1
|
Bodmann KF, Hagel S, Oliva A, Kluge S, Mularoni A, Galfo V, Falcone M, Pletz MW, Lindau S, Käding N, Kielstein JT, Zoller M, Tascini C, Kintrup S, Schädler D, Spies C, De Rosa FG, Radnoti S, Bandera A, Luzzati R, Allen S, Sarmati L, Cascio A, Kapravelos N, Subudhi CPK, Dimopoulos G, Vossen MG, Bal AM, Venditti M, Mastroianni CM, Borrmann T, Mayer C. Real-World Use, Effectiveness, and Safety of Intravenous Fosfomycin: The FORTRESS Study. Infect Dis Ther 2025; 14:765-791. [PMID: 40106180 PMCID: PMC11993532 DOI: 10.1007/s40121-025-01125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Intravenous fosfomycin (FOS) is a broad-spectrum antibiotic primarily used in combination therapy to treat severe infections caused by both Gram-positive (GP) and Gram-negative (GN) pathogens, including multi-drug resistant (MDR) bacteria. The aim of this study, the largest to date, was to evaluate the effectiveness, safety, usage patterns, and patient characteristics of FOS in a real-world setting. METHODS Interim analysis of an ongoing, prospective, non-interventional, multicentre study in five European countries, involving centres in Germany, Italy, the United Kingdom, Greece, and Austria. RESULTS A total of 716 patients were enrolled between January 2017 and November 2023 (mean age: 62.8 years, APACHE II: 18.3, SOFA: 6.7). Main indications for FOS were bacteraemia/sepsis (23.6%), complicated urinary tract infections (18.0%), and bone and joint infections (17.4%). Other indications included hospital-acquired/ventilator-associated pneumonia (11.0%), complicated skin and soft tissue infections (9.1%), bacterial meningitis/central nervous system (CNS) infections (7.8%), and infective endocarditis (6.4%). Most common pathogens identified were Staphylococcus aureus (31.4%, including methicillin-resistant S. aureus), Klebsiella spp. (including K. pneumoniae) (17.2%), Escherichia coli (14.2%), coagulase-negative staphylococci (12.9%), other Enterobacterales (10.9%), and Pseudomonas aeruginosa (8.4%). In 34.6% of patients, an MDR pathogen was involved. Carbapenem resistance (CR) was high in Klebsiella spp. infections (59/123, 48.0%). In most patients, FOS was used in combination therapy (90.2%). The median dose was 15 g/day. Overall, clinical success and clinical response were favourable with 75.3% and 83.4% at the end of FOS treatment. Clinical success rates in infections caused by MDR or CR pathogens were 78.0% and 81.8%, respectively. Microbiological cure was achieved in 82.4% of all patients. Electrolyte imbalances were the most frequently observed adverse drug reactions, while gastrointestinal disorders were rare. CONCLUSION The results from this study suggest that FOS is a safe and effective option as combination partner in the treatment of patients with severe infections caused by both GP and GN pathogens, including deep-seated infections and/or involvement of MDR bacteria. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT02979951.
Collapse
Affiliation(s)
| | - Stefan Hagel
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany.
