1
|
Guo Y, Gong Y, Wu M, Ji M, Xie F, Chen H, Niu H, Tang C. CircRNAs in the tumor microenvironment: new frontiers in cancer progression and therapy. Crit Rev Oncol Hematol 2025; 212:104754. [PMID: 40320223 DOI: 10.1016/j.critrevonc.2025.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
The tumor microenvironment (TME), a dynamic ecosystem which including immune cells, cancer-associated fibroblasts (CAFs), endothelial cells, pericytes and acellular components, is orchestrating cancer progression through crosstalk between malignant cells and stromal components and increasingly recognized as a therapeutic frontier. Within this intricate network, circular RNAs (circRNAs) have emerged as pivotal regulators due to their unique covalently closed structures, which confer exceptional stability and multifunctional capabilities. This regulation is mediated through multiple mechanisms, such as acting as microRNA (miRNA) sponges, interacting with proteins, and, in certain instances, encoding functional peptides. The interaction between circRNAs and the TME not only affects cancer growth and metastasis but also influences immune evasion and therapeutic resistance. Elucidating the mechanisms by which circRNAs orchestrate these interactions is essential for identifying novel diagnostic biomarkers and developing effective therapeutic strategies. Such insights are expected to bridge gaps in current cancer biology, offering promising avenues for precision oncology and ultimately improving clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Yipei Guo
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanxun Gong
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Man Wu
- School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - Mengjia Ji
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Fei Xie
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266013, China.
| | - Hao Chen
- Department of Pathology, Wannan Medical College, Wuhu 241002, China; Postdoctoral Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China.
| | - Haitao Niu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266013, China.
| | - Chao Tang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Hou J, Lu M, Guo J, Wu J, Wang C, Zhou PK, Ma T. DNA-PKcs, a player winding and dancing with RNA metabolism and diseases. Cell Mol Biol Lett 2025; 30:25. [PMID: 40038612 PMCID: PMC11877767 DOI: 10.1186/s11658-025-00703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key kinase in the DNA repair process that responds to DNA damage caused by various factors and maintains genomic stability. However, DNA-PKcs is overexpressed in some solid tumors and is frequently associated with poor prognosis. DNA-PKcs was initially identified as a part of the transcription complex. In recent years, many studies have focused on its nonclassical functions, including transcriptional regulation, metabolism, innate immunity, and inflammatory response. Given the pleiotropic roles of DNA-PKcs in tumors, pharmacological inhibition of DNA-PK can exert antitumor effects and may serve as a potential target for tumor therapy in the future. This review summarizes several aspects of DNA-PKcs regulation of RNA metabolism, including its impact on transcriptional machinery, alternative splicing, and interaction with noncoding RNAs, and provides insights into DNA-PKcs beyond its DNA damage repair function.
Collapse
Affiliation(s)
- Jiabao Hou
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jingwei Guo
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Chenyang Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ping-Kun Zhou
- Beijing Key Laboratory for Radiobiology Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
3
|
Tian X, Liu J, Yi C, You X, Yuan C. Hsa_circ_0072732 enhances sunitinib resistance of renal cell carcinoma by inhibiting ferroptosis. Discov Oncol 2024; 15:700. [PMID: 39580569 PMCID: PMC11585529 DOI: 10.1007/s12672-024-01580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one of the most diagnosed urological malignancies with high mortality and increasing incidence. What's more, the sunitinib resistance undoubtedly increased the difficulties in RCC therapy. Circular RNAs (circRNAs) are a newly found type of non-coding RNAs with a special circular structure, and are found to participate in the occurrence development, chemoresistance, and prognosis of cancers. Ferroptosis regulates disease progression mainly via polyunsaturated fatty acid metabolism and glutamine catabolic pathways. The mechanism of circRNAs contributed to sunitinib resistance through ferroptosis has not been elucidated clearly. MATERIALS AND METHODS In our research, we identified a novel circRNA Hsa_circ_0072732 from circRNA datasets (GSE108735 and GSE100186). RNase R and Actinomycin D assays were used to detect the loop structure and stability of circRNAs. qRT-PCR and western blot were used for the detection of RNA and protein levels. CCK8 assays were used to detect proliferation and cell viability. Lipid peroxidation (MDA), and reactive oxygen species (ROS) were detected by indicted kits. Dual-luciferase reporter and RNA pull-down assays were used to detect the RNA interactions. RESULTS Our results showed that Hsa_circ_0072732 was highly expressed in RCC cells. Further investigations showed that the silence of Hsa_circ_0072732 could increase RCC sensitivity to sunitinib. Hsa_circ_0072732 contributed to sunitinib chemoresistance by impairing ferroptosis. Hsa_circ_0072732 exerts its function mainly by acting as sponges for miR-548b-3p and regulating the expression SLC7A11. Our research suggests that ferroptosis is involved in sunitinib resistance, and targeting ferroptosis is a promising way for RCC treatment. CONCLUSION Our research suggests Hsa_circ_0072732 enhanced renal cell carcinoma sunitinib resistance by inhibiting ferroptosis through miR-548b-3p/SLC7A11.
