1
|
Hetta HF, Melhem T, Aljohani HM, Salama A, Ahmed R, Elfadil H, Alanazi FE, Ramadan YN, Battah B, Rottura M, Donadu MG. Beyond Conventional Antifungals: Combating Resistance Through Novel Therapeutic Pathways. Pharmaceuticals (Basel) 2025; 18:364. [PMID: 40143141 PMCID: PMC11944814 DOI: 10.3390/ph18030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The rising burden of fungal infections presents a significant challenge to global healthcare, particularly with increasing antifungal resistance limiting treatment efficacy. Early detection and timely intervention remain critical, yet fungal pathogens employ diverse mechanisms to evade host immunity and develop resistance, undermining existing therapeutic options. Limited antifungal options and rising resistance necessitate novel treatment strategies. This review provides a comprehensive overview of conventional antifungal agents, their mechanisms of action, and emerging resistance pathways. Furthermore, it highlights recently approved and investigational antifungal compounds while evaluating innovative approaches such as nanotechnology, drug repurposing, and immunotherapy. Addressing antifungal resistance requires a multifaceted strategy that integrates novel therapeutics, enhanced diagnostic tools, and future research efforts to develop sustainable and effective treatment solutions.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Tameem Melhem
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | - Hashim M. Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madina 41477, Saudi Arabia;
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Antioch Syrian Private University, Maaret Saidnaya 22734, Syria;
| | - Michelangelo Rottura
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Matthew Gavino Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
2
|
Lee JSF, Cohen RM, Khan RA, Burry J, Casas EC, Chung HY, Costa LH, Ford N, Galvao DLN, Giron N, Jarvis JN, Mondal M, Odionyi JJ, Casas CP, Rangaraj A, Rode J, Ruffell C, Sued O, Ribeiro I. Paving the way for affordable and equitable liposomal amphotericin B access worldwide. Lancet Glob Health 2024; 12:e1552-e1559. [PMID: 39151989 PMCID: PMC11345448 DOI: 10.1016/s2214-109x(24)00225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 08/19/2024]
Abstract
Amphotericin B has long been crucial for treating many serious infectious diseases, such as invasive fungal infections and visceral leishmaniasis, particularly for patients who are immunocompromised, including those with advanced HIV infection. The conventional amphotericin B deoxycholate formulation has largely been replaced in high-income countries with liposomal amphotericin B (LAmB), which has many advantages, including lower rates of adverse events, such as nephrotoxicity and anaemia. Despite an evident need for LAmB in low-income and middle-income countries, where mortality from invasive fungal infections is still substantial, many low-income and middle-income countries still often use the amphotericin B deoxycholate formulation because of a small number of generic formulations and the high price of the originator LAmB. The pricing of LAmB is also highly variable between countries. Overcoming supply barriers through the availability of additional quality-assured, generic formulations of LAmB at accessible prices would substantially facilitate equitable access and have a substantial effect on mortality attributable to deadly fungal infections.
Collapse
Affiliation(s)
| | - Rachel M Cohen
- Drugs for Neglected Diseases initiative, New York, NY, USA
| | | | - Jessica Burry
- Médecins Sans Frontières Access Campaign, Geneva, Switzerland
| | | | - Han Yang Chung
- Drugs for Neglected Diseases Initiative, Kuala Lumpur, Malaysia
| | | | - Nathan Ford
- World Health Organization, Geneva, Switzerland
| | | | - Nora Giron
- Pan American Health Organization Strategic Fund, Washington, DC, USA
| | - Joseph N Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; UK & Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Mousumi Mondal
- Drugs for Neglected Diseases Initiative, New Delhi, India
| | | | | | - Ajay Rangaraj
- Department of HIV, Hepatitis and STIs, World Health Organization, Geneva, Switzerland
| | - Joelle Rode
- Drugs for Neglected Diseases Initiative, Rio de Janeiro, Brazil
| | - Carol Ruffell
- Drugs for Neglected Diseases Initiative Global Antibiotic R&D Partnership, Cape Town, South Africa
| | - Omar Sued
- Pan American Health Organization, Washington, DC, USA
| | - Isabela Ribeiro
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| |
Collapse
|
3
|
Bewersdorf TN, Hofmann J, Findeisen S, Schamberger C, Lingner T, Sommer U, Schmidmaier G, Grossner T. Impact of Anti-Mycotic Drugs on the Osteogenic Response of Bone Marrow Mesenchymal Stem Cells In Vitro. Antibiotics (Basel) 2024; 13:186. [PMID: 38391572 PMCID: PMC10886247 DOI: 10.3390/antibiotics13020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
The treatment of fungal bone infections and infected non-unions is a huge challenge in modern trauma and orthopedics, which normally contain the local and systemic administration of anti-fungal drugs. Although frequently used, little is known about the impact of systemic and locally administered fungicides on the osteogenic regenerative capabilities of infected bone tissue, especially upon the osteogenesis of human bone marrow mesenchymal stem cells (BM-hMSCs). This study evaluates the effects of the three most common fungicides for the systemic treatment of bone infections, Voriconazole (VOR), liposomal Amphotericin B (LAMB), and Fluconazole (FLU), as well as the effects of VOR and LAMB-loaded Polymethylmethacrylate (PMMA) cement chips in different concentrations upon the osteogenic response of BM-hMSCs in vitro. Within this study, we compared the ability of BM-hMSC to differentiate into osteoblast-like cells and synthesize hydroxyapatite as assessed by radioactive 99mTechnetium-Hydroxydiphosphonate (99mTc-HDP) labeling, cell proliferation, and analyses of supernatants upon various osteogenic parameters. Our results revealed that VOR added to the cell culture medium affects the osteogenic potential of BM-hMSC negatively, while there were no detectable effects of LAMB and FLU. Moreover, we showed dose-dependent negative effects of high- and extended-dose fungicide-loaded PMMA cement due to cytotoxicity, with a higher cytotoxic potential of VOR than LAMB, while low-dose fungicide-loaded PMMA had no significant effect on the osteogenic potential of BM-hMSC in vitro.
