Associated Laboratory TERRA, University of Coimbra, Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Porto, Portugal
| | - Fernando Ramos
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Porto, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo III, Coimbra, Portugal
| | - José Paulo de Sousa
- Department of Life Sciences, Centre for Functional Ecology, Associated Laboratory TERRA, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Chen H, Yang Z, Yin Q, Shangguan W, Cao C, Huang Q, Cao L. An organic solvent-free self-assembly strategy for scalable preparation of nanobiopesticides with enhanced insecticidal activity against houseflies. NANOSCALE 2025; 17:9363-9373. [PMID: 40105504 DOI: 10.1039/d4nr05141f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The abuse of toxic organic solvents has caused great harm to human health and the environment. Therefore, developing an environmentally friendly nano-based pesticide formulation without using harmful solvents is urgent to improve the efficacy of pesticides and minimize environmental and health risks. Herein, by combining aspartic acid (Asp) with spinosad (SSD) as an attractive building unit, a self-assembly and carrier-minimized strategy was applied to construct a nanobiopesticide (Asp-SSD) simultaneously. To further improve the storage stability of the formulation, the biogenic surfactant alkyl polyglucoside (APG) was subsequently added to afford a more stable and smaller nano-delivery system (Asp-SSD-APG). Bioactivity assays showed that Asp-SSD-APG exhibited good quick-acting performance against Musca domestica in the spray assay, and the insecticidal activities of Asp-SSD and Asp-SSD-APG were better than that of the SSD nano-suspension concentrate (Nano-SC). Compared to CK, Asp-SSD-APG reduced the activity of GST, SOD, and CAT in M. domestica, which contributed to the enhanced insecticidal effect of SSD. The cell viability evaluation in 4T1 cells showed that Asp-SSD-APG posed a low risk to the mammalian cells. This study provides an alternative approach for developing environmentally benign nanobiopesticides with a self-assembly and carrier-minimized strategy, which has the potential to improve the efficacy and safety of pesticides in the public health field.
Collapse
Affiliation(s)
- Huiping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| | - Zhifei Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| | - Qing Yin
- Tianjin Yorkool Science and Technology Co., Ltd, Tianjin, 300392, P. R. China
| | - Wenjie Shangguan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| | - Qiliang Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| | - Lidong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| |
Collapse
|
6
|
Chen K, Wang S, Fu S, Kim J, Park P, Liu R, Lei K. 4(3 H)-Quinazolinone: A Natural Scaffold for Drug and Agrochemical Discovery. Int J Mol Sci 2025; 26:2473. [PMID: 40141117 PMCID: PMC11941892 DOI: 10.3390/ijms26062473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
4(3H)-quinazolinone is a functional scaffold that exists widely both in natural products and synthetic organic compounds. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antimalarial, antibacterial, antifungal, and herbicidal, etc. In this review, we highlight the medicinal and agrochemical versatility of the 4(3H)-quinazolinone scaffold according to the studies published in the past six years (2019-2024), and comprehensively give a summary of the target recognition, structure-activity relationship, and mechanism of its analogs. The present review is expected to provide valuable guidance for discovering novel lead compounds containing 4(3H)-quinazolinone moiety in both drug and agrochemical research.
Collapse
Affiliation(s)
- Ke Chen
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Shumin Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Shuyue Fu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Junehyun Kim
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Phumbum Park
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Rui Liu
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Kang Lei
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| |
Collapse
|
7
|
Pal P, Kioka A. Micro and nanobubbles enhanced ozonation technology: A synergistic approach for pesticides removal. Compr Rev Food Sci Food Saf 2025; 24:e70133. [PMID: 39929639 PMCID: PMC11810549 DOI: 10.1111/1541-4337.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/27/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025]
Abstract
Pesticides production, consumption, and disposal around the world are raising concerns day by day for their human and environmental health impacts. Among developing treatment technologies, ozonation has attracted the attention of many researchers in recent years. It is an emerging and promising technology for removing pesticides in the aqueous environment and degrading the residual pesticides from the fruits and vegetables (F&V) surfaces. This systematic review presents an extensive study of the degradation of different types of residual pesticides from F&V using ozonation, micro- and nanobubble (MNB) ozonation, or other advanced techniques such as microwaves/ultrasonication and advanced oxidation process. This review compiles the studies that reported the effect of MNB size on the dissolution of ozone gas in the washing medium and its effect on the degradation of residual pesticides from F&V. The mechanism and routes of pesticide degradation and how integrating MNB technology (MNBT) can help overcome economic losses, reduce health issues for consumers, and save the environment from harmful chemicals used in the pesticides are also discussed. The article encourages the development and utilization of MNBT not only in agriculture, but aquaculture, fisheries, food industries, food storage, and packing, for reducing/degrading the residual pesticides from foods and support environmental sustainability as well as improve international trade.
Collapse
Affiliation(s)
- Preeti Pal
- Department of Systems Innovation, School of EngineeringThe University of TokyoTokyoJapan
| | - Arata Kioka
- Department of Systems Innovation, School of EngineeringThe University of TokyoTokyoJapan
| |
Collapse
|
8
|
Wakil W, Boukouvala MC, Kavallieratos NG, Naeem A, Ntinokas D, Ghazanfar MU, Avery PB. The Inevitable Fate of Tetranychus urticae on Tomato Plants Treated with Entomopathogenic Fungi and Spinosad. J Fungi (Basel) 2025; 11:138. [PMID: 39997432 PMCID: PMC11856040 DOI: 10.3390/jof11020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Tetranychus urticae (Acari: Tetranychidae) is a pervasive and damaging mite pest of tomato crops, leading to important economic losses globally. This study evaluated the acaricidal efficacy of spinosad, alone and in combination with Beauveria bassiana (Bb) WG-21 and Metarhizium robertsii (Mr) WG-04, in the laboratory (application to tomato leaf discs) and greenhouse (application to tomato plants), considering mortality and establishment, respectively. The combination treatments of Bb WG-21 or Mr WG-04 with spinosad achieved 100% mortality of T. urticae nymphs within 2 days on leaf discs, while individual applications of each control agent resulted in lower mortalities, ranging between 62.91 and 86.25% after 3 days. The paired treatment of Mr WG-04 + spinosad killed all exposed adults within 5 d, while that of Bb WG-21 + spinosad achieved the same results after 7 d. However, spinosad, Mr WG-04, and Bb WG-21 alone killed ≥77.08% of adults after 7 d. In the greenhouse, the combination treatment of WG-04 + spinosad deterred the presence of T. urticae (adults, immatures, and eggs) on either surface of the tomato leaves, while Bb WG-21 + spinosad suppressed the populations only on the adaxial surface. These findings indicate that combined treatments of the tested EPF + spinosad, especially Mr WG-04, on tomato plants under greenhouse conditions can provide substantially enhanced control of T. urticae life stages compared to each treatment applied alone.
