1
|
Su Z, Li Y, Lin Z, Huang Q, Fan X, Dong Z, Xia Q, Zhao P, Wang X. GC-MS-based metabonomic analysis of silkworm haemolymph reveals four-stage metabolic responses to nucleopolyhedrovirus infection. INSECT MOLECULAR BIOLOGY 2025; 34:289-301. [PMID: 39482849 DOI: 10.1111/imb.12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Silkworm, Bombyx mori, an economically significant insect, plays a crucial role in silk production. However, silkworm breeding is highly susceptible to various pathogens, particularly the Bombyx mori nucleopolyhedrovirus (BmNPV), which poses a serious threat. Recent metabonomic studies have provided insights into the metabolic changes associated with BmNPV infection. BmNPV infection has obvious temporal characteristics. However, few studies have investigated the silkworms infected in different periods. This study employed gas chromatography-mass spectrometry (GC-MS) to perform a comprehensive analysis of haemolymph metabolites in silkworms at 48, 72, 96 and 120 h post-infection (h.p.i.). Through the integration of time-course analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, the study revealed distinct four-stage metabolic characteristics in the silkworm's response to BmNPV infection. At Stage 1 (48 h.p.i.), silkworms activate antioxidant defence mechanisms, with significant enrichment in metabolic pathways involving key antioxidants such as glutathione, to mitigate oxidative stress induced by viral invasion. By Stage 2 (72 h.p.i.), pathways related to amino acid metabolism and protein synthesis become active, indicating an increase in protein synthesis. In Stage 3 (96 h.p.i.), energy metabolism and substance transport pathways are significantly upregulated to support the rapid viral replication and the enhanced locomotor behaviour of silkworm. Finally, at Stage 4 (120 h.p.i.), there is a further enhancement of pathways related to energy metabolism, nucleic acid synthesis, and substance transport, which align with peak viral assembly and release. These findings contribute to an in-depth understanding of the biochemical basis of silkworm resistance to NPV.
Collapse
Affiliation(s)
- Zhenyue Su
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yi Li
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Zihan Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xinyu Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhaoming Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xin Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Wang N, Zhang L, Ren X, Chen S, Zhang Z. Metabolomic fingerprinting based on network analysis of volatile aroma compounds during the forced aging of Huangjiu: Effects of dissolved oxygen and temperature. Front Nutr 2023; 10:1114880. [PMID: 36726696 PMCID: PMC9884831 DOI: 10.3389/fnut.2023.1114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023] Open
Abstract
Introduction Huangjiu is an important Chinese alcoholic beverage, usually prepared from rice. Although its unique flavor improves with prolonged storage in traditional pottery jars, knowledge of the aging mechanism, necessary for commercialization of an optimum product, remains unclear. Methods Here, volatile aroma compounds from forced aged samples exposed to different temperatures and oxygen treatments were measured by GC/MS. After retention time alignment and normalization, the peak vectors were compared over storage time using Pearson's correlation, and a correlation network was established. Marker compounds, representative of traditionally aged Huangjiu, were then monitored and compared to similar compounds in the forced aged product. Results and discussion Correlation network analysis revealed the following: Temperature had little effect on most aroma compounds; alcohols, acids, and esters all increased with increasing dissolved oxygen, while polyphenols, lactones, and ketones were readily oxidized; aldehydes (e.g., furfural and benzaldehyde) were highly dependent on both temperature and dissolved oxygen. Dynamic changes in the targeted aging-markers showed that a higher initial oxygen concentration intensified the "aging-aroma" of Huangjiu in the early and middle stages of storage. Consequently, careful control of oxygen supplementation and storage temperature could be beneficial in controlling the desirable flavor of Huangjiu in the artificially aged product.
Collapse
Affiliation(s)
- Na Wang
- School of Food and Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lili Zhang
- School of Food and Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xuejiao Ren
- School of Food and Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Shuang Chen
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China,*Correspondence: Shuang Chen ✉
| | - Zhen Zhang
- School of Food and Health, Jinzhou Medical University, Jinzhou, Liaoning, China,Zhen Zhang ✉
| |
Collapse
|
3
|
Chen J, Nie Y, Xu J, Huang S, Sheng J, Wang X, Zhong J. Sensory and metabolite migration from tilapia skin to soup during the boiling process: fast and then slow. NPJ Sci Food 2022; 6:52. [DOI: 10.1038/s41538-022-00168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractThis study mainly studied sensory and metabolite migration from the skin to the soup in the boiling process of tilapia skin using content analysis, electronic nose technique, electronic tongue technique, and metabolomics technique based on ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry and gas chromatography-time-of-flight-mass spectrometry. The content changes, flavor changes, taste changes, metabolite numbers and differential metabolite numbers for both tilapia skin and soup mainly occurred in the initial 30 min. Moreover, the initial 10 min was the key period for the metabolite changes in the boiling process. Further, the differential metabolites in these three periods (0–10, 10–30, and 30–60 min) were identified to show the metabolites migration process. Six (adenine, gingerol, terephthalic acid, vanillin, pentanenitrile, and 2-pyrrolidinonede) and seven (butyramide, lysope(0:0/20:4(5z,8z,11z,14z)), lysope(22:6(4z,7z,10z,13z,16z,19z)/0:0), linoleic acid, N-acetylneuraminic acid, L-threose, and benzoin) chemicals were screened out in the differential metabolites of tilapia skin and soup, respectively, with Variable Importance in the Projection of >1 and p value of <0.05. This work would be beneficial to understand the sensory and metabolite migration in the preparation process of fish soup and provided a metabolomic analysis route to analyze metabolites migration in food.