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Valentina Galfo
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Marco Falcone
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Simone Lindau
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nadja Käding
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
| | - Jan T Kielstein
- Medical Clinic V Nephrology, Rheumatology, Blood Purification - Academic Teaching Hospital Braunschweig, Brunswick, Germany
| | - Michael Zoller
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Carlo Tascini
- Department of Medicine (DMED), Infectious Diseases Clinic, University of Udine, Udine, Italy
| | - Sebastian Kintrup
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Dirk Schädler
- Department for Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Claudia Spies
- Department of Anaesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Francesco G De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | | | - Alessandra Bandera
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, Trieste, Italy
| | - Sam Allen
- Department of Microbiology, University Hospital Crosshouse, Kilmarnock, UK
| | - Loredana Sarmati
- Department of Infectious Diseases, University Hospital Tor Vergata, Rome, Italy
| | - Antonio Cascio
- Infectious and Tropical Diseases Unit, AOU Policlinico "P. Giaccone", University of Palermo, Palermo, Italy
| | - Nikolaos Kapravelos
- Intensive Care Unit, G Papanikolaou General Hospital, Exohi, Thessaloniki, Greece
| | | | - George Dimopoulos
- Third Department of Critical Care Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthias G Vossen
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Abhijit M Bal
- Department of Microbiology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Claudio M Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Thomas Borrmann
- InfectoPharm Arzneimittel und Consilium GmbH, Heppenheim, Germany
| | - Christian Mayer
- InfectoPharm Arzneimittel und Consilium GmbH, Heppenheim, Germany
| |
Collapse
|
2
|
Kieffer N, Böhm ME, Berglund F, Marathe NP, Gillings MR, Larsson DGJ. Identification of novel FosX family determinants from diverse environmental samples. J Glob Antimicrob Resist 2025; 41:8-14. [PMID: 39725324 DOI: 10.1016/j.jgar.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES This study aimed to identify novel fosfomycin resistance genes across diverse environmental samples, ranging in levels of anthropogenic pollution. We focused on fosfomycin resistance, and given its increasing clinical importance, explored the prevalence of these genes within different environmental contexts. METHODS Metagenomic DNA was extracted from wastewater and sediment samples collected from sites in India, Sweden, and Antarctica. Class 1 integron gene cassette libraries were prepared, and resistant clones were selected on fosfomycin-supplemented media. Long-read sequencing was performed followed by bioinformatics analysis to identify novel fosfomycin resistance genes. The genes were cloned and functionally characterized in E. coli, and the impact of phosphonoformate on the enzymes was assessed. RESULTS Four novel fosfomycin resistance genes were identified. Phylogenetic analysis placed these genes within the FosX family, a group of metalloenzymes that hydrolyse fosfomycin without thiol conjugation. The genes were subsequently renamed fosE2, fosI2, fosI3, and fosP. Functional assays confirmed that these genes conferred resistance to fosfomycin in E. coli, with MIC ranging from 32 μg/ml to 256 μg/ml. Unlike FosA/B enzymes, these FosX-like proteins were resistant to phosphonoformate inhibitory action. A fosI3 homolog was identified in Pseudomonas aeruginosa, highlighting potential clinical relevance. CONCLUSIONS This study expands the understanding of fosfomycin resistance by identifying new FosX family members across diverse environments. The lack of phosphonoformate inhibition underscores the clinical importance of these poorly studied enzymes, which warrant further investigation, particularly in pathogenic contexts.
Collapse
Affiliation(s)
- Nicolas Kieffer
- Molecular Basis of Adaptation Laboratory, Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, España; Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria-Elisabeth Böhm
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P Marathe
- Department of Contaminants and Biohazards, Institute of Marine Research (IMR), Bergen, Norway
| | - Michael R Gillings
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia; Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Önal U, Tüzemen Ü, Küçükdemirci Kaya P, İşçimen R, Kelebek Girgin N, Özakın C, Kahveci F, Akalın H. A comparative study of ceftazidime/avibactam-based and fosfomycin plus meropenem-based regimens for managing infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients. J Chemother 2025; 37:1-9. [PMID: 38698711 DOI: 10.1080/1120009x.2024.2349439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
The main aim of this study was to compare and analyze the effectiveness of treatment regimens using ceftazidime/avibactam (CAZ/AVI) versus fosfomycin plus meropenem (FOS/MER) for managing bloodstream infections (BSI) or ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) in critically ill patients. Between 4 January 2019, and 16 July 2023, adult patients (≥18 years old) diagnosed with BSI or VAP due to culture confirmed CRKP in ICU of a tertiary care hospital were investigated retrospectively. A total of 71 patients were categorized into two groups: 30 patients in CAZ/AVI-based, and 41 patients in FOS/MER-based group. No substantial disparities were found in the total duration of ICU hospitalization, as well as the 14- and 30-day mortality rates, between patients treated with CAZ/AVI-based and FOS/MER-based therapeutic regimens. We consider that our study provides for the first time a comprehensive understanding of treatment outcomes and associated risk factors among patients with CRKP-related infections.