Collapse
Affiliation(s)
- Waqas Wakil
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan;
- Senckenberg German Entomological Institute, D-15374 Müncheberg, Germany
| | - Maria C. Boukouvala
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece; (M.C.B.); (D.N.)
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece; (M.C.B.); (D.N.)
| | - Aqsa Naeem
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Dionysios Ntinokas
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece; (M.C.B.); (D.N.)
| | - Muhammad Usman Ghazanfar
- Department of Plant Pathology, College of Agriculture, Sargodha University, Sargodha 40100, Pakistan;
| | - Pasco B. Avery
- Indian River Research and Education Center, Department of Entomology and Nematology, Institute for Agricultural Sciences, University of Florida, Ft. Pierce, FL 34945, USA;
| |
Collapse
|
9
|
Li X, Wang J, Su C, Guo C, Xu Z, Wang K, Pang J, Lv B, Wang C, Li C. The PurR family transcriptional regulator promotes butenyl-spinosyn production in Saccharopolyspora pogona. Appl Microbiol Biotechnol 2025; 109:14. [PMID: 39836216 PMCID: PMC11750948 DOI: 10.1007/s00253-024-13390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Butenyl-spinosyn, derived from Saccharopolyspora pogona, is a broad-spectrum and effective bioinsecticide. However, the regulatory mechanism affecting butenyl-spinosyn synthesis has not been fully elucidated, which hindered the improvement of production. Here, a high-production strain S. pogona H2 was generated by Cobalt-60 γ-ray mutagenesis, which showed a 2.7-fold increase in production compared to the wild-type strain S. pogona ASAGF58. A comparative transcriptomic analysis between S. pogona ASAGF58 and H2 was performed to elucidate the high-production mechanism that more precursors and energy were used to synthesize of butenyl-spinosyn. Fortunately, a PurR family transcriptional regulator TF00350 was discovered. TF00350 overexpression strain RS00350 induced morphological differentiation and butenyl-spinosyn production, ultimately leading to a 5.5-fold increase in butenyl-spinosyn production (141.5 ± 1.03 mg/L). Through transcriptomics analysis, most genes related to purine metabolism pathway were downregulated, and the butenyl-spinosyn biosynthesis gene was upregulated by increasing the concentration of c-di-GMP and decreasing the concentration of c-di-AMP. These results provide valuable insights for further mining key regulators and improving butenyl-spinosyn production. KEY POINTS: • A high production strain of S. pogona H2 was obtained by 60Co γ-ray mutagenesis. • Positive regulator TF00350 identified by transcriptomics, increasing butenyl-spinosyn production by 5.5-fold. • TF00350 regulated of butenyl-spinosyn production by second messengers.
Collapse
Affiliation(s)
- Xinying Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China
| | - Jingnan Wang
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China
| | - Chang Su
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China
| | - Chao Guo
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China
| | - Zhouqin Xu
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China
| | - Kehui Wang
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China
| | - Jian Pang
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Chao Wang
- Academy of National Food and Strategic Reserves Administration, Grain and Oils Processing Research Institute, Beijing, 100037, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic and Systems Biology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
El-Wahed SIMA, Ibrahim HAM. Molluscicidal assessment of certain toxicants: Impact on biochemical alterations and electrophoretic protein patterns in Massylaea vermiculata (O. F. Müller, 1774) snails. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104619. [PMID: 39710125 DOI: 10.1016/j.etap.2024.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Massylaea vermiculata snails are a significant gastropod pest in Egypt, threatening agriculture. Due to increasing concerns about conventional pesticides, it is imperative to find effective alternatives that are less harmful. We assessed the molluscicidal activity of abamectin, methoxyfenozide, and spinosad using the leaf-dipping method in vitro and the effect of LC50 of these compounds on biochemical aspects and protein electrophoresis. Results showed that these compounds exhibited molluscicidal activity, with LC50 values of 0.21, 0.63, and 0.65 mg/l for abamectin, methoxyfenozide and spinosad, respectively. Biochemical assays on treated snails showed increased aspartate and alanine aminotransferase and alkaline phosphatase activities and reduced total protein compared to controls. For the most effective compound (abamectin), these values were 195.36, 105.82, 276.76, and 2.49, compared to control values of 88.00, 47.67, 124.67, and 5.52, after 10 days post-treatment. Protein electrophoresis revealed variations in protein bands. Thus, these compounds can be effective within integrated control programs.
Collapse
Affiliation(s)
- Sahar I M Abd El-Wahed
- Department of Harmful Animals, Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12619, Egypt
| | - Hesham A M Ibrahim
- Department of Agricultural Zoology and Nematology, Faculty of Agriculture, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| |
Collapse
|
11
|
Mu X, Lei R, Yan S, Deng Z, Liu R, Liu T. The LysR family transcriptional regulator ORF-L16 regulates spinosad biosynthesis in Saccharopolyspora spinosa. Synth Syst Biotechnol 2024; 9:609-617. [PMID: 38784197 PMCID: PMC11108826 DOI: 10.1016/j.synbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Spinosad, a potent broad-spectrum bioinsecticide produced by Saccharopolyspora spinosa, has significant market potential. Despite its effectiveness, the regulatory mechanisms of spinosad biosynthesis remain unclear. Our investigation identified the crucial role of the LysR family transcriptional regulator ORF-L16, located upstream of spinosad biosynthetic genes, in spinosad biosynthesis. Through reverse transcription PCR (RT-PCR) and 5'-rapid amplification of cDNA ends (5'-Race), we unveiled that the spinosad biosynthetic gene cluster (BGC) contains six transcription units and seven promoters. Electrophoretic mobility shift assays (EMSAs) demonstrated that ORF-L16 bound to seven promoters within the spinosad BGC, indicating its involvement in regulating spinosad biosynthesis. Notably, deletion of ORF-L16 led to a drastic reduction in spinosad production from 1818.73 mg/L to 1.69 mg/L, accompanied by decreased transcription levels of spinosad biosynthetic genes, confirming its positive regulatory function. Additionally, isothermal titration calorimetry (ITC) and EMSA confirmed that spinosyn A, the main product of the spinosad BGC, served as an effector of ORF-L16. Specifically, it decreased the binding affinity between ORF-L16 and spinosad BGC promoters, thus exerting negative feedback regulation on spinosad biosynthesis. This research enhances our comprehension of spinosad biosynthesis regulation and lays the groundwork for future investigations on transcriptional regulators in S. spinosa.