Collapse
Affiliation(s)
- Xiaorui Tian
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China
- Department of Urology, Yichang Central People's Hospital, Yichang, 443002, China
| | - Jun Liu
- Nursing Department, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Cheng Yi
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiangyun You
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chunli Yuan
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
4
|
Zhang Z, Gao Z, Fang H, Zhao Y, Xing R. Therapeutic importance and diagnostic function of circRNAs in urological cancers: from metastasis to drug resistance. Cancer Metastasis Rev 2024; 43:867-888. [PMID: 38252399 DOI: 10.1007/s10555-023-10152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/31/2023] [Indexed: 01/23/2024]
Abstract
Circular RNAs (circRNAs) are a member of non-coding RNAs with no ability in encoding proteins and their aberrant dysregulation is observed in cancers. Their closed-loop structure has increased their stability, and they are reliable biomarkers for cancer diagnosis. Urological cancers have been responsible for high mortality and morbidity worldwide, and developing new strategies in their treatment, especially based on gene therapy, is of importance since these malignant diseases do not respond to conventional therapies. In the current review, three important aims are followed. At the first step, the role of circRNAs in increasing or decreasing the progression of urological cancers is discussed, and the double-edged sword function of them is also highlighted. At the second step, the interaction of circRNAs with molecular targets responsible for urological cancer progression is discussed, and their impact on molecular processes such as apoptosis, autophagy, EMT, and MMPs is highlighted. Finally, the use of circRNAs as biomarkers in the diagnosis and prognosis of urological cancer patients is discussed to translate current findings in the clinic for better treatment of patients. Furthermore, since circRNAs can be transferred to tumor via exosomes and the interactions in tumor microenvironment provided by exosomes such as between macrophages and cancer cells is of importance in cancer progression, a separate section has been devoted to the role of exosomal circRNAs in urological tumors.
Collapse
Affiliation(s)
- Zhibin Zhang
- College of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, Hebei, China.
| | - Zhixu Gao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Huimin Fang
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Rong Xing
- Chengde Medical College, Chengde, 067000, Hebei, China
| |
Collapse
|
5
|
Gao Z, Luan X, Wang X, Han T, Li X, Li Z, Li P, Zhou Z. DNA damage response-related ncRNAs as regulators of therapy resistance in cancer. Front Pharmacol 2024; 15:1390300. [PMID: 39253383 PMCID: PMC11381396 DOI: 10.3389/fphar.2024.1390300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The DNA damage repair (DDR) pathway is a complex signaling cascade that can sense DNA damage and trigger cellular responses to DNA damage to maintain genome stability and integrity. A typical hallmark of cancer is genomic instability or nonintegrity, which is closely related to the accumulation of DNA damage within cancer cells. The treatment principles of radiotherapy and chemotherapy for cancer are based on their cytotoxic effects on DNA damage, which are accompanied by severe and unnecessary side effects on normal tissues, including dysregulation of the DDR and induced therapeutic tolerance. As a driving factor for oncogenes or tumor suppressor genes, noncoding RNA (ncRNA) have been shown to play an important role in cancer cell resistance to radiotherapy and chemotherapy. Recently, it has been found that ncRNA can regulate tumor treatment tolerance by altering the DDR induced by radiotherapy or chemotherapy in cancer cells, indicating that ncRNA are potential regulatory factors targeting the DDR to reverse tumor treatment tolerance. This review provides an overview of the basic information and functions of the DDR and ncRNAs in the tolerance or sensitivity of tumors to chemotherapy and radiation therapy. We focused on the impact of ncRNA (mainly microRNA [miRNA], long noncoding RNA [lncRNA], and circular RNA [circRNA]) on cancer treatment by regulating the DDR and the underlying molecular mechanisms of their effects. These findings provide a theoretical basis and new insights for tumor-targeted therapy and the development of novel drugs targeting the DDR or ncRNAs.