Collapse
Affiliation(s)
- Uğur Önal
- Department of Infectious Diseases and Clinical Microbiology, Uludag University, Bursa, Türkiye
| | - Ülkü Tüzemen
- Department of Medical Microbiology, Uludag University, Bursa, Türkiye
| | | | - Remzi İşçimen
- Department of Anesthesiology and Reanimation, Uludag University, Bursa, Türkiye
| | | | - Cüneyt Özakın
- Department of Medical Microbiology, Uludag University, Bursa, Türkiye
| | - Ferda Kahveci
- Department of Anesthesiology and Reanimation, Uludag University, Bursa, Türkiye
| | - Halis Akalın
- Department of Infectious Diseases and Clinical Microbiology, Uludag University, Bursa, Türkiye
| |
Collapse
|
4
|
Butler DA, Patel N, O'Donnell JN, Lodise TP. Combination therapy with IV fosfomycin for adult patients with serious Gram-negative infections: a review of the literature. J Antimicrob Chemother 2024; 79:2421-2459. [PMID: 39215642 DOI: 10.1093/jac/dkae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Treatment of patients with serious infections due to resistant Gram-negative bacteria remains highly problematic and has prompted clinicians to use existing antimicrobial agents in innovative ways. One approach gaining increased therapeutic use is combination therapy with IV fosfomycin. This article reviews the preclinical pharmacokinetic/pharmacodynamic (PK/PD) infection model and clinical data surrounding the use of combination therapy with IV fosfomycin for the treatment of serious infections caused by resistant Gram-negative bacteria. Data from dynamic in vitro and animal infection model studies of highly resistant Enterobacterales and non-lactose fermenters are positive and suggest IV fosfomycin in combination with a β-lactam, polymyxin or aminoglycoside produces a synergistic effect that rivals or surpasses that of other aminoglycoside- or polymyxin-containing regimens. Clinical studies performed to date primarily have involved patients with pneumonia and/or bacteraemia due to Klebsiella pneumoniae, Pseudomonas aeruginosa or Acinetobacter baumannii. Overall, the observed success rates with fosfomycin combination regimens were consistent with those reported for other combination regimens commonly used to treat these patients. In studies in which direct treatment comparisons can be derived, the results suggest that patients who received fosfomycin combination therapy had similar or improved outcomes compared with other therapies and combinations, especially when it was used in combination with a β-lactam that (1) targets PBP-3 and (2) has exceptional stability in the presence of β-lactamases. Collectively, the data indicate that combination therapy with IV fosfomycin should be considered as a potential alternative to aminoglycoside or polymyxin combinations for patients with antibiotic-resistant Gram-negative infections when benefits outweigh risks.
Collapse
Affiliation(s)
- David A Butler
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Nimish Patel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9255 Pharmacy Lane, La Jolla, CA, USA
| | - J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| |
Collapse
|
5
|
Rihane R, Hecini-Hannachi A, Bentchouala C, Benlabed K, Diene SM. Molecular Characterization of Carbapenem and Colistin Resistance in Klebsiella pneumoniae Isolates Obtained from Clinical Samples at a University Hospital Center in Algeria. Microorganisms 2024; 12:1942. [PMID: 39458252 PMCID: PMC11509410 DOI: 10.3390/microorganisms12101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
The current study aimed to determine the molecular mechanisms of carbapenem and colistin resistance among the clinical isolates of Klebsiella pneumoniae from hospitalized patients admitted to a university hospital in Eastern Algeria. In total, 124 non-duplicate isolates of K. pneumoniae were collected from September 2018 to April 2019. Bacterial identification was performed using MALDI-TOF MS. The presence of extended spectrum β-lactamase (ESBL) genes, carbapenemase genes, chromosomal mutation and mcr genes in colistin-resistant K. pneumoniae were evaluated by PCR. ESBLs represented a rate of 49.1% and harbored blaCTX-M, blaTEM and blaSHV genes. Concerning carbapenems, 12 strains (9.6%) were resistant to ertapenem (MIC: 1-32 μg/mL), of which one strain (0.8%) was also resistant to imipenem (MIC: 32 μg/mL). Among these strains, nine (75%) harbored blaOXA-48 gene. Seven strains (5.6%) expressed resistance to colistin (MIC: 2-32 μg/mL), of which two harbored mcr-8 and mgrB genes simultaneously. The existence of a double resistance to colistin in the same strain is new in Algeria, and this could raise concerns about the increase in levels of resistance to this antibiotic (MIC: 32 μg/mL). The mgrB gene alone was observed in five isolates (71.4%), including two strains harboring blaOXA-48. This is the first report revealing the presence of K. pneumoniae strains carrying the blaOXA-48 gene as well as a mutation in the mgrB gene. Large-scale surveillance and effective infection control measures are also urgently needed to prevent the outbreak of various carbapenem- and colistin-resistant isolates.