Collapse
Affiliation(s)
- Tim Niklas Bewersdorf
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jakob Hofmann
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sebastian Findeisen
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christian Schamberger
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Lingner
- Genevention GmbH, Rudolf-Wissell-Str. 28A, 37079 Göttingen, Germany
| | - Ulrike Sommer
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gerhard Schmidmaier
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tobias Grossner
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Craciun BF, Sandu IA, Peptanariu D, Pinteala M. Novel Nanotherapeutic Systems Based on PEGylated Squalene Micelles for Enhanced In Vitro Activity of Methotrexate and Cytarabine. Polymers (Basel) 2023; 15:4225. [PMID: 37959905 PMCID: PMC10650902 DOI: 10.3390/polym15214225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Nanomedicine has garnered significant attention due to the advantages it offers in the treatment of cancer-related disorders, some of the deadliest diseases affecting human lives. Conventional medication formulations often encounter issues of instability or insolubility in biological environments, resulting in low bioavailability. Nanocarriers play a crucial role in transporting and safeguarding drugs at specific sites of action, enabling gradual release under particular conditions. This study focuses on methotrexate (MTx) and cytarabine (Cyt), essential antitumoral drugs, loaded into PEGylated squalene micellar structures to enhance therapeutic effectiveness and minimize drawbacks. The micelles were prepared using ultrasound-assisted methods in both water and phosphate buffer saline solutions. Evaluation of drug-loaded micelles encompassed parameters such as particle size, colloidal stability, surface charge, morphology, encapsulation efficiency, drug loading capacity, and in vitro release profiles under simulated physiological and tumoral conditions. In vitro cell inhibition studies conducted on MCF-7 and HeLa cell lines demonstrated higher antitumoral activity for the drug-encapsulated micelles compared to free drugs. The encapsulation effectively addressed the burst effect, providing sustained release for at least 48 h while enhancing the drug's protection under physiological conditions.
Collapse
Affiliation(s)
- Bogdan-Florin Craciun
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.S.); (D.P.)
| | | | | | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.S.); (D.P.)
| |
Collapse
|
5
|
de Oliveira Kocerginsky P, Dos Santos Soares PH, Lyra HFS, Cadena PG, de Lima-Neto RG, Pontes-Filho NT, Lima-Filho JVM, Costa-Júnior SD, Neves RP, Cavalcanti IMF, Santos-Magalhães NS. Efficacy and non-toxicity of ciclopirox olamine-loaded liposomes against Cryptococcus neoformans clinical isolates. Braz J Microbiol 2023; 54:1513-1521. [PMID: 37540461 PMCID: PMC10484888 DOI: 10.1007/s42770-023-01071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
The aim of this study was to evaluate the efficacy and non-toxicity of ciclopirox olamine-loaded liposomes against Cryptococcus neoformans clinical isolates. Initially, 24-1 fractional experimental design was carried out to obtain an optimized formulation of liposomes containing CPO (CPO-LipoC), which were then used to prepare stealth liposomes (CPO-LipoS). Liposomal formulations were characterized by their mean size diameter, polydispersity index (PDI), and drug encapsulation efficiency (EE%). Immunosuppressed mice were exposed to CPO-LipoS at 0.5 mg/kg/day for 14 days to verify possible histopathological alterations in the liver and kidneys. Immunosuppressed mice infected with C. neoformans were treated with CPO-LipoS at 0.5 mg/kg/day for 14 days to quantify the fungal burden in spleen, liver, lungs, and brain. CPO-LipoS presented a mean size diameter, PDI, and EE% of 101.4 ± 0.7 nm, 0.307, and 96.4 ± 0.9%, respectively. CPO-LipoS was non-toxic for the liver and kidneys of immunosuppressed mice. At the survival curve, all infected animals submitted to treatment with CPO-LipoS survived until the end of the experiment. Treatment with CPO-LipoS reduced C. neoformans cells in the spleen (59.3 ± 3.4%), liver (75.0 ± 3.6%), lungs (75.7 ± 6.7%), and brain (54.2 ± 3.2%). CPO-LipoS exhibit antifungal activity against C. neoformans, and the encapsulation of CPO into stealth liposomes allows its use as a systemic drug for treating cryptococcosis.