Collapse
Affiliation(s)
- Xin Mu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Ru Lei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Shuqing Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ran Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
12
|
Zhu Z, Chen W, Cao L, Xia Z, Rang J, Hu S, Xia L. ARTP/NTG Compound Mutagenesis Improved the Spinosad Production and the Insecticidal Virulence of Saccharopolyspora Spinosa. Int J Mol Sci 2024; 25:12308. [PMID: 39596372 PMCID: PMC11594378 DOI: 10.3390/ijms252212308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Spinosad is an efficient and broad-spectrum environmentally friendly biopesticide, but its low yield in wild-type Saccharopolyspora spinosa limits its further application. ARTP/NTG compound mutagenesis was used in this study to improve the spinosad titer of S. spinosa and obtain a high-yield mutant-NT24. Compared with the wild-type strain, the fermentation cycle of NT24 was shortened by 2 days and its maximum titer of spinosad reached 858.3 ± 27.7 mg/L, which is 5.12 times more than for the same-period titer of the wild-type strain. In addition, RT-qPCR, resequencing, and targeted metabolomics showed that the upregulation of the key differential genes accD6, fadD, sdhB, oadA, and gntZ caused increased metabolic flux in the tricarboxylic acid cycle and pentose phosphate pathway, suggesting that the accumulation of pyruvate and short-chain acyl-CoA was the primary cause of spinosad accumulation in NT24. This study demonstrates the effectiveness of ARTP mutagenesis in S. spinosa, and provides new insights for the mechanism of spinosad biosynthesis and metabolic engineering in S. spinosa.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China; (Z.Z.); (W.C.); (L.C.); (Z.X.); (J.R.); (S.H.)
| |
Collapse
|
13
|
Stockton DG, Kraft L, Dombrowski P, Doucette L, Bosch M, Gutierrez-Coarite R, Manandhar R, Uyeda J, Silva J, Hawkins J, Shikano I. Persistence of widespread moderate Spinosad resistance among wild melon fly (Zeugodacus cucurbitae) and oriental fruit fly (Bactrocera dorsalis) populations on the major Hawaiian islands. PEST MANAGEMENT SCIENCE 2024; 80:5640-5647. [PMID: 38994798 DOI: 10.1002/ps.8279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Insecticide resistance among invasive tephritid fruit flies poses a great risk to national food security and has the potential to disrupt quarantine and eradication programs, which rely on the efficacy of Spinosad to prevent widespread establishment in North America. During 2022 to 2023 we surveyed the extent of Spinosad resistance of two key species, oriental fruit fly Bactrocera dorsalis, and melon fly Zeugodacus cucurbitae, from 20 sites across five Hawaiian Islands including Kaua'i, O'ahu, Maui, Molokai and the "Big Island" (Hawai'i). RESULTS We used topical thoracic applications of eight concentrations of Spinosad ranging from 0.028 to 3.6 mg/mL to evaluate the lethal concentration (LC50 and LC99) required to kill wild-caught males. Resistance ratios (RR) were calculated by comparing the LC50 of wild flies to laboratory susceptible lines maintained in colony. Our results identified at least two new sites of concern for melon fly resistance on the Big Island, and at least four sites of concern for oriental fruit fly, all of which were located on the Big Island. At these locations RRs were >5. On O'ahu, melon fly RRs were >10. CONCLUSIONS The persistence of Spinosad resistance is concerning, yet it is a reduction compared to the values reported previously and before changes to Spinosad use recommendations by local extension agents beginning in 2017. For oriental fruit fly, these RR values are the highest levels that have been detected in wild Hawai'i populations. These data suggest that expanded Spinosad reduction and replacement programs are warranted given the ongoing issues with Spinosad resistance in Hawai'i and expansion in the number of species affected. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Dara G Stockton
- Daniel K. Inouye Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Protection Research Unit (TCCPRU), USDA-ARS, Hilo, HI, USA
| | - Laura Kraft
- Washington State University, College of Agricultural, Human, and Natural Resources Sciences (CAHNRS), Long Beach Research and Extension Unit, Long Beach, WA, USA
| | - Patricia Dombrowski
- Daniel K. Inouye Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Protection Research Unit (TCCPRU), USDA-ARS, Hilo, HI, USA
| | - Laura Doucette
- University of Hawaii at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu, HI, USA
| | - Michael Bosch
- Daniel K. Inouye Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Protection Research Unit (TCCPRU), USDA-ARS, Hilo, HI, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | | | - Roshan Manandhar
- University of Hawaii at Manoa, Department of Plant and Environmental Protection Sciences, Lihue, HI, USA
| | - Jensen Uyeda
- University of Hawaii at Manoa, O'ahu Cooperative Extension, Pearl City, HI, USA
| | - Joshua Silva
- University of Hawaii at Manoa, O'ahu Cooperative Extension, Pearl City, HI, USA
| | - Jennifer Hawkins
- UH College of Tropical Agriculture and Human Resources, Molokai Cooperative Extension, Hoolehua, HI, USA
| | - Ikkei Shikano
- University of Hawaii at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu, HI, USA
| |
Collapse
|
14
|
Vermelho AB, Moreira JV, Akamine IT, Cardoso VS, Mansoldo FRP. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2762. [PMID: 39409632 PMCID: PMC11479090 DOI: 10.3390/plants13192762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
- Center of Excellence in Fertilizers and Plant Nutrition (Cefenp), SEDEICS, Rio de Janeiro 21941-850, RJ, Brazil
| | - Jean Vinícius Moreira
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Ingrid Teixeira Akamine
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Veronica S. Cardoso
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Felipe R. P. Mansoldo
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| |
Collapse
|
15
|
