1
|
He L, Zhang L, Bai X. Comparison of Three Different Extraction Methods on Schizonepeta tenuifolia (Benth.) Briq Essential Oil: Chemical Constituents and in Vitro and in Silico Biological Activities. Chem Biodivers 2025; 22:e202401964. [PMID: 39383010 DOI: 10.1002/cbdv.202401964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
This study evaluated the effects of three extraction methods, hydrodistillation (HD), steam distillation (SD), and lipophilic solvent extraction (LSE), on the yield, chemical composition, and in vitro/in silico biological activities of Schizonepeta tenuifolia (Benth.) Briq essential oil (STEO). The highest yield of STEO was obtained by HD (0.750±0.040 %), followed by SD (0.440±0.020 %) and LSE (0.350±0.030 %). Although their contents varied, menthone and pulegone predominated in HDEO, SDEO, and LSEO. HDEO displayed the strongest antioxidant ability, with a 2,2-diphenyl-1-picrylhydrazyl (DPPH) IC50 value of 14.164±0.090 mg/mL and (2,2'-azino-bis (3ethylbenzothiazoline-6-sulfonic acid)) (ABTS) value of 0.326±0.023 mg/mL. SDEO demonstrated the highest antimicrobial activity against Staphylococcus aureus and Escherichia coli and HDEO the highest potent anti-inflammatory activity. The molecular docking of menthone and pulegone demonstrated strong binding to inflammatory targets, including prostaglandin-endoperoxide synthase 1 (PTGS1) and 2 (PTGS2) and tumor necrosis factor alpha (TNF-α). In short, the extraction method significantly affected the yield, composition, and biological activity of STEO.
Collapse
Affiliation(s)
- Linhong He
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Lijuan Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Xi Bai
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| |
Collapse
|
2
|
Assaggaf H, El Hachlafi N, Elbouzidi A, Taibi M, Benkhaira N, El Kamari F, Alnasseri SM, Laaboudi W, Bouyahya A, Ardianto C, Goh KW, Ming LC, Mrabti HN. Unlocking the combined action of Mentha pulegium L. essential oil and Thym honey: In vitro pharmacological activities, molecular docking, and in vivo anti-inflammatory effect. Heliyon 2024; 10:e31922. [PMID: 38947443 PMCID: PMC11214453 DOI: 10.1016/j.heliyon.2024.e31922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Mentha pulegium L., a plant widely embraced for its therapeutic properties by populations worldwide, including Morocco, has long been recognized for its potential in treating various ailments. This study aims to comprehensively evaluate the antioxidant, anti-inflammatory, and dermatoprotective properties of essential oil derived from M. pulegium, and thyme honey as well as their combined effects. To unravel the chemical composition, a rigorous GC-MS analysis was conducted. Subsequently, we examined their antioxidant potential through three distinct assays: DPPH●, hydrogen peroxide assay, and xanthine oxidase assay. The anti-inflammatory properties were scrutinized through both in vitro and in vivo experiments. Simultaneously, the dermatoprotective efficacy was investigated in vitro by evaluating tyrosinase inhibition. Our findings revealed that pulegone constitutes the predominant compound in M. pulegium essential oil (MPEO), constituting a remarkable 74.82 % of the composition. Significantly, when the essential oil was combined with thym honey, it exhibited superior anti-inflammatory and dermatoprotective effects across all in vivo and in vitro tests. Moreover, our in silico molecular docking analysis hinted at the potential role of cyclohexanone, 3-methyl, an element found in the MPEO, in contributing to the observed outcomes. While this study has unveiled promising results regarding the combined in vitro, in vivo and in silico biological activities of the essential oil and honey, it is imperative to delve further into the underlying mechanisms through additional experimentation and alternative experimental methods. Understanding these mechanisms in greater detail will not only enhance our comprehension of the therapeutic potential but also pave the way for the development of innovative treatments and applications rooted in the synergy of these natural compounds. Furthermore, it would be advantageous to test different possible combinations using experimental design model. Moreover, it would be better to test the effect of single compounds of MPEO to clearly elucidate their efficiency. MPEO alone or combined with thyme honey may be a useful for the development of novel biopharmaceuticals.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naoufal El Hachlafi