Collapse
Affiliation(s)
- Riyane Rihane
- Molecular and Cellular Biology Laboratory, University of Mentouri Brothers Constantine 1, Constantine 25000, Algeria
| | - Abla Hecini-Hannachi
- Department of Medicine, Faculty of Medicine, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria; (C.B.); (K.B.)
| | - Chafia Bentchouala
- Department of Medicine, Faculty of Medicine, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria; (C.B.); (K.B.)
- Bacteriology Laboratory, Benbadis University Hospital, Constantine 25000, Algeria
| | - Kaddour Benlabed
- Department of Medicine, Faculty of Medicine, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria; (C.B.); (K.B.)
- Bacteriology Laboratory, Benbadis University Hospital, Constantine 25000, Algeria
| | - Seydina M. Diene
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille University, 13385 Marseille, France;
| |
Collapse
|
6
|
Wangchinda W, Pogue JM, Thamlikitkul V, Leelawattanachai P, Koomanachai P, Pai MP. Population pharmacokinetic/pharmacodynamic target attainment analysis of IV fosfomycin for the treatment of MDR Gram-negative bacterial infections. J Antimicrob Chemother 2024; 79:1372-1379. [PMID: 38597137 DOI: 10.1093/jac/dkae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND IV fosfomycin is used against MDR Gram-negative bacilli (GNB) but has dose-limiting side effects, especially in patients with impaired kidney function. OBJECTIVES To determine the optimal dosage of IV fosfomycin for patients with varying degrees of kidney function. METHODS Adult patients receiving IV fosfomycin for treatment of GNB were eligible. Five serial blood samples were collected after at least three doses of fosfomycin; plasma was assayed by LC-MS/MS and modelled by population pharmacokinetic analysis. The PTA for AUC24/MIC of 98.9 for Escherichia coli and Klebsiella pneumoniae, and 40.8 for Pseudomonas aeruginosa were computed by Monte Carlo simulations. Cumulative fractions of response (CFR) were analysed for each pathogen using EUCAST MIC distributions. RESULTS A total of 24 patients were included. Creatinine clearance (CLCR) and gender significantly influenced fosfomycin clearance. The kidney function-adjusted dosing regimens are proposed by using the lowest dose that can achieve ≥90% PTA for AUC24/MIC of 98.9 at an MIC of ≤32 mg/L (EUCAST v.13 susceptibility breakpoint for Enterobacterales). For patients with normal kidney function (CLCR 91-120 mL/min), a dosage of 15 g/day is suggested. This regimen achieved 97.1% CFR against E. coli, whereas CFR was 72.9% for K. pneumoniae and 76.7% for P. aeruginosa. CONCLUSIONS A fosfomycin dosage of 15 g/day with adjustment according to kidney function provided high PTA and CFR when treating E. coli. This dosage is lower than that used in current practice and may improve tolerability. Higher dosages may be needed for P. aeruginosa; however, safety data are limited.