Botina LL, Barbosa WF, Viana TA, de Oliveira Faustino A, Martins GF. Physiological responses of the stingless bee Partamona helleri to oral exposure to three agrochemicals: impact on antioxidant enzymes and hemocyte count. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54648-54658. [PMID: 39207621 DOI: 10.1007/s11356-024-34790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Agrochemicals pose significant threats to the survival of bees, yet the physiological impacts of sublethal doses on stingless bees remain poorly understood. This study investigated the effects of acute oral exposure to three commercial formulations of agrochemicals [CuSO4 (leaf fertilizer), glyphosate (herbicide), and spinosad (bioinsecticide)] on antioxidant enzymes, malondialdehyde content (MDA), nitric oxide (NO) levels, and total hemocyte count (THC) in the stingless bee Partamona helleri. Foragers were exposed to lethal concentrations aimed to kill 5% (LC5) of CuSO4 (120 μg mL-1) or spinosad (0.85 μg mL-1) over a 24-h period. Glyphosate-exposed bees received the recommended label concentration (7400 μg mL-1), as they exhibited 100% survival after exposure. Ingestion of CuSO4 or glyphosate-treated diets by bees was reduced. Levels of NO and catalase (CAT) remained unaffected at 0 h or 24 h post-exposure. Superoxide dismutase (SOD) activity was higher at 0 h compared to 24 h, although insignificantly so when compared to the control. Exposure to CuSO4 reduced glutathione S-transferase (GST) activity at 0 h but increased it after 24 h, for both CuSO4 and glyphosate. MDA levels decreased after 0 h exposure to CuSO4 or spinosad but increased after 24 h exposure to all tested agrochemicals. THC showed no difference among glyphosate or spinosad compared to the control or across time. However, CuSO4 exposure significantly increased THC. These findings shed light on the physiological responses of stingless bees to agrochemicals, crucial for understanding their overall health.
Collapse
Affiliation(s)
- Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Wagner Faria Barbosa
- Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Thaís Andrade Viana
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | |
Collapse
|
16
|
Zou H, Chen Y, Zhu X, Zhao X, Cao J, Chen Y, Zhang Z, Zhu Y, Li Q, Li M. Spinosad blocks CHRNA5 mediated EGFR signaling pathway activation to inhibit lung adenocarcinoma proliferation. Biomed Pharmacother 2024; 177:117105. [PMID: 39002438 DOI: 10.1016/j.biopha.2024.117105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer death worldwide, with high incidence and low survival rates. Nicotinic acetylcholine receptors play an important role in the progression of LUAD. In this study, a screening of 17 nicotinic acetylcholine receptor allosteric agents revealed that spinosad effectively suppressed the proliferation of LUAD cells. The experiments demonstrated that spinosad induced cell cycle arrest in the G1 phase and stimulated apoptosis, thereby impeding the growth of LUAD and enhancing the responsiveness to gefitinib in vitro and vivo. Mechanistic insights obtained through transcriptome sequencing, Co-IP, and protein immunoblots indicated that spinosad disrupted the interaction between CHRNA5 and EGFR, thereby inhibiting the formation of downstream complexes and activation of the EGFR signaling pathway. The supplementation of exogenous acetylcholine showed to mitigate the inhibition of LUAD cell proliferation induced by spinosad. This study elucidates the therapeutic effects and mechanisms of spinosad in LUAD, and offers a theoretical and experimental foundation for novel LUAD treatments.
Collapse
Affiliation(s)
- Hongling Zou
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China; Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Yan Chen
- Zhuji People's Hospital Affiliated to Wenzhou Medical University, Zhuji, Zhejiang 311899, China
| | - Xinping Zhu
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Xinyun Zhao
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China; Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Jili Cao
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Yuxin Chen
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China; Hangzhou Medical College, Hangzhou, Zhejiang 310059, China
| | - Ziru Zhang
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China; Hangzhou Medical College, Hangzhou, Zhejiang 310059, China
| | - Yongqiang Zhu
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Qun Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China.
| | - Mingqian Li
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China; Hangzhou Medical College, Hangzhou, Zhejiang 310059, China.
| |
Collapse
|
17
|
Galván-Casas C, Ortiz-Álvarez J, Martínez-García E, Corbacho-Monné M. Spanish Academy of Dermatology and Venereology (AEDV) expert recommendations for the management of sexual transmitted parasitosis. Scabies, and pediculosis pubis. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:475-492. [PMID: 38061452 DOI: 10.1016/j.ad.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/28/2024] Open
Abstract
Sexually transmitted infections are communicable diseases where the pathogen is transmitted through sexual contact. The Sexually Transmitted Infections Working Group of the Spanish Academy of Dermatology and Venereology (AEDV) is engaged in the drafting of documents to guide dermatologists and health care personnel who treat Spanish patients with these infections. This document analyzes the epidemiological, clinical, therapeutic, and control characteristics of 2 sexually transmitted parasitosis: scabies due to Sarcoptes scabiei var. hominis, and pubic pediculosis due to Phthirus pubis. Both parasitoses share a sort of mixed spread through sexual and community transmission regardless of the route through which the infection was initially acquired. This specific feature creates particularities in the management and control of the infestation.
Collapse
Affiliation(s)
- C Galván-Casas
- Unidad Skin Neglected Tropical Diseases and Sexually Transmitted Infections; Fundación Lucha contra las Infecciones, Badalona, Barcelona, España; Servicio de Dermatología, Hospital Universitario de Móstoles, Móstoles, Madrid, España.
| | - J Ortiz-Álvarez
- Servicio de Dermatología, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - E Martínez-García
- Servicio de Dermatología, Hospital Virgen de la Victoria, Málaga, España
| | - M Corbacho-Monné
- Servicio de Dermatología, Hospital Universitari Parc Taulí, Sabadell, Barcelona, España
| |
Collapse
|
18
|
Galván-Casas C, Ortiz-Álvarez J, Martínez-García E, Corbacho-Monné M. [Translated article] Spanish Academy of Dermatology and Venereology (AEDV) expert recommendations for the management of sexual transmitted parasitosis. Scabies, and pediculosis pubis. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:T475-T492. [PMID: 38479688 DOI: 10.1016/j.ad.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 05/05/2024] Open
Abstract
Sexually transmitted infections are communicable diseases where the pathogen is transmitted through sexual contact. The Sexually Transmitted Infections Working Group of the Spanish Academy of Dermatology and Venereology (AEDV) is engaged in the drafting of documents to guide dermatologists and health care personnel who treat Spanish patients with these infections. This document analyzes the epidemiological, clinical, therapeutic, and control characteristics of 2 sexually transmitted parasitosis: scabies due to Sarcoptes scabiei var. hominis, and pubic pediculosis due to Phthirus pubis. Both parasitoses share a sort of mixed spread through sexual and community transmission regardless of the route through which the infection was initially acquired. This specific feature creates particularities in the management and control of the infestation.