Collapse
Affiliation(s)
- Patrícia de Oliveira Kocerginsky
- Biosciences Center, Laboratory of Medical Mycology, Federal University of Pernambuco (UFPE), Av Reitor Joaquim Amazonas, S/N, Cidade Universitária, Recife, PE, 50740-570, Brazil
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Pedro Henrique Dos Santos Soares
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Hannah Ferreira Soares Lyra
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Pabyton Gonçalves Cadena
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Reginaldo Gonçalves de Lima-Neto
- Biosciences Center, Laboratory of Medical Mycology, Federal University of Pernambuco (UFPE), Av Reitor Joaquim Amazonas, S/N, Cidade Universitária, Recife, PE, 50740-570, Brazil
- Health Sciences Center, Department of Tropical Medicine, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Nicodemos Teles Pontes-Filho
- Center for Health Sciences, Department of Pathology, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - José Vitor Moreira Lima-Filho
- Department of Biology, Federal Rural University of Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, 401, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Sérgio Dias Costa-Júnior
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Rejane Pereira Neves
- Biosciences Center, Laboratory of Medical Mycology, Federal University of Pernambuco (UFPE), Av Reitor Joaquim Amazonas, S/N, Cidade Universitária, Recife, PE, 50740-570, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil.
- Academic Center of Vitória (CAV), Laboratory of Microbiology and Immunology, Vitória de Santo Antão, Federal University of Pernambuco (UFPE), Rua Alto Do Reservatório, S/N, Vitória de Santo Antão, PE, Brazil.
| | - Nereide Stela Santos-Magalhães
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
6
|
Yagi A, Yamaguchi Y, Kawasaki K, Usui E, Yamazaki H, Uchida R. New piericidin rhamnosides as potentiators of amphotericin B activity against Candida albicans produced by actinomycete strain TMPU-A0287. J Antibiot (Tokyo) 2023; 76:65-74. [PMID: 36460732 DOI: 10.1038/s41429-022-00581-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022]
Abstract
Four new piericidin rhamnosides (2, 4-6) together with three known piericidins (1, 3, 7) were isolated from the culture broth of the unidentified actinomycete strain TMPU-A0287 as potentiators of antifungal amphotericin B (AmB) activity. The structures of piericidins were elucidated by spectroscopic analyses, including NMR and MS. Compounds 2 and 4-6 possessed a ketone at C-10 and one or two methoxy groups on the rhamnose in their structures. Compounds 1-7 did not exhibit antifungal activity against Candida albicans and all potentiated AmB activity. The MIC values of AmB against C. albicans combined with 1-7 (4.0 μg ml-1) decreased from 0.50 to 0.063 or 0.031 μg ml-1, yielding an 8- or 16-fold increase in AmB activity.
Collapse
Affiliation(s)
- Akiho Yagi
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yuga Yamaguchi
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Keiko Kawasaki
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Eri Usui
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hiroyuki Yamazaki
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Ryuji Uchida
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
7
|
Abdollahizad E, Dadashzadeh S, Bahri S, Abbasian Z, Rezaee E. Amphotericin B Pharmacokinetics: Inter-strain Differences in Rats Following Intravenous Administration of the Most Commonly Marketed Formulations of the Drug. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e134772. [PMID: 38116555 PMCID: PMC10728861 DOI: 10.5812/ijpr-134772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 12/21/2023]
Abstract
Background Amphotericin B (AmB) is the first-line drug to treat invasive fungal infections. However, its delivery to the body and clinical use faces many challenges because of its poor solubility, poor pharmacokinetics, and severe nephrotoxicity. Objectives Due to the necessity for designing safer and more effective nanocarriers for AmB and the importance of preclinical pharmacokinetic studies in evaluating these novel drug delivery systems, the present study was framed to explore the influence of rat strain on the pharmacokinetic profile of this drug. Methods Twenty-four Wistar and Sprague-Dawley (SD) rats were intravenously injected with 1 mg/kg AmB as Fungizone or AmBisome, which are the two most commonly marketed formulations of the drug. Blood samples were collected before and at regular intervals up to 24 h after administration. Drug concentration was analyzed by a validated HPLC method, and pharmacokinetic parameters were determined by the non-compartmental method. Results Irrespective of the type of formulation, the AUC0-t and AUC0-∞ values were significantly higher (P < 0.001), and Cl as an important PK parameter was markedly lower (P < 0.001) in SD rats compared to the Wistar strain. For Fungizone, the mean Cl values in SD and Wistar rats were 206.90 and 462.95 mL/h/kg (P < 0.001), respectively. The apparent volume of distribution (Vss) was also lower in SD rats compared to Wistar; however, for AmBisome, the difference in Vss was not statistically significant. Our further investigation suggested that the higher amount of total protein in the SD strain may justify the higher plasma concentrations and lower Cl and Vss of amphotericin B in this strain compared to the Wistar strain. Conclusions Overall, following intravenous administration of AmB, there were significant differences in the pharmacokinetic parameters of the drug between two rat strains for both formulations. The obtained data is important for correctly interpreting experimental data from different research groups.