Collapse
|
4
|
The effects of an innovative pulping technique of synchronously pulping and gelatinizing treatment on raw materials properties, oenological parameters, fermentation process, and flavor characteristics of glutinous rice wine. Food Sci Biotechnol 2022; 31:1343-1353. [PMID: 35992314 PMCID: PMC9385904 DOI: 10.1007/s10068-022-01119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 02/02/2023] Open
Abstract
Liquid-state fermentation has been increasingly applied in the industrial glutinous rice wine (GRW) production. However, products brewed by this emerging technique possess some deficiencies in flavor quality. Therefore, this study firstly developed and optimized an innovative pulping technique by the synchronously pulping and gelatinizing treatment (Process I) to improve GRW flavor quality, and then revealed the influences of Process I on raw materials properties, oenological parameters, fermentation process, and flavor characteristics of GRW. Results show that Process I significantly (p < 0.05) enriched the soluble solid and crude protein content of glutinous rice milk by improving gelatinization degree and pulping efficiency, which consequently enhanced the microbial growth, glycolysis, and protein decomposition during the GRW fermentation process. GC-MS analysis shows that Process I sequentially significantly (p < 0.05) enhanced the esterification and Ehrlich or Harrison pathway during the fermentation process. This contributed to a higher content of key ester and alcohol compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01119-7.
Collapse
|
5
|
Wang Y, Lin L, Li L, Li Q, Gao M, Yang X, Yang J, Xie C. Dynamic changes of differential metabolites and key metabolic pathways of Gastrodia elata Blume during fermentation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2088788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yu Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Ling Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Lilang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Qiji Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Ming Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Xiaosheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Juan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Chunzhi Xie
- College of Food and Biotechnology Engineering, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
6
|
|
7
|
Kasote D, Tiozon RN, Sartagoda KJD, Itagi H, Roy P, Kohli A, Regina A, Sreenivasulu N. Food Processing Technologies to Develop Functional Foods With Enriched Bioactive Phenolic Compounds in Cereals. FRONTIERS IN PLANT SCIENCE 2021; 12:771276. [PMID: 34917106 PMCID: PMC8670417 DOI: 10.3389/fpls.2021.771276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 05/13/2023]
Abstract
Cereal grains and products provide calories globally. The health benefits of cereals attributed to their diverse phenolic constituents have not been systematically explored. Post-harvest processing, such as drying, storing, and milling cereals, can alter the phenolic concentration and influence the antioxidant activity. Furthermore, cooking has been shown to degrade thermo-labile compounds. This review covers several methods for retaining and enhancing the phenolic content of cereals to develop functional foods. These include using bioprocesses such as germination, enzymatic, and fermentation treatments designed to enhance the phenolics in cereals. In addition, physical processes like extrusion, nixtamalization, and parboiling are discussed to improve the bioavailability of phenolics. Recent technologies utilizing ultrasound, micro- or nano-capsule polymers, and infrared utilizing processes are also evaluated for their effectiveness in improving the phenolics content and bio-accessibility. We also present contemporary products made from pigmented cereals that contain phenolics.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Rhowell N. Tiozon
- International Rice Research Institute, Los Baños, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Hameeda Itagi
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Priyabrata Roy
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Ajay Kohli
- International Rice Research Institute, Los Baños, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Nese Sreenivasulu
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
- International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
8
|
A discovery-based metabolomic approach using UHPLC Q-TOF MS/MS unveils a plethora of prospective antihypertensive compounds in Korean fermented soybeans. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Adebo OA, Oyeyinka SA, Adebiyi JA, Feng X, Wilkin JD, Kewuyemi YO, Abrahams AM, Tugizimana F. Application of gas chromatography–mass spectrometry (GC‐MS)‐based metabolomics for the study of fermented cereal and legume foods: A review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14794] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Samson Adeoye Oyeyinka
- School of Agriculture and Food Technology Alafua Campus University of the South Pacific Suva Fiji
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Xi Feng
- Department of Nutrition Food Science and Packaging San Jose State University One Washington Square San Jose CA95192USA
| | - Jonathan D. Wilkin
- Division of Engineering and Food Science School of Applied Sciences Abertay University Dundee United Kingdom
| | - Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality College of Business and Economics University of Johannesburg P. O. Box 524Bunting Road Campus Johannesburg South Africa
| | - Adrian Mark Abrahams
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Fidele Tugizimana
- International R&D Omnia Group, Ltd P.O. Box 69888 Gauteng South Africa
| |
Collapse
|