Collapse
Affiliation(s)
- C Galván-Casas
- Unidad Skin Neglected Tropical Diseases and Sexually Transmitted Infections; Fundació Lluita contra les Infeccions, Badalona, Barcelona, Spain; Servicio de Dermatología, Hospital Universitario de Móstoles, Móstoles, Madrid, Spain.
| | - J Ortiz-Álvarez
- Servicio de Dermatología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - E Martínez-García
- Servicio de Dermatología, Hospital Virgen de la Victoria, Málaga, Spain
| | - M Corbacho-Monné
- Servicio de Dermatología, Hospital Universitari Parc Taulí, Sabadell, Barcelona, Spain
| |
Collapse
|
19
|
Duan Y, Fang F, Mu X, Wang H, Shen Z, Deng Z, Liu T, Wang Z, Liu R. Exploration of Streptomyces fradiae J1-021 as a Potential Host for the Heterologous Production of Spinosad. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38597928 DOI: 10.1021/acs.jafc.3c08884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Spinosad is a potent insecticide produced by Saccharopolyspora spinosa. However, it harbors certain limitations of a low growing rate and unfeasible genetic manipulation that can be overcome by adopting a superior platform, such as Streptomyces. Herein, we exploited the industrial tylosin-producing Streptomyces fradiae J1-021 for the heterologous production of spinosad. An engineered strain (HW01) with deletion of the tylosin biosynthetic gene cluster (BGC) was constructed and then transformed with the natural spinosad BGC. The distribution and expression levels of the tylosin BGC operons were assessed to construct a natural promoter library. The rate-limiting steps of spinosad biosynthesis were identified by analyzing the transcriptional expression of the spinosad biosynthetic genes. The stepwise engineering work involved the overexpression of the biosynthetic genes participating in rate-limiting pathways using strong promoters, affording an increase in spinosad production to 112.4 μg/L. These results demonstrate that strain HW01 has the potential to be used as a chassis for the heterologous production of polyketides.
Collapse
Affiliation(s)
- Yuhua Duan
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Fang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Mu
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiyong Shen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiangang Liu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhangqian Wang
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ran Liu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Wang J, Wan Y, Zhang Y, Yuan J, Zheng X, Cao H, Qian K, Feng J, Tang Y, Chen S, Zhang Y, Zhou X, Liang P, Wu Q. Uridine diphosphate glucosyltransferases are involved in spinosad resistance in western flower thrips Frankliniella occidentalis (Pergande). JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133575. [PMID: 38280319 DOI: 10.1016/j.jhazmat.2024.133575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Uridine diphosphate glucosyltransferases (UGTs) play crucial roles in the insect detoxification system and are associated with pesticide resistance. Our previous transcriptomic analysis of spinosad-susceptible (Ivf03) and resistant (NIL-R) Frankliniella occidentalis revealed numerous upregulated UGT genes in the NIL-R strain, suggesting their potential contribution to spinosad resistance. To investigate this hypothesis, here we conducted UGT activity assays and spinosad induction experiments, employing RNA interference (RNAi) techniques for gene function validation. We found significantly elevated UGT activity in the NIL-R strain compared to Ivf03, with 5-nitrouracil showing a substantial synergistic effect on the resistant strain. Eighteen UGT genes were identified in F. occidentalis, with gene expansion and duplication observed within families UGT466, 467, and 468. Ten out of the eighteen UGTs exhibited higher expression levels in NIL-R, specifically FoUGT466B1, FoUGT468A3, and FoUGT468A4 consistently being upregulated across nymphs, males, and females. RNAi-based functional validation targeting these three UGT genes led to increased susceptibility to spinosad in a life stage-, sex-, and dose-dependent manner. These results indicate that UGTs are indeed involved in spinosad resistance in F. occidentalis, and the effects are dependent on life stage, sex, and dose. Therefore, sustainable control for F. occidentalis resistance should always consider these differential responses.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Yanran Wan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangjiang Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaobin Zheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongyi Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kanghua Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiuming Feng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingxi Tang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sirui Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexingto, KY 40546-0091, USA
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
21
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
22
|
Wakil W, Kavallieratos NG, Eleftheriadou N, Asrar M, Yaseen T, Tahir M, Rasool KG, Husain M, Aldawood AS. Evaluating the Compatibility of Spinosad and Alpha-Cypermethrin for Controlling Six Insect Pests Infesting Stored Wheat. INSECTS 2023; 14:855. [PMID: 37999054 PMCID: PMC10671520 DOI: 10.3390/insects14110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
The deterioration of stored wheat due to pest infestations is a significant concern, with pests like Rhyzopertha dominica, Tribolium castaneum, Cryptolestes ferrugineus, Sitophilus oryzae, Oryzaephilus surinamensis, and Trogoderma granarium being major contributors. This study examined the efficacy of spinosad and alpha-cypermethrin, individually and in combination, against these pests under laboratory conditions. Spinosad was tested at two concentrations (0.05 and 0.1 mg/kg), while alpha-cypermethrin was applied at 0.05 mg/kg. The combined application of both insecticides led to significantly higher pest mortality compared to single treatments. Importantly, all treatments caused substantial pest mortality and exhibited the ability to suppress pest progeny production over time, as observed in both laboratory and persistence trials. Among the various treatment combinations, the joint application of 0.1 mg/kg spinosad and 0.05 mg/kg alpha-cypermethrin emerged as the most effective, resulting in elevated mortality and a marked reduction in pest progeny. Rhyzopertha dominica exhibited the highest susceptibility among the pests, followed by S. oryzae, T. castaneum, C. ferrugineus, O. surinamensis, and T. granarium. The remarkable performance of the joint action of alpha-cypermethrin and spinosad at low doses highlights this combination as an efficacious approach for safeguarding stored grain against these destructive insect pests, warranting further exploration.