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Oujda, 60000, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Oujda, 60000, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Fatima El Kamari
- Laboratoire d’Ingénierie des Matériaux Organométalliques, Moléculaires et Environnement, Sidi Mohamed Ben Abdellah University, Fez, B.P. 1796, Morocco
| | - Sulaiman Mohammed Alnasseri
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Wafa Laaboudi
- High Institute of Nursing Professions and Health Techniques Fez, Fez, 30050, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115, Surabaya, Indonesia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115, Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques Casablanca, Casablanca, 20250, Morocco
- Euromed Research Center, Euromed Faculty of Pharmacy and School of Engineering and Biotechnology, Euromed University of Fes(UEMF), Meknes Road, 30000, Fez, Morocco
| |
Collapse
|
3
|
López PL, Juncos NS, Grosso NR, Olmedo RH. Minthostachys Mollis
Essential Oil and Its Combination with Tert‐butylhydroquinone for Control of Lipid Oxidation. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paloma Lucía López
- Facultad de Ciencias Agropecuarias Laboratorio de Tecnología de Alimentos (LabTA) Universidad Nacional de Córdoba Córdoba Argentina
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) CONICET Córdoba Argentina
| | | | - Nelson Rubén Grosso
- Facultad de Ciencias Agropecuarias Laboratorio de Tecnología de Alimentos (LabTA) Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV) CONICET Córdoba Argentina
| | - Rubén Horacio Olmedo
- Facultad de Ciencias Agropecuarias Laboratorio de Tecnología de Alimentos (LabTA) Universidad Nacional de Córdoba Córdoba Argentina
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) CONICET Córdoba Argentina
| |
Collapse
|
5
|
Bai X, Liu L, Zhang J, Chen L, Wu T, Aisa HA, Maiwulanjiang M. Spectrum-effect relationship between GC-QTOF-MS fingerprint and antioxidant, anti-inflammatory activities of Schizonepeta tenuifolia essential oil. Biomed Chromatogr 2021; 35:e5106. [PMID: 33638568 DOI: 10.1002/bmc.5106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Schizonepeta tenuifolia (Benth.) Briq, a traditional Chinese medicine, is an annual herbaceous plant that is widely distributed in China, Japan, and Korea. The essential oil (EO) of S. tenuifolia has antioxidant and anti-inflammatory properties. However, the components contributing to its antioxidant and anti-inflammatory activities remain unclear. This study was aimed at investigating the spectrum-effect relationship between GC-MS fingerprint and the antioxidant and anti-inflammatory effects of S. tenuifolia EO. Here, the fingerprints of EO from 10 batches of S. tenuifolia from various sources were established using GC-MS, and the antioxidant and anti-inflammatory bioactivities were evaluated using 2,2-diphenyl-1-picrylhydrazyl and nitric oxide inhibitory assays, respectively. Finally, 13 common peaks were identified from 10 batches of S. tenuifolia by searching against the standard mass spectra in NIST 14 and comparing the literature retention index. The different sources of S. tenuifolia EO exhibit mild antioxidant activities and significant anti-inflammatory effects. In particular, menthone (peak 3), isomenthone (peak 4), pulegone (peak 7), piperitone (peak 8), and β-caryophyllene (peak 11) might be the dominant constituents responsible for the antioxidant and anti-inflammatory activities of S. tenuifolia EO. This method may provide a time-saving, convenient way to screen the potential effective components of S. tenuifolia EO.
Collapse
Affiliation(s)
- Xi Bai
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.,College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Junping Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Li Chen
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Tao Wu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Maitinuer Maiwulanjiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|