Collapse
Affiliation(s)
- Erfan Abdollahizad
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pharmaceutical Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Bahri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasian
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Medical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Ye J, Li R, Cheng J, Liu D, Yang Y, Wang H, Xu X, Li L, Ma P, Liu Y. Comparative Colloidal Stability of Commercial Amphotericin B Nanoformulations Using Dynamic and Static Multiple Light Scattering Techniques. Int J Nanomedicine 2022; 17:6047-6064. [PMID: 36510621 PMCID: PMC9740024 DOI: 10.2147/ijn.s387681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Background Amphotericin B (AmB) nanoformulations have been widely used for the treatment of invasive fungal infections in clinical practice, all of which are lyophilized solid dosage forms that improve storage stability. The colloidal stability of reconstituted lyophilized nanoparticles in an injection medium is a critical quality attribute that directly affects their safety and efficacy during clinical use. Methods In the present study, the colloidal stability of commercial AmB nanoformulations, including AmB cholesteryl sulfate complex (AmB-CSC) and AmB liposome (AmB-Lipo), was evaluated using the dynamic (DLS) and static multiple light scattering (SMLS) techniques. Results Compared to the DLS technique, the SMLS technique allows for a more objective and accurate evaluation of the colloidal stability of AmB nanoformulations. The results obtained using the SMLS technique demonstrated that AmB-CSC and AmB-Lipo exhibited excellent colloidal stability in both sterile water and 5% dextrose injection. The disk-like structure of the AmB-CSC nanoparticles more readily adsorbed serum proteins to form protein corona compared to the spherical structure of AmB-Lipo after incubation with serum. Additionally, AmB-CSC and AmB-Lipo can significantly reduce the in vitro cytotoxicity and in vivo nephrotoxicity of AmB, which may be attributed to the good colloidal stability and the improved pharmacokinetic profiles of AmB nanoformulations. Conclusion To the best of our knowledge, this study is the first to compare the colloidal stability of commercial AmB nanoformulations. These findings will provide useful information not only to inform the clinical use of available AmB nanoformulations but also for improving the design and conduct of translational research on novel AmB nanomedicines.
Collapse
Affiliation(s)
- Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Renjie Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Jialing Cheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Dongdong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaoyan Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Panpan Ma
- Beijing Union Second Pharmaceutical Factory, Beijing, People’s Republic of China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Marena GD, Ramos MADS, Carvalho GC, Junior JAP, Resende FA, Corrêa I, Ono GYB, Sousa Araujo VH, Camargo BAF, Bauab TM, Chorilli M. Natural product‐based nanomedicine applied to fungal infection treatment: A review of the last 4 years. Phytother Res 2022; 36:2710-2745. [DOI: 10.1002/ptr.7460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | | | | | - Ione Corrêa
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Yuki Bressanim Ono
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Victor Hugo Sousa Araujo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Bruna Almeida Furquim Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences and Health University of Araraquara (UNIARA) Araraquara Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
10
|
Peng T, Xu W, Li Q, Ding Y, Huang Y. Pharmaceutical liposomal delivery—specific considerations of innovation and challenges. Biomater Sci 2022; 11:62-75. [DOI: 10.1039/d2bm01252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liposomal technology can enhance drug solubility and stability, achieving codelivery for combination therapy, and modulate the in vivo fate (e.g., site-specific distribution and controlled release), thereby improving treatment outcomes.
Collapse
Affiliation(s)
- Taoxing Peng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Weihua Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Qianqian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528437, China
| |
Collapse
|
11
|
Rubey KM, Brenner JS. Nanomedicine to fight infectious disease. Adv Drug Deliv Rev 2021; 179:113996. [PMID: 34634395 PMCID: PMC8665093 DOI: 10.1016/j.addr.2021.113996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
The ubiquity and potency of antibiotics may give the false impression that infection is a solved problem. Unfortunately, even bacterial infections, the target of antibiotics, remain a major cause of illness and death. Several major unmet needs persist: biofilms, such as those on implanted hardware, largely resist antibiotics; the inflammatory host response to infection often produces more damage than the infection itself; and systemic antibiotics often decimate the gut microbiome, which can predispose to additional infections and even predispose to non-infectious diseases. Additionally, there is an increasing threat from multi-drug resistant microorganisms, though market forces may continue to inhibit innovation in this realm. These numerous unmet infection-related needs provide attractive goals for innovation of targeted drug delivery technologies, especially those of nanomedicine. Here we review several of those innovations in pre-clinical development, the two such therapies which have made it to clinical use, and the opportunities for further technology development for treating infections.
