1
|
Petrović L, Filipović B, Skorić M, Šiler B, Banjanac T, Matekalo D, Nestorović Živković J, Dmitrović S, Aničić N, Milutinović M, Božunović J, Gašić U, Mišić D. Molecular background of the diverse metabolic profiles in leaves and inflorescences of naked catmint ( Nepeta nuda L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1452804. [PMID: 39670275 PMCID: PMC11634604 DOI: 10.3389/fpls.2024.1452804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
Nepeta nuda L. shares a typical secondary chemistry with other Nepeta species (fam. Lamiaceae), characterized by the tendency to intensively produce monoterpenoid iridoids, whereas the phenylpropanoid chemistry is steered towards the production of a caffeic acid ester, rosmarinic acid. Combining complementary state-of-the-art analytical techniques, N. nuda metabolome was here comprehensively characterized in the quest for the organ-specific composition of phenolics and terpenoids that possess well-defined functions in plant-biotic interactions as well as therapeutic potential. N. nuda inflorescences showed generally higher constitutive levels of specialized metabolites, as compared to leaves, and the composition of major iridoids and phenolics in reproductive organs was found to be more conserved than in leaves across 13 populations from the Central Balkans. The results suggest that N. nuda plants most likely invest more in constitutive than inducible biosynthesis of functional metabolites in flowers, since they are of essential importance for both pollination and defense against herbivores and pathogens. Conversely, specialized metabolism of leaves is found to be more susceptible to reprograming in response to differential growth conditions. The defense strategy of leaves, primarily functioning in CO2 fixation during photosynthesis, more likely relies on the induction of metabolite levels following plant-environment interplay. Organ-specific biosynthesis of iridoids in N. nuda is found to be tightly regulated at the transcriptional level, and high constitutive levels of these compounds in inflorescences most likely result from the up-regulated expression of several key genes (NnG8H, NnNEPS1, NnNEPS2, and NnNEPS3) determining the metabolic flux through the pathway. The organ-specific content of rosmarinic acid and co-expression patterns of the corresponding biosynthetic genes were much less correlated, which suggests independent organ-specific transcriptional regulation of the iridoid and phenolic pathways. Knowledge gathered within the present study can assist growers to select productive genotypes and manipulate phenology of N. nuda towards maximizing yields and facilitating its integration into pest management systems and other applications related to human health.
Collapse
Affiliation(s)
| | - Biljana Filipović
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marijana Skorić
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Nguyen TH, Dein M, Munafo JP. Characterization of Odorants in Clustered Mountain Mint Pycnanthemum muticum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23947-23956. [PMID: 39417598 DOI: 10.1021/acs.jafc.4c07582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The clustered mountain mint, Pycnanthemum muticum, is a pleasant-smelling, native North American plant. Despite its wide geographical presence across the United States and Canada, little is known about the specific odorants responsible for its pleasing aroma. Herein, 42 odorants were identified in the plant through solvent-assisted flavor evaporation (SAFE), gas chromatography-olfactometry (GC-O), and gas chromatography-mass spectrometry (GC-MS). Subsequent analysis involved determining flavor dilution (FD) factors using aroma extract dilution analysis (AEDA), quantitating 14 odorants through stable isotope dilution assays (SIDA), and calculating their odor activity values (OAVs). Several noteworthy odorants with OAV ≥ 1 included pulegone (mint, medicinal; OAV 276), 1-octen-3-one (mushroom; OAV 149), menthofuran (mint, petrol; OAV 139), nonanal (citrus; OAV 21), γ-nonalactone (coconut; OAV 13), 1,8-cineole (eucalyptus; OAV 12), mintlactone (mint, coconut; OAV 12), menthone (mint, fresh; OAV 7.3), α-pinene (pine; OAV 4), and piperitenone (mint; OAV 1.9). The study also determined the stereochemistry of various chiral odorants. An aroma simulation model was developed to validate the identification and quantitative results; upon evaluation using olfactory profile analysis, no significant differences were found between the aroma model and an aqueous infusion of P. muticum (P > 0.05). These findings lay the foundation for future investigations into the diversity of P. muticum selections and can provide valuable insights for studies on plant hybridization for food and flavor applications.