Collapse
Affiliation(s)
- Waqas Wakil
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan;
- Senckenberg German Entomological Institute, D-15374 Müncheberg, Germany
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece;
| | - Nikoleta Eleftheriadou
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece;
| | - Muhammad Asrar
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan;
| | - Taha Yaseen
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Tahir
- Ministry of National Food Security and Research, Islamabad 44000, Pakistan;
| | - Khawaja G. Rasool
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.G.R.); (M.H.); (A.S.A.)
| | - Mureed Husain
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.G.R.); (M.H.); (A.S.A.)
| | - Abdulrahman S. Aldawood
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.G.R.); (M.H.); (A.S.A.)
| |
Collapse
|
23
|
Liu L, Wang W, Chen M, Zhang Y, Mao H, Wang D, Chen Y, Li P. Characterization of three succinyl-CoA acyltransferases involved in polyketide chain assembly. Appl Microbiol Biotechnol 2023; 107:2403-2412. [PMID: 36929192 DOI: 10.1007/s00253-023-12481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Polyketides are a class of natural products with astonishing structural diversities, fascinating biological activities, and a versatile of applications. In polyketides biosynthesis, acyltransferases (ATs) are the 'gatekeeping' enzymes selecting the specific CoA-activated acyl groups as building blocks and transferring them onto the phosphopantetheine arm of acyl carrier proteins (ACPs) to enable the following condensation reactions to assemble the polyketide chain. Herein, the Art2 protein from aurantinins, a group of the antibacterial polyketides, is characterized in vitro as an AT that can load a CoA-activated succinyl unit onto the first ACP domain of Art17 (ACPArt17-1). In addition, another two proteins, GbnB and EtnB, involved in the biosynthesis of gladiolin and etnangien respectively, were traced by literature mining, homologous searching, and product structure analysis and then identified as functional succinyl-CoA ATs by the ACPArt17-1 assays. Taken together, by the assay method employing ACPArt17-1 as an acyl acceptor, we identified three ATs that can introduce a succinyl unit into the polyketide assembly line, which enriches the toolbox of polyketide biosynthetic enzymes and sets a stage for incorporating a succinyl unit into polyketide backbones in synthetic biological manners. KEY POINTS: • Three acyltransferases that are able to load ACP with a succinyl unit were characterized in vitro. • ACPArt17-1 can be used as an acceptor to assay succinyl-CoA AT from different polyketides. • The succinyl unit can be incorporated into polyketides assembly process.
Collapse
Affiliation(s)
- Lilu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzhao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijin Mao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dacheng Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
24
|
Makri A, Papachristos DP, Michaelakis A, Vidali VP. Colupulone, colupone and novel deoxycohumulone geranyl analogues as larvicidal agents against Culex pipiens. PEST MANAGEMENT SCIENCE 2022; 78:4217-4222. [PMID: 35705833 DOI: 10.1002/ps.7039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As climate change proceeds, the management of the population of mosquitoes becomes more and more challenging. Insect adulticides and larvicides constitute significant control techniques, with the latter being considered the leading mosquito control method. However, the development of mosquito resistance development and the adverse side effects caused by the extensive use of synthetic insecticides have turned research towards the discovery of environmentally-friendly solutions. Plants and bacteria have historically proven to be a good source of insecticidally active compounds, which may possess novel modes of action to overcome current resistance mechanisms and could also possess favorable human and environmental safety profiles. A previous study demonstrated that the naturally occurring prenylated acyl phloroglucinol deoxycohumulone is a potent larvicidal agent against Culex pipiens. Herein the structural characteristics that improve it are explored by evaluating colupulone and novel geranylated analogues. RESULTS Colupulone, a prenylated acyl phloroglucinol isolated from Humulus lupulus, colupone, and novel geranylated acyl phloroglucinol congeners, were synthesized and evaluated against Cx. pipiens larva. Results indicated that selected derivatives exhibited superior potency than deoxycohumulone (LC50 43.7 mg L-1 ). Thus, strong activity was observed for colupulone (LC50 19.7 mg L-1 ), and some novel geranyl analogues of deoxycohumulone reaching at LC50 17.1 mg L-1 , while colupone and similar compounds were almost inactive. CONCLUSION The results determined the relationship between the target activity and the chemical structure of the tested compounds, and they revealed significantly improved larvicidal candidates. These results highlight the potential of the acyl phloroglucinol chemistry for further development of mosquito larvicides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Apostolia Makri
- Natural Products and Bioorganic Chemistry Laboratory, Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Athens, Greece
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Dimitrios P Papachristos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Antonios Michaelakis
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Veroniki P Vidali
- Natural Products and Bioorganic Chemistry Laboratory, Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Athens, Greece
| |
Collapse
|
25
|
Li X, Xu Y, Liu J, Yu X, Zhang W, You C. Biological activities and gene expression of detoxifying enzymes in Tribolium castaneum induced by Moutan cortex essential oil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:591-602. [PMID: 35435144 DOI: 10.1080/15287394.2022.2066038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tribolium castaneum is one of the most harmful storage pests in the world. The aim of this study was to determine the chemical composition, repellent, and contact activities of Moutan cortex essential oil against this insect pest. In addition, the effects of Moutan cortex were examined on the expressions of three major detoxifying enzyme genes in T. castaneum. Four components were identified in this essential oil by gas chromatography-mass spectrometry (GC-MS), which was predominantly paeonol (99.13%). Paeonol exerted significant repellent activity against T. castaneum, which was more potent than the positive control N.N-diethyl-meta-toluamide (DEET). The most significant contact toxicity was observed at 24 h after exposure to paeonol. Further, quantitative real-time PCR (qRT-PCR) was used to assess expression changes in three detoxification enzyme genes in T. castaneum, including carboxylesterase (CarE), glutathione S-transferase (Gst) and cytochrome P4506BQ8 (Cyp6bq8). Among these, Gst was most highly up-regulated after treatment with paeonol with the highest expression level of 4.9-fold (Rps18 as internal reference gene) greater than control at 24 h following treatment. Data indicated that Gst might play a critical role in metabolic detoxification of toxic xenobiotics. Taken together, our findings might lay a foundation for development of paeonol as a potential natural repellent or pesticide to control storage pests.