Collapse
Affiliation(s)
- Kathryn M Rubey
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jacob S Brenner
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Ren D, Cao W, Liu X, Han Q, Fan W, Li G, Xia H, Zhang X. Case Report: Use of Liposomal Amphotericin B in Low Doses in Patients With Visceral Leishmaniasis. Front Med (Lausanne) 2021; 8:766400. [PMID: 34869476 PMCID: PMC8635719 DOI: 10.3389/fmed.2021.766400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022] Open
Abstract
Background: No consensus has been reached regarding the optimal therapy for visceral leishmaniasis (VL), which affects ~12 million people worldwide. Case Presentation: This report described four cases of VL encountered in the First Affiliated Hospital of Xi'an Jiaotong University between October 2019 and December 2020. Of the four patients, one patient experienced relapse after antimonial treatment, and the remaining patients had primary VL (including one patient with impaired kidney function and one patient with hemophagocytic syndrome). All patients received a novel treatment protocol, namely the low-dose L-AmB therapy, which was characterized by a low initial dose, cautious dose escalation, and low-dose therapy as maintenance. All patients were cured without severe complications, and there was no further recurrence during follow-up. Conclusions: This case series demonstrated the safety and efficacy of the low-dose L-AmB therapy for VL patients, providing novel treatment protocol for the VL.
Collapse
Affiliation(s)
- Danfeng Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenya Cao
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojing Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qunying Han
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanhu Fan
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guoliang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Han Xia
- Hugobiotech Co., Ltd., Beijing, China
| | - Xi Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Cheng L, Niu MM, Yan T, Ma Z, Huang K, Yang L, Zhong X, Li C. Bioresponsive micro-to-nano albumin-based systems for targeted drug delivery against complex fungal infections. Acta Pharm Sin B 2021; 11:3220-3230. [PMID: 34729311 PMCID: PMC8546853 DOI: 10.1016/j.apsb.2021.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
As a typical human pathogenic fungus, Cryptococcus neoformans is a life-threatening invasive fungal pathogen with a worldwide distribution causing ∼700,000 deaths annually. Cryptococcosis is not just an infection with multi-organ involvement, intracellular survival and extracellular multiplication of the fungus also play important roles in the pathogenesis of C. neoformans infections. Because adequate accumulation of drugs at target organs and cells is still difficult to achieve, an effective delivery strategy is desperately required to treat these infections. Here, we report a bioresponsive micro-to-nano (MTN) system that effectively clears the C. neoformans in vivo. This strategy is based on our in-depth study of the overexpression of matrix metalloproteinase 3 (MMP-3) in infectious microenvironments (IMEs) and secreted protein acidic and rich in cysteine (SPARC) in several associated target cells. In this MTN system, bovine serum albumin (BSA, a natural ligand of SPARC) was used for the preparation of nanoparticles (NPs), and then microspheres were constructed by conjugation with a special linker, which mainly consisted of a BSA-binding peptide and an MMP-3-responsive peptide. This MTN system was mechanically captured by the smallest capillaries of the lungs after intravenous injection, and then hydrolyzed into BSA NPs by MMP-3 in the IMEs. The NPs further targeted the lung tissue, brain and infected macrophages based on the overexpression of SPARC, reaching multiple targets and achieving efficient treatment. We have developed a size-tunable strategy where microspheres "shrink" to NPs in IMEs, which effectively combines active and passive targeting and may be especially powerful in the fight against complex fungal infections.
Collapse
Key Words
- Albumin
- AmB, amphotericin B
- BBB, blood‒brain barrier
- BSA, bovine serum albumin
- Complex fungal infection
- DDS, drug delivery system
- IME, infectious microenvironment
- MMP-3
- MMP-3, matrix metalloproteinase 3
- MTN, micro-to-nano
- Microenvironment responsive
- NP, nanoparticle
- PEG, polyethylene glycol
- PMVECs, pulmonary microvascular endothelial cells
- RFP, red fluorescent protein
- SPARC
- SPARC, secreted protein acidic and rich in cysteine
- Size-tunable strategy
Collapse
Affiliation(s)
- Liting Cheng
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| | - Tong Yan
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Kexin Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ling Yang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Zhong
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Pemán J, Quindós G. [Liposomal amphotericin B: thirty years of a highly effective therapy for the treatment of invasive mycoses]. Rev Iberoam Micol 2021; 38:39-41. [PMID: 34304961 DOI: 10.1016/j.riam.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Javier Pemán
- Servicio de Microbiología, Hospital Universitario y Politécnico la Fe, Valencia, España.