Collapse
Affiliation(s)
- Thien H Nguyen
- Department of Food Science, University of Tennessee, 2510 River Dr, Knoxville, Tennessee 37996, United States
| | - Melissa Dein
- Department of Food Science, University of Tennessee, 2510 River Dr, Knoxville, Tennessee 37996, United States
| | - John P Munafo
- Department of Food Science, University of Tennessee, 2510 River Dr, Knoxville, Tennessee 37996, United States
| |
Collapse
|
3
|
Nadeem A, Shahzad H, Ahmed B, Muntean T, Waseem M, Tabassum A. Phytochemical profiling of antimicrobial and potential antioxidant plant: Nepeta cataria. FRONTIERS IN PLANT SCIENCE 2022; 13:969316. [PMID: 36226301 PMCID: PMC9549696 DOI: 10.3389/fpls.2022.969316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 05/24/2023]
Abstract
Traditional and phytochemical studies have confirmed the richness and diversity of medicinal plants such as Nepeta cataria (N. cataria), but more studies are needed to complete its metabolite profiling. The objective of this research was to enhance the metabolomic picture and bioactivity of N. cataria for better evaluation. Phytochemical analysis was performed by bio-guided protocols and gas chromatography-mass spectrometry (GC/MS). For this, solvents such as methanol, ethanol, water, acetone, and hexane were used to extract a wide number of chemicals. Antibacterial analysis was performed using the 96-well plate test, Kirby Bauer's disk diffusion method, and the resazurin microdilution test. Antioxidant activity was determined by the DPPH assay and radical scavenging capacity was evaluated by the oxygen radical absorbance capacity (ORAC) assay. GC/MS analysis revealed a total of 247 identified and 127 novel metabolites from all extracts of N. cataria. Water and acetone extracts had the highest identified metabolites (n = 79), whereas methanol extract was the highest in unidentified metabolites (n = 48). The most abundant phytochemicals in methanol extract were 1-isopropylcyclohex-1-ene (concentration = 27.376) and bicyclo [2.2.1] heptan-2-one (concentration = 20.437), whereas in ethanol extract, it was 9,12,15-octadecatrienoic acid (concentration = 27.308) and 1-isopropylcyclohex-1-ene (concentration = 25.854). An abundance of 2 methyl indoles, conhydrin, and coumarin was found in water extracts; a good concentration of eucalyptol was found in acetone extract; and 7,9-di-tert-butyl-1-oxaspiro is the most abundant phytochemicals in hexane extracts. The highest concentration of flavonoids and phenols were identified in hexane and methanol extracts, respectively. The highest antioxidant potential (DPPH assay) was observed in acetone extract. The ethanolic extract exhibited a two-fold higher ORAC than the methanol extract. This examination demonstrated the inhibitory effect against a set of microbes and the presence of polar and non-polar constituents of N. cataria. The results of this study provide a safe resource for the development of food, agriculture, pharmaceutical, and other industrial products upon further research validation.