Collapse
Affiliation(s)
- Ziru Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xinchi Luan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xuezhe Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Tianyue Han
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaoyuan Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zeyang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Zhang ZY, Xu JH, Zhang JL, Lin YX, Ou-Yang J. CD276 enhances sunitinib resistance in clear cell renal cell carcinoma by promoting DNA damage repair and activation of FAK-MAPK signaling pathway. BMC Cancer 2024; 24:650. [PMID: 38802739 PMCID: PMC11131182 DOI: 10.1186/s12885-024-12402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE This study aimed to explore the effect of CD276 expression on the sunitinib sensitivity of clear cell renal cell carcinoma (ccRCC) cell and animal models and the potential mechanisms involved. METHODS CD276 expression levels of ccRCC and normal samples were analyzed via online databases and real-time quantitative PCR (RT-qPCR). CD276 was knocked down in ccRCC cell models (sunitinib-resistant 786-O/R cells and sunitinib-sensitive 786-O cells) using shRNA transfection, and the cells were exposed to a sunitinib (2 µM) environment. Cells proliferation was then analyzed using MTT assay and colony formation experiment. Alkaline comet assay, immunofluorescent staining, and western blot experiments were conducted to assess the DNA damage repair ability of the cells. Western blot was also used to observe the activation of FAK-MAPK pathway within the cells. Finally, a nude mouse xenograft model was established and the nude mice were orally administered sunitinib (40 mg/kg/d) to evaluate the in vivo effects of CD276 knockdown on the therapeutic efficacy of sunitinib against ccRCC. RESULTS CD276 was significantly upregulated in both ccRCC clinical tissue samples and cell models. In vitro experiments showed that knocking down CD276 reduced the survival rate, IC50 value, and colony-forming ability of ccRCC cells. Knocking down CD276 increased the comet tail moment (TM) values and γH2AX foci number, and reduced BRCA1 and RAD51 protein levels. Knocking down CD276 also decreased the levels of p-FAK, p-MEK, and p-ERK proteins. CONCLUSION Knocking down CD276 effectively improved the sensitivity of ccRCC cell and animal models to sunitinib treatment.
Collapse
Affiliation(s)
- Zhi-Yu Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Jian-Hao Xu
- Department of Pathology, The First People's Hospital of Kunshan, Suzhou, Jiangsu, 215300, China
| | - Jiang-Lei Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yu-Xin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Jun Ou-Yang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
7
|
Wang W, Han P, Li Z, Nie R, Wang K, Wang L, Liao H. LMGATCDA: Graph Neural Network With Labeling Trick for Predicting circRNA-Disease Associations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:289-300. [PMID: 38231821 DOI: 10.1109/tcbb.2024.3355093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Previous studies have proven that circular RNAs (circRNAs) are inextricably connected to the etiology and pathophysiology of complicated diseases. Since conventional biological research are frequently small-scale, expensive, and time-consuming, it is essential to establish an efficient and reasonable computation-based method to identify disease-related circRNAs. In this article, we proposed a novel ensemble model for predicting probable circRNA-disease associations based on multi-source similarity information(LMGATCDA). In particular, LMGATCDA first incorporates information on circRNA functional similarity, disease semantic similarity, and the Gaussian interaction profile (GIP) kernel similarity as explicit features, along with node-labeling of the three-hop subgraphs extracted from each linked target node as graph structural features. After that, the fused features are used as input, and further implied features are extracted by graph sampling aggregation (GraphSAGE) and multi-hop attention graph neural network (MAGNA). Finally, the prediction scores are obtained through a fully connected layer. With five-fold cross-validation, LMGATCDA demonstrated excellent competitiveness against gold standard data, reaching 95.37% accuracy and 91.31% recall with an AUC of 94.25% on the circR2Disease benchmark dataset. Collectively, the noteworthy findings from these case studies support our conclusion that the LMGATCDA model can provide reliable circRNA-disease associations for clinical research while helping to mitigate experimental uncertainties in wet-lab investigations.