| | - Guillermo Quindós
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco, Bilbao, España
| |
Collapse
|
15
|
González-Vicent M, Ramos-Amador JT. [Fungal infection in immunocompromised children]. Rev Iberoam Micol 2021; 38:75-83. [PMID: 34148786 DOI: 10.1016/j.riam.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, immunodeficiency condition has experienced a rise among children, who are at risk of invasive fungal infections (IFI) due to their health condition. Cancer, non-malignant hematological diseases, as primary immunodeficiencies, hematopoietic stem cell transplantation (HSCT), extreme prematurity, or critically ill condition in Pediatric Intensive Care Unit (PICU) are some immunosuppressive situations in children. The use of oncologic therapies, including immunotherapy and monoclonal antibodies, for the treatment of the aforementioned health conditions has led to an increase in morbidity and mortality rates of IFI in children. The underlying diseases and their management, comorbidities, the diagnostic tests used (both molecular and imaging), as well as the treatment used can be significantly different between adult patients and children admitted to PICU or with cancer. In pediatrics, the treatment of IFI is based primarily on pharmacokinetic studies performed in adults. In higher risk patients prophylaxis should be considered and, in the case of an IFI diagnosis, an antifungal treatment should be administered as early as possible, supported by the reversion of the immune dysfunction and surgery when appropriate.
Collapse
|
16
|
Renzi DF, de Almeida Campos L, Miranda EH, Mainardes RM, Abraham WR, Grigoletto DF, Khalil NM. Nanoparticles as a Tool for Broadening Antifungal Activities. Curr Med Chem 2021; 28:1841-1873. [PMID: 32223729 DOI: 10.2174/0929867327666200330143338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Fungal infections are diseases that are considered neglected although their infection rates have increased worldwide in the last decades. Thus, since the antifungal arsenal is restricted and many strains have shown resistance, new therapeutic alternatives are necessary. Nanoparticles are considered important alternatives to promote drug delivery. In this sense, the objective of the present study was to evaluate the contributions of newly developed nanoparticles to the treatment of fungal infections. Studies have shown that nanoparticles generally improve the biopharmaceutical and pharmacokinetic characteristics of antifungals, which is reflected in a greater pharmacodynamic potential and lower toxicity, as well as the possibility of prolonged action. It also offers the proposition of new routes of administration. Nanotechnology is known to contribute to a new drug delivery system, not only for the control of infectious diseases but for various other diseases as well. In recent years, several studies have emphasized its application in infectious diseases, presenting better alternatives for the treatment of fungal infections.
Collapse
Affiliation(s)
- Daniele Fernanda Renzi
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Eduardo Hösel Miranda
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Diana Fortkamp Grigoletto
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| |
Collapse
|
17
|
Liposomal Delivery Improves the Efficacy of Prednisolone to Attenuate Renal Inflammation in a Mouse Model of Acute Renal Allograft Rejection. Transplantation 2020; 104:744-753. [PMID: 31929419 PMCID: PMC7147400 DOI: 10.1097/tp.0000000000003060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Supplemental Digital Content is available in the text. Background. Systemic exposure to high-dose corticosteroids effectively combats acute rejection after kidney transplantation, but at the cost of substantial side effects. In this study, a murine acute renal allograft rejection model was used to investigate whether liposomal-encapsulated prednisolone (LP) facilitates local exposure to enhance its therapeutic effect. Methods. Male BalbC recipients received renal allografts from male C57BL/6J donors. Recipients were injected daily with 5 mg/kg cyclosporine A and received either 10 mg/kg prednisolone (P), or LP intravenously on day 0, 3, and 6, or no additional treatment. Functional magnetic resonance imaging (fMRI) was performed on day 6 to study allograft perfusion and organs were retrieved on day 7 for further analysis. Results. Staining of polyethylene-glycol-labeled liposomes and high performance liquid chromatography analysis revealed accumulation in the LP treated allograft. LP treatment induced the expression of glucocorticoid responsive gene Fkbp5 in the allograft. Flow-cytometry of allografts revealed liposome presence in CD45+ cells, and reduced numbers of F4/80+ macrophages, and CD3+ T-lymphocytes upon LP treatment. Banff scoring showed reduced interstitial inflammation and tubulitis and fMRI analysis revealed improved allograft perfusion in LP versus NA mice. Conclusions. Liposomal delivery of prednisolone improved renal bio-availability, increased perfusion and reduced cellular infiltrate in the allograft, when compared with conventional prednisolone. Clinical studies should reveal if treatment with LP results in improved efficacy and reduced side effects in patients with renal allograft rejection.