Collapse
Affiliation(s)
- Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University,Tianjin, HE, China
| | - Yanjun Xu
- College of Science, China Agricultural University, Beijing,HA, China
| | - Jing Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University,Tianjin, HE, China
| | - Xiaoxue Yu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University,Tianjin, HE, China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University,Tianjin, HE, China
| | - Chunxue You
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University,Tianjin, HE, China
| |
Collapse
|
26
|
Cruz-Esteban S, Brito-Bonifacio I, Estrada-Valencia D, Garay-Serrano E. Mortality of Orius insidiosus by contact with spinosad in the laboratory as well as in the field and a perspective of these as controllers of Frankliniella occidentalis. JOURNAL OF PESTICIDE SCIENCE 2022; 47:93-99. [PMID: 35800393 PMCID: PMC9184249 DOI: 10.1584/jpestics.d22-012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Orius insidiosus, known as the pirate bug, is widely distributed throughout the Americas. It is employed for the biological control of Frankliniella occidentalis in organic berry crops in Mexico. In conventional crops, spinosad is the main control method for this pest. The LD50 of spinosad on O. insidiosus was determined. In addition, we monitored the population density of F. occidentalis in blackberry crops under two types of management (biochemical+mass trapping, and biological control). The LD50 was 225.65 ppm 3.8 times greater than the 60 ppm dose commonly used in blackberry crops. Both types of control are efficient; however, spinosad is less effective and should be combined with other environmentally friendly strategies. The possibility of combining chromatic traps+spinosad application and chromatic traps+strategic release of O. insidiosus to effectively control thrips without compromising fruit quality is discussed.
Collapse
Affiliation(s)
- Samuel Cruz-Esteban
- Instituto de Ecología, A.C. Red de Diversidad Biológica del Occidente Mexicano, Avenida Lázaro Cárdenas 253, 61600 Pátzcuaro, Michoacán, México
- CONACyT, Avenida Insurgentes Sur 1582, 03940 Ciudad de México, México
| | - Irais Brito-Bonifacio
- Instituto de Ecología, A.C. Red de Diversidad Biológica del Occidente Mexicano, Avenida Lázaro Cárdenas 253, 61600 Pátzcuaro, Michoacán, México
| | - David Estrada-Valencia
- Instituto de Ecología, A.C. Red de Diversidad Biológica del Occidente Mexicano, Avenida Lázaro Cárdenas 253, 61600 Pátzcuaro, Michoacán, México
| | - Edith Garay-Serrano
- Instituto de Ecología, A.C. Red de Diversidad Biológica del Occidente Mexicano, Avenida Lázaro Cárdenas 253, 61600 Pátzcuaro, Michoacán, México
- CONACyT, Avenida Insurgentes Sur 1582, 03940 Ciudad de México, México
| |
Collapse
|
27
|
Bakonyi G, Vásárhelyi T, Szabó B. Pollution impacts on water bugs (Nepomorpha, Gerromorpha): state of the art and their biomonitoring potential. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:301. [PMID: 35344112 PMCID: PMC8960648 DOI: 10.1007/s10661-022-09961-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
As water pollution poses an increasing risk worldwide, it is timely to assess the achievements of the aquatic macroinvertebrate ecotoxicology to provide a sound basis for the discipline's future and support the development of biomonitoring. Aquatic and semi-aquatic bugs (Hemiptera: Nepomorpha, Gerromorpha) are ubiquitous in almost all water types, sometimes in high densities, and play a significant role in organic material turnover and energy flow. Nevertheless, they are ignored in the water pollution biomonitoring schemes. Here, based on 300 papers, we review and evaluate the effects of chemical pesticides, microorganism-derived pesticides, insecticides of plant origin, heavy metals, eutrophication, salinisation and light pollution which are summarised for the first time. Our review encompasses the results of 100 laboratory and 39 semi-field/field experiments with 47 pesticides and 70 active ingredients. Pyrethroids were found to be more toxic than organochlorine, organophosphate and neonicotinoid insecticides to water bugs, like other macroinvertebrate groups. Additionally, in 10 out of 17 cases, the recommended field concentration of the pesticide was higher than the LC50 values, indicating potential hazards to water bugs. The recommended field concentrations of pesticides used in mosquito larvae control were found non-toxic to water bugs. As very few replicated studies are available, other findings on the effects of pesticides cannot be generalised. The microorganism-derived pesticide Bti appears to be safe when used at the recommended field concentration. Data indicates that plant-derived pesticides are safe with a high degree of certainty. We have identified three research areas where water bugs could be better involved in water biomonitoring. First, some Halobates spp. are excellent, and Gerris spp. are promising sentinels for Cd contamination. Second, Micronecta and, to a certain extent, Corixidae species composition is connected to and the indicator of eutrophication. Third, the species composition of the Corixidae is related to salinisation, and a preliminary method to quantify the relationship is already available. Our review highlights the potential of water bugs in water pollution monitoring.
Collapse
Affiliation(s)
- Gábor Bakonyi
- Department of Zoology and Ecology, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary.
| | | | - Borbála Szabó
- Centre for Ecological Research, Institute of Ecology and Botany, "Lendület" Landscape and Conservation Ecology, 2163, Vácrátót, Hungary
| |
Collapse
|
28
|
Wang J, Wang M, Li GB, Zhang BH, Lü H, Luo L, Kong XP. Evaluation of a Spinosad Controlled-Release Formulation Based on Chitosan Carrier: Insecticidal Activity against Plutella xylostella (L.) Larvae and Dissipation Behavior in Soil. ACS OMEGA 2021; 6:30762-30768. [PMID: 34805704 PMCID: PMC8600637 DOI: 10.1021/acsomega.1c04853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Controlled-release pesticide formulations using natural polymers as carriers are highly desirable owing to their good biocompatibility, biodegradability, and improved pesticide utilization. In this study, the application potential of our previously prepared spinosad/chitosan controlled-release suspension (SCCS) was evaluated through both toxicity and dissipation tests. A comparison with the spinosad suspension concentrate and the commercial spinosad emulsion in water showed that the insecticidal activity of SCCS against Plutella xylostella larvae displayed the best quick-acting performance as well as long-term efficacy of more than 20 days. The 48 h LC50 for a 20-day efficacy was calculated to be 29.36 mg/L. The dissipation behavior of spinosad in the spinosad/chitosan microparticles in soil was found to follow the first-order kinetics, with a relatively shorter half-life (2.1 days) than that observed for the unformulated spinosad (3.1 days). This work showed the positive effect of chitosan on spinosad in improving insecticidal activity and reducing environmental risks in soil, which provided useful information on the application potential of pesticide-carrier systems based on natural polymer materials in crop protection and food safety.