Collapse
|
8
|
Moeinafshar A, Nouri M, Shokrollahi N, Masrour M, Behnam A, Tehrani Fateh S, Sadeghi H, Miryounesi M, Ghasemi MR. Non-coding RNAs as potential therapeutic targets for receptor tyrosine kinase signaling in solid tumors: current status and future directions. Cancer Cell Int 2024; 24:26. [PMID: 38200584 PMCID: PMC10782702 DOI: 10.1186/s12935-023-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsible for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowledge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further studies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential, but careful consideration is required to minimize off-target effects, the article additionally discusses the potential clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by providing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Shokrollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Behnam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Tehrani Fateh
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Lagunas-Rangel FA. Role of circular RNAs in DNA repair. RNA Biol 2024; 21:149-161. [PMID: 39550713 PMCID: PMC11572198 DOI: 10.1080/15476286.2024.2429945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Circular RNAs (circRNAs) exhibit a wide range of activities that allow them to participate in numerous cellular processes and make them relevant in a variety of diseases. In this regard, a key process in which circRNAs are involved, and which is the focus of this article, is DNA damage repair (DDR). This study aims to illustrate how circRNAs influence different DNA repair pathways, with particular emphasis on the underlying mechanisms. In addition, the potential medical applications of this knowledge are discussed, particularly in the diagnosis, prognosis and treatment of diseases. In this sense, circRNAs were found to play a crucial role in DNA repair processes by regulating the expression and activity of proteins involved in various DNA repair pathways. They influence the expression of DNA repair proteins by interacting with their mRNAs, sponging miRNAs that target these mRNAs, regulating transcription factors that bind to their promoters, modulating upstream signalling pathways, and affecting mRNA translation. Furthermore, circRNAs regulate the activity of DNA repair proteins by interacting directly with them, sequestering them in specific cellular compartments and controlling activation signalling or upstream DDR signalling.
Collapse
|
10
|
Wang Y, Liu X, Gong L, Ding W, Hao W, Peng Y, Zhang J, Cai W, Gao Y. Mechanisms of sunitinib resistance in renal cell carcinoma and associated opportunities for therapeutics. Br J Pharmacol 2023; 180:2937-2955. [PMID: 37740648 DOI: 10.1111/bph.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Sunitinib is the first-line drug for renal cell carcinoma (RCC) treatment. However, patients who received sunitinib treatment will ultimately develop drug resistance after 6-15 months, creating a huge obstacle to the current treatment of renal cell carcinoma. Therefore, it is urgent to clarify the mechanisms of sunitinib resistance and develop new strategies to overcome it. In this review, the mechanisms of sunitinib resistance in renal cell carcinoma have been summarized based on five topics: activation of bypass or alternative pathway, inadequate drug accumulation, tumour microenvironment, metabolic reprogramming and epigenetic regulation. Furthermore, present and potential biomarkers, as well as potential treatment strategies for overcoming sunitinib resistance in renal cell carcinoma, are also covered.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaolin Liu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Luyao Gong
- School of Pharmacy, Fudan University, Shanghai, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjing Hao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yeheng Peng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jun Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Weimin Cai
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yuan Gao
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Chen S, Zhang E, Guo T, Wang T, Chen J, Zhang N, Wang X, Zheng J. Development and verification of a deep learning-based m 6A modification model for clinical prognosis prediction of renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:14283-14296. [PMID: 37558767 DOI: 10.1007/s00432-023-05169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND The deep learning-based m6A modification model for clinical prognosis prediction of patients with renal cell carcinoma (RCC) had not been reported for now. In addition, the important roles of methyltransferase-like 14 (METTL14) in RCC have never been fully explored. METHODS A high-level neural network based on deep learning algorithm was applied to construct the m6A-prognosis model. Western blotting, quantitative real-time PCR, immunohistochemistry and RNA immunoprecipitation were used for biological experimental verifications. RESULTS The deep learning-based model performs well in predicting the survival status in 5-year follow-up, which also could significantly distinguish the patients with high overall survival risk in two independent patient cohort and a pan-cancer patient cohort. METTL14 deficiency could promote the migration and proliferation of renal cancer cells. In addition, our study also illustrated that METTL14 might participate in the regulation of circRNA in RCC. CONCLUSIONS In summary, we developed and verified a deep learning-based m6A-prognosis model for patients with RCC. We proved that METTL14 deficiency could promote the migration and proliferation of renal cancer cells, which might throw light on the cancer prevention by targeting the METTL14 pathway.