Collapse
|
18
|
Vera‐González N, Bailey‐Hytholt CM, Langlois L, Camargo Ribeiro F, Souza Santos EL, Junqueira JC, Shukla A. Anidulafungin liposome nanoparticles exhibit antifungal activity against planktonic and biofilm
Candida albicans. J Biomed Mater Res A 2020; 108:2263-2276. [DOI: 10.1002/jbm.a.36984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Noel Vera‐González
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island USA
| | - Christina M. Bailey‐Hytholt
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island USA
| | - Luc Langlois
- Department of Chemistry Brown University Providence Rhode Island USA
| | - Felipe Camargo Ribeiro
- Institute of Science and Technology, São Paulo State University (UNESP) São Paulo Brazil
| | | | | | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island USA
| |
Collapse
|
19
|
Polyketide glycosides phialotides A to H, new potentiators of amphotericin B activity, produced by Pseudophialophora sp. BF-0158. J Antibiot (Tokyo) 2020; 73:211-223. [DOI: 10.1038/s41429-019-0276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 11/08/2022]
|
20
|
Liposome and immune system interplay: Challenges and potentials. J Control Release 2019; 305:194-209. [DOI: 10.1016/j.jconrel.2019.05.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
|
21
|
Walsh TJ, Lewis RE, Adler-Moore J. Pharmacology of Liposomal Amphotericin B: An Introduction to Preclinical and Clinical Advances for Treatment of Life-threatening Invasive Fungal Infections. Clin Infect Dis 2019; 68:S241-S243. [PMID: 31222252 PMCID: PMC6495006 DOI: 10.1093/cid/ciz091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Thomas J Walsh
- Departments of Medicine, Pediatrics, and Microbiology & Immunology, Weill Cornell Medicine of Cornell University, New York, New York
| | - Russell E Lewis
- Unit of Infectious Diseases, Policlinico Sant’Orsola-Malpighi, Department of Medical Sciences and Surgery, University of Bologna, Italy
| | - Jill Adler-Moore
- Department of Biological Sciences, California State Polytechnic University, Pomona
| |
Collapse
|
22
|
Yu Y, Peng L, Liao G, Chen Z, Li C. Noncovalent Complexation of Amphotericin B with Poly(β-Amino Ester) Derivates for Treatment of C. Neoformans Infection. Polymers (Basel) 2019; 11:polym11020270. [PMID: 30960254 PMCID: PMC6419036 DOI: 10.3390/polym11020270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 01/15/2023] Open
Abstract
Our goal was to improve treatment outcomes for C. neoformans infection by designing nanocarriers that enhance drug-encapsulating capacity and stability. Thus, a noncovalent complex of methoxy poly(ethylene glycol)-poly(lactide)-poly(β-amino ester) (MPEG-PLA-PAE) and amphotericin B (AMB) was developed and characterized. The MPEG-PLA-PAE copolymer was synthesized by a Michael-type addition reaction; the copolymer was then used to prepare the AMB-loaded nanocomplex. AMB was in a highly aggregated state within complex cores. A high encapsulation efficiency (>90%) and stability of the AMB-loaded nanocomplex were obtained via electrostatic interaction between AMB and PAE blocks. This nanocomplex retained drug activity against C. neoformans in vitro. Compared with micellar AMB, the AMB nanocomplex was more efficient in terms of reducing C. neoformans burden in lungs, liver, and spleen, based on its improved biodistribution. The AMB/MPEG-PLA-PAE complex with enhanced drug-loading capacity and stability can serve as a platform for effective treatment of C. neoformans infection.
Collapse
Affiliation(s)
- Yang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Li Peng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Zhangbao Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
23
|
Efficacy and Safety of Low-Dose Liposomal Amphotericin B in Adult Patients Undergoing Unrelated Cord Blood Transplantation. Antimicrob Agents Chemother 2018; 62:AAC.01205-18. [PMID: 30104271 DOI: 10.1128/aac.01205-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022] Open
Abstract
Liposomal amphotericin B (L-AMB) is widely used for empirical or preemptive therapy and treatment of invasive fungal infections after cord blood transplantation (CBT). We retrospectively examined the efficacy and safety of low-dose L-AMB in 48 adult patients who underwent CBT between 2006 and 2017 in our institute. Within the entire cohort, 42 patients (88%) received L-AMB as empirical or preemptive therapy. The median daily dose of L-AMB and the median cumulative dose of L-AMB were 1.20 mg/kg/day (range, 0.62 to 2.60 mg/kg/day) and 30.6 mg/kg (range, 0.7 to 241.5 mg/kg), respectively. The median duration of L-AMB administration was 21.5 days (range, 1 to 313 days). A documented breakthrough fungal infection occurred in 1 patient during L-AMB treatment, and 43 patients (90%) survived for at least 7 days after the end of L-AMB treatment. Grade 3 or higher hypokalemia and hepatotoxicity were frequently observed during L-AMB treatment. However, no patient developed an increase in serum creatinine levels of grade 3 or higher. In univariate analyses using a logistic regression model, a duration of L-AMB treatment of more than 21 days and a cumulative dose of L-AMB of more than 30 mg/kg were significantly associated with nephrotoxicity and grade 3 hypokalemia. These data suggest that low-dose L-AMB may be safe and effective in adult patients undergoing CBT.