Collapse
Affiliation(s)
- Juan Wang
- College
of Chemistry and Pharmacy, Qingdao Agricultural
University, Qingdao 266109, Shandong, P. R. China
| | - Meng Wang
- College
of Chemistry and Pharmacy, Qingdao Agricultural
University, Qingdao 266109, Shandong, P. R. China
| | - Guo-Bin Li
- College
of Chemistry and Pharmacy, Qingdao Agricultural
University, Qingdao 266109, Shandong, P. R. China
| | - Bao-Hua Zhang
- College
of Chemistry and Pharmacy, Qingdao Agricultural
University, Qingdao 266109, Shandong, P. R. China
| | - Haitao Lü
- College
of Chemistry and Pharmacy, Qingdao Agricultural
University, Qingdao 266109, Shandong, P. R. China
| | - Lan Luo
- College
of Plant Health and Medicine, Qingdao Agricultural
University, Qingdao 266109, Shandong, P. R. China
| | - Xiang-Ping Kong
- College
of Chemistry and Pharmacy, Qingdao Agricultural
University, Qingdao 266109, Shandong, P. R. China
| |
Collapse
|
29
|
Caragata EP, Dong S, Dong Y, Simões ML, Tikhe CV, Dimopoulos G. Prospects and Pitfalls: Next-Generation Tools to Control Mosquito-Transmitted Disease. Annu Rev Microbiol 2021; 74:455-475. [PMID: 32905752 DOI: 10.1146/annurev-micro-011320-025557] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mosquito-transmitted diseases, including malaria and dengue, are a major threat to human health around the globe, affecting millions each year. A diverse array of next-generation tools has been designed to eliminate mosquito populations or to replace them with mosquitoes that are less capable of transmitting key pathogens. Many of these new approaches have been built on recent advances in CRISPR/Cas9-based genome editing. These initiatives have driven the development of pathogen-resistant lines, new genetics-based sexing methods, and new methods of driving desirable genetic traits into mosquito populations. Many other emerging tools involve microorganisms, including two strategies involving Wolbachia that are achieving great success in the field. At the same time, other mosquito-associated bacteria, fungi, and even viruses represent untapped sources of new mosquitocidal or antipathogen compounds. Although there are still hurdles to be overcome, the prospect that such approaches will reduce the impact of these diseases is highly encouraging.
Collapse
Affiliation(s)
- E P Caragata
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - S Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - Y Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - M L Simões
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - C V Tikhe
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - G Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| |
Collapse
|
30
|
Comparative transcriptomic analysis of two Saccharopolyspora spinosa strains reveals the relationships between primary metabolism and spinosad production. Sci Rep 2021; 11:14779. [PMID: 34285307 PMCID: PMC8292330 DOI: 10.1038/s41598-021-94251-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022] Open
Abstract
Saccharopolyspora spinosa is a well-known actinomycete for producing the secondary metabolites, spinosad, which is a potent insecticides possessing both efficiency and safety. In the previous researches, great efforts, including physical mutagenesis, fermentation optimization, genetic manipulation and other methods, have been employed to increase the yield of spinosad to hundreds of folds from the low-yield strain. However, the metabolic network in S. spinosa still remained un-revealed. In this study, two S. spinosa strains with different spinosad production capability were fermented and sampled at three fermentation periods. Then the total RNA of these samples was isolated and sequenced to construct the transcriptome libraries. Through transcriptomic analysis, large numbers of differentially expressed genes were identified and classified according to their different functions. According to the results, spnI and spnP were suggested as the bottleneck during spinosad biosynthesis. Primary metabolic pathways such as carbon metabolic pathways exhibited close relationship with spinosad formation, as pyruvate and phosphoenolpyruvic acid were suggested to accumulate in spinosad high-yield strain during fermentation. The addition of soybean oil in the fermentation medium activated the lipid metabolism pathway, enhancing spinosad production. Glutamic acid and aspartic acid were suggested to be the most important amino acids and might participate in spinosad biosynthesis.
Collapse
|
31
|
Santos VSV, Pereira BB. Low toxicity and high efficacy in use of novel approaches to control Aedes aegypti. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:243-254. [PMID: 32515686 DOI: 10.1080/10937404.2020.1776655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Arthropod-borne viruses are a group of etiologic agents accounting for different incapacitating diseases that progress to severe and lethal forms in animal and human targets consequently representing a significant burden on public health and global economies. Although attempts were undertaken to combat Aedes aegypti, the primary urban mosquito vector of several life-threatening diseases, the misuse of chemical pesticides, development of resistance, and toxicity on non-target species still need to be overcome. In this context, it is imperative for development of long-lasting, novel approaches envisioning effective control of Aedes aegypti, mainly in endemic regions. Thus, the present review was undertaken to describe safe and eco-friendly approaches as potential weapons against Aedes aegypti. Accordingly, the findings discussed indicated that biological larvicides and genetic engineering technologies constitute noteworthy alternatives of future mosquito-borne arbovirus disease control efforts.
Collapse
Affiliation(s)
- Vanessa Santana Vieira Santos
- Department of Environmental Health, Laboratory of Environmental Health, Federal University of Uberlândia, Santa Mônica Campus , Uberlândia, Minas Gerais, Brazil
- Department of Biotechnology, Federal University of Uberlândia, Institute of Biotechnology, Umuarama Campus , Uberlândia, Minas Gerais, Brazil
| | - Boscolli Barbosa Pereira
- Department of Environmental Health, Laboratory of Environmental Health, Federal University of Uberlândia, Santa Mônica Campus , Uberlândia, Minas Gerais, Brazil
- Department of Biotechnology, Federal University of Uberlândia, Institute of Biotechnology, Umuarama Campus , Uberlândia, Minas Gerais, Brazil
| |
Collapse
|