Collapse
Affiliation(s)
- Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Encheng Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyuan Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Guo Z, Xie Q, Wu Y, Mo H, Zhang J, He G, Li Z, Gan L, Feng L, Li T, Wang Y, Fu Y, Cai L, Li S, Yu C, Gao Y, Pan M, Fu S. Aberrant expression of circular RNA DHPR facilitates tumor growth and metastasis by regulating the RASGEF1B/RAS/MAPK axis in hepatocellular carcinoma. Cell Oncol (Dordr) 2023; 46:1333-1350. [PMID: 37099250 DOI: 10.1007/s13402-023-00814-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are noncoding RNAs. Accumulating evidence suggests that circRNAs play a critical role in human biological processes, especially tumorigenesis, and development. However, the exact mechanisms of action of circRNAs in hepatocellular carcinoma (HCC) remain unclear. METHODS Bioinformatic tools and RT-qPCR were used to identify the role of circDHPR, a circRNA derived from the dihydropteridine reductase (DHPR) locus, in HCC and para-carcinoma tissues. Kaplan-Meier analysis and the Cox proportional hazard model were used to analyze the correlation between circDHPR expression and patient prognosis. Lentiviral vectors were used to establish stable circDHPR-overexpressing cells. In vitro and in vivo studies have shown that tumor proliferation and metastasis are affected by circDHPR. Mechanistic assays, including Western blotting, immunohistochemistry, dual-luciferase reporter assays, fluorescence in situ hybridization, and RNA immunoprecipitation, have demonstrated the molecular mechanism underlying circDHPR. RESULTS CircDHPR was downregulated in HCC, and low circDHPR expression was associated with poor overall survival and disease-free survival rates. CircDHPR overexpression inhibits tumor growth and metastasis in vitro and in vivo. Further systematic studies revealed that circDHPR binds to miR-3194-5p, an upstream regulator of RASGEF1B. This endogenous competition suppresses the silencing effect of miR-3194-5p. We confirmed that circDHPR overexpression inhibited HCC growth and metastasis by sponging miR-3194-5p to upregulate the expression of RASGEF1B, which is regarded as a suppressor of the Ras/MAPK signaling pathway. CONCLUSIONS Aberrant circDHPR expression leads to uncontrolled cell proliferation, tumorigenesis, and metastasis. CircDHPR may serve as a biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Zeyi Guo
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Qingyu Xie
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
- Center of Pancreas, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Yanping Wu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Haiyu Mo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510000, P. R. China
| | - Jiajun Zhang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Zhongzhe Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Luxiang Gan
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Yi Wang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Lei Cai
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Shao Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Chao Yu
- Department of General Surgery, Zhujiang hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China.
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China.
| | - Mingxin Pan
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China.
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China.
| | - Shunjun Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, P. R. China.