Collapse
|
24
|
Kardos T, Kovács R, Kardos G, Varga I, Bozó A, Tóth Z, Nagy F, Majoros L. Poor in vivo efficacy of caspofungin, micafungin and amphotericin B against wild-type Candida krusei clinical isolates does not correlate with in vitro susceptibility results. J Chemother 2018; 30:233-239. [PMID: 30025501 DOI: 10.1080/1120009x.2018.1487150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We determined micafungin, caspofungin and amphotericin B (AMB) minimum inhibitory concentration (MICs) and killing rates in RPMI-1640 and in RPMI-1640 with 50% serum against three Candida krusei bloodstream isolates. MIC ranges in RPMI-1640 were 0.125-0.25, 0.25 and 0.125-0.5 mg/L, in RPMI-1640 with 50% serum, MICs were 64-128-, 8- and 4-16-fold higher, respectively. In RPMI-1640 micafungin and caspofungin at 1, 4, 16 and 32 mg/L as well as AMB at 2 mg/L were fungicidal against all isolates in ≤3.96, ≤4.42 and 14.96 h, respectively. In RPMI-1640 with 50% serum, caspofungin was fungicidal for all isolates only at 32 mg/L, micafungin and AMB were fungistatic. In neutropenic mice, 5 mg/kg caspofungin and 1 mg/kg AMB were ineffective against two of the three isolates. Thus, in vivo efficacy of echinocandins and AMB is weak or absent against C. krusei. Prescribers treating C. krusei infections with echinocandins should watch out for clinical resistance and therapeutic failure.
Collapse
Affiliation(s)
- Tamás Kardos
- a Faculty of Medicine, Department of Pulmonology , University of Debrecen , Debrecen , Hungary.,b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary
| | - Renátó Kovács
- b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary.,c Faculty of Pharmacy , University of Debrecen , Debrecen , Hungary
| | - Gábor Kardos
- b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary
| | - Istvan Varga
- d Faculty of Dentistry , University of Debrecen , Debrecen , Hungary
| | - Aliz Bozó
- b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary
| | - Zoltán Tóth
- b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary
| | - Fruzsina Nagy
- b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary
| | - László Majoros
- b Faculty of Medicine, Department of Medical Microbiology , University of Debrecen , Debrecen , Hungary
| |
Collapse
|
25
|
Lei R, Hou J, Chen Q, Yuan W, Cheng B, Sun Y, Jin Y, Ge L, Ben-Sasson SA, Chen J, Wang H, Lu W, Fang X. Self-Assembling Myristoylated Human α-Defensin 5 as a Next-Generation Nanobiotics Potentiates Therapeutic Efficacy in Bacterial Infection. ACS NANO 2018; 12:5284-5296. [PMID: 29856606 DOI: 10.1021/acsnano.7b09109] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The increasing prevalence of antibacterial resistance globally underscores the urgent need to the update of antibiotics. Here, we describe a strategy for inducing the self-assembly of a host-defense antimicrobial peptide (AMP) into nanoparticle antibiotics (termed nanobiotics) with significantly improved pharmacological properties. Our strategy involves the myristoylation of human α-defensin 5 (HD5) as a therapeutic target and subsequent self-assembly in aqueous media in the absence of exogenous excipients. Compared with its parent HD5, the C-terminally myristoylated HD5 (HD5-myr)-assembled nanobiotic exhibited significantly enhanced broad-spectrum bactericidal activity in vitro. Mechanistically, it selectively killed Escherichia coli ( E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) through disruption of the cell wall and/or membrane structure. The in vivo results further demonstrated that the HD5-myr nanobiotic protected against skin infection by MRSA and rescued mice from E. coli-induced sepsis by lowering the systemic bacterial burden and alleviating organ damage. The self-assembled HD5-myr nanobiotic also showed negligible hemolytic activity and substantially low toxicity in animals. Our findings validate this design rationale as a simple yet versatile strategy for generating AMP-derived nanobiotics with excellent in vivo tolerability. This advancement will likely have a broad impact on antibiotic discovery and development efforts aimed at combating antibacterial resistance.
Collapse
Affiliation(s)
- Ruyi Lei
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Jinchao Hou
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Qixing Chen
- The Children's Hospital, School of Medicine , Zhejiang University , Hangzhou 310052 , China
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Baoli Cheng
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Yaqi Sun
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Yue Jin
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Lujie Ge
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Shmuel A Ben-Sasson
- Department of Developmental Biology, Institute for Medical Research Israel-Canada , The Hebrew University-Hadassah Medical School , Jerusalem 91120 , Israel
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology , Ningbo University , Ningbo 315211 , China
| | - Hangxiang Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| |
Collapse
|
26
|
Treatment of Biofilm Communities: An Update on New Tools from the Nanosized World. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8060845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|