Collapse
Affiliation(s)
- Ali Nadeem
- Plant Pathology Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
- Department of Plant Biology, Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| | - Hira Shahzad
- International Centre for Public Health (ICPH), New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Clinical Epigenetics Lab, University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Bashir Ahmed
- Plant Pathology Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Tudor Muntean
- Department of Plant Biology, Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| | - Maaz Waseem
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aisha Tabassum
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| |
Collapse
|
4
|
Hassanpouraghdam MB, Ghorbani H, Esmaeilpour M, Alford MH, Strzemski M, Dresler S. Diversity and Distribution Patterns of Endemic Medicinal and Aromatic Plants of Iran: Implications for Conservation and Habitat Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031552. [PMID: 35162573 PMCID: PMC8835522 DOI: 10.3390/ijerph19031552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/18/2022]
Abstract
Iran, with its unique climatic and topographic conditions, is home to about 8200 species of vascular plants. Approximately 2300 of the 8200 species are popularly characterized as medicinal or aromatic. Here, we compile information about the endemic medicinal and aromatic plants (MAPs) of Iran and map their distributions. Our survey found 180 endemic species of MAPs, belonging to 10 families and 30 genera. The majority of species are found in Lamiaceae, Fabaceae, and Apiaceae, with 86, 30, and 18 species, respectively. Approximately 70% of these plants have been recorded in the 10 provinces of Esfahan, Kerman, Fars, Tehran, Chaharmahal va Bakhtiari, East Azarbaijan, Lorestan, West Azarbaijan, Hamadan, and Mazandaran. These provinces are located in the Iran-o-Turanian region, one of the three major phytogeographic regions in Iran, which covers five areas of endemism (i.e., Azarbaijan, Zagros, Kopet Dagh-Khorassan, Alborz, and Central Alborz). So, Iran-o-Turanian region is the main center of diversity for the Iranian endemic MAPs. The north, center and western parts of Iran are rich in MAPs and could be considered as the dominant biodiversity hotspots of Iran more seemingly due to the diverse climatic and geographic assortment which generates the highest frequency and distribution of MAPs. Many of these MAPs are at the edge of extinction due to the unwise, unscientific harvesting and/or global climate change. Therefore, there is an urgent need to conserve and propagate some of these important MAPs to save them from extinction and also to ensure the availability of raw materials for their use and future research into their efficacy. Furthermore, identifying the areas of endemism (AEs) is an essential part of ongoing regional conservation management programs in Iran and worldwide.
Collapse
Affiliation(s)
- Mohammad Bagher Hassanpouraghdam
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran;
- Correspondence: ; Tel.: +98-91-4502-7100
| | - Hamideh Ghorbani
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran;
| | - Marzieh Esmaeilpour
- Department of Geography, University of Maragheh, Maragheh 55181-83111, Iran;
| | - Mac H. Alford
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA;
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (S.D.)
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (S.D.)
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
5
|
Abstract
Unlike other studies that only determined the chemical composition of essential oils depending on their geographic origin, this research investigated the effect of weather conditions (temperature, precipitation, and insolation) on the chemical composition of Nepeta nuda L. essential oil. The collection of wild-growing N. nuda was carried out during three successive years, 2019, 2020, and 2021 at Rtanj Mountain (Serbia) on the same date (July 7th). Essential oil extraction from the plant was performed by hydro-distillation. After gas chromatographic-mass spectrometric analysis, a total of 102 volatile compounds were separated from N. nuda, during the observed period, 28 were unidentified, compromising between 5.0% and 8.7%, depending on the year. A multiple linear regression model was created, and statistical analyses were performed to provide knowledge about the prediction, feature profile, and the similarity in contents of active compounds of the N. nuda essential oil. The influence of temperature on the accumulation of the most abundant component, 1,8-cineole, was positive, while the impact of precipitation and insolation was negative. According to the cluster tree, there are four chemotypes of N. nuda essential oil: with nepetalactone, 1,8-cineole, mixed (nepetalactone+1,8-cineole+germacrene D), and nonspecific chemotypes. Bearing in mind that the biological activity of a raw material depends on the chemotype and environmental factors, this is a topic that deserves a more detailed approach. The N. nuda and its essential oil are promising materials with high biological potential, and these deserve further detailed investigation.
Collapse
|
6
|
Azizian T, Alirezalu A, Hassani A, Bahadori S, Sonboli A. Phytochemical analysis of selected Nepeta species by HPLC-ESI-MS/MS and GC–MS methods and exploring their antioxidant and antifungal potentials. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00819-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Sonboli A, Mirzania F, Gholipour A. Essential oil composition of Dracocephalum kotschyi Boiss. from Iran. Nat Prod Res 2018; 33:2095-2098. [DOI: 10.1080/14786419.2018.1482550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ali Sonboli
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University , Tehran, Iran
| | - Foroogh Mirzania
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University , Tehran, Iran
| | - Abbas Gholipour
- Department of Biology, Payame Noor University , Tehran, Iran
| |
Collapse
|