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China.
| |
Collapse
|
13
|
Shou Y, Yue C, Wang Q, Liu J, Xu J, Miao Q, Liu D, Yang H, Liu Y, Zhang X. circPTPN12 promotes the progression and sunitinib resistance of renal cancer via hnRNPM/IL-6/STAT3 pathway. Cell Death Dis 2023; 14:232. [PMID: 37002206 PMCID: PMC10066201 DOI: 10.1038/s41419-023-05717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023]
Abstract
Renal cell carcinoma (RCC) is characterized by the difficulties in early diagnosis and the propensity to metastases. For advanced RCC, sunitinib targeted therapy is the clinically recommended first-line drug and the major challenge of sunitinib treatment is adaptive resistance. Therefore, it is imperative to research the mechanisms underlying sunitinib resistance. In this study, we discovered that circPTPN12 was highly expressed in RCC tissues and was associated with poorer clinical outcomes. circPTPN12 could promote the proliferation, migration, invasion, and sunitinib resistance of RCC cells. Mechanistically, circPTPN12 was found to form a complex with hnRNPM, which was involved in the regulation of mRNA processing. The combination with circPTPN12 enhanced the ability of hnRNPM to maintain the stability of IL-6 mRNA and further activated the STAT3 signaling pathway. The study revealed that circPTPN12/hnRNPM/IL-6/STAT3 axis promoted RCC progression and sunitinib resistance, which might be a promising therapeutic target for relieving sunitinib resistance in RCC.
Collapse
Affiliation(s)
- Yi Shou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Changjie Yue
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaju Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongmei Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Qin S, Wang Y, Wang P, Lv Q. Molecular mechanism of circRNAs in drug resistance in renal cell carcinoma. Cancer Cell Int 2022; 22:369. [PMID: 36424596 PMCID: PMC9686082 DOI: 10.1186/s12935-022-02790-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common malignant tumors with a poor response to radiotherapy and chemotherapy. The advent of molecular targeted drugs has initiated great breakthroughs in the treatment of RCC. However, drug resistance to targeted drugs has become an urgent problem. Various studies across the decades have confirmed the involvement of circular RNAs (circRNAs) in multiple pathophysiological processes and its abnormal expression in many malignant tumors. This review speculated that circRNAs can provide a new solution to drug resistance in RCC and perhaps be used as essential markers for the early diagnosis and prognosis of RCC. Through the analysis and discussion of relevant recent research, this review explored the relationship of circRNAs to and their regulatory mechanisms in drug resistance in RCC. The results indicate an association between the expression of circRNAs and the development of RCC, as well as the involvement of circRNAs in drug resistance in RCC.
Collapse
Affiliation(s)
- Shuang Qin
- grid.24516.340000000123704535Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065 China
| | - Yuting Wang
- grid.24516.340000000123704535Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065 China
| | - Peijun Wang
- grid.24516.340000000123704535Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065 China
| | - Qi Lv
- grid.24516.340000000123704535Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065 China
| |
Collapse
|
15
|
Xiang Y, Zheng G, Zhong J, Sheng J, Qin H. Advances in Renal Cell Carcinoma Drug Resistance Models. Front Oncol 2022; 12:870396. [PMID: 35619895 PMCID: PMC9128023 DOI: 10.3389/fonc.2022.870396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. Systemic therapy is the preferred method to eliminate residual cancer cells after surgery and prolong the survival of patients with inoperable RCC. A variety of molecular targeted and immunological therapies have been developed to improve the survival rate and prognosis of RCC patients based on their chemotherapy-resistant properties. However, owing to tumor heterogeneity and drug resistance, targeted and immunological therapies lack complete and durable anti-tumor responses; therefore, understanding the mechanisms of systemic therapy resistance and improving clinical curative effects in the treatment of RCC remain challenging. In vitro models with traditional RCC cell lines or primary cell culture, as well as in vivo models with cell or patient-derived xenografts, are used to explore the drug resistance mechanisms of RCC and screen new targeted therapeutic drugs. Here, we review the established methods and applications of in vivo and in vitro RCC drug resistance models, with the aim of improving our understanding of its resistance mechanisms, increasing the efficacy of combination medications, and providing a theoretical foundation for the development and application of new drugs, drug screening, and treatment guidelines for RCC patients.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Ge Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Jianfeng Zhong
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|