Collapse
Affiliation(s)
- Walaiporn Wangchinda
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48108, USA
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jason M Pogue
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48108, USA
| | | | - Pannee Leelawattanachai
- Department of Pharmacy, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | | | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48108, USA
| |
Collapse
|
7
|
Roversi M, Musolino A, Di Giuseppe M, Tripiciano C, Cursi L, Lancella L, Krzysztofiak A. Back to the Future: Intravenous Fosfomycin is Safe and Effective for the Treatment of Complicated Infections in Children. Pediatr Infect Dis J 2024; 43:426-429. [PMID: 38295231 DOI: 10.1097/inf.0000000000004263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND Despite its broad spectrum and excellent safety profile, fosfomycin is still rarely used in pediatrics, with very limited experience from clinicians. METHODS We retrospectively reviewed the medical records of all children admitted to Bambino Gesù Children's Hospital, IRCCS, Rome, Italy, and treated with fosfomycin for any serious infection. Children with immunodeficiency and oncologic diseases were excluded. Of each, we reported and analyzed demographic and clinical data. RESULTS The clinical charts of 20 patients were reviewed and analyzed. The mean age was 10.2 years. Most children were males (85%). Most patients treated had an osteo-articular infection (65%). In our sample, 7 patients (35%) had an underlying comorbidity. The causative agent was isolated in 14 cases (70%). All patients were treated with a combination of 2-3 antibiotics, including fosfomycin. The average duration of antibiotic treatment was 18 days. After treatment, 8 patients (40%) experienced a mild adverse reaction, possibly correlated with the administration of fosfomycin. All patients were discharged in good clinical condition. CONCLUSIONS The present study reports on a sample of pediatric patients with complicated infections where administration of fosfomycin led to eradication of the disease with little or no side effects. Role of the underlying condition and concomitant medication in causing the reaction could not be ruled out. These data suggest that fosfomycin is an effective and safe antibiotic in the pediatric population, particularly for deep-seated infections sustained by multi-drug resistant pathogens.
Collapse
Affiliation(s)
- Marco Roversi
- From the PhD program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Musolino
- Residency School of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Martina Di Giuseppe
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Costanza Tripiciano
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Cursi
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Lancella
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
8
|
Qin X, Wu Y, Zhao Y, Qin S, Ji Q, Jia J, Huo M, Zhao X, Ma Q, Wang X, Chen X, Zhang H, Zhang M, Yang L, Li W, Tang J. Revealing active constituents within traditional Chinese Medicine used for treating bacterial pneumonia, with emphasis on the mechanism of baicalein against multi-drug resistant Klebsiella pneumoniae. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117488. [PMID: 38008277 DOI: 10.1016/j.jep.2023.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The emergence of antibiotic-resistant bacteria has rendered it more challenging to treat bacterial pneumonia. Traditional Chinese medicine (TCM) has superior efficacy in the treatment of pneumonia, and it has the unique advantage of antibacterial resistance against multi-drug resistant (MDR) bacteria, but the medication rule and pharmacological mechanism of its antibacterial activity are not clear. AIM OF THE STUDY This study aims to reveal Chinese medication patterns in treating bacterial pneumonia to select bioactive constituents in core herbs, predict their pharmacological mechanisms and further explore their antibacterial ability against clinically isolated MDR Klebsiella pneumoniae (KP) and their antibacterial mechanisms. MATERIALS AND METHODS The high-frequency medicinal herbs to treat lung diseases were first screened from Pharmacopoeia of the People's Republic of China (ChP.), and then bioactive compounds in core herbs and targets for compounds and disease were collected. Potential targets, signaling pathways, and drugs' core components were determined by constructing protein-protein interaction network, enrichment analysis and "component-target-pathway-disease" network were mapped by Cytoscape 3.8.2, and the potential therapeutic value of selected core components was verified by comparing the disease targets in the GEO database with the herbal component targets in the ITCM database. The clinically isolated KP were screened by drug sensitivity tests with meropenem (MEM), polymyxin E (PE), and tigecycline and biofilm-forming assay; broth microdilution, chessboard methods and biofilm morphology and permeability experiments were employed to determine the antibacterial, bactericidal and biofilm inhibition ability of selected bioactive constituents alone and in combination with antibiotics; The mechanism of bioactive components on quorum sensing (QS) genes LuxS and LuxR was predicted by molecular docking and tested by RT-PCR. RESULTS The 13 core Chinese medicines were obtained by mining ChP., and 615 potential targets of core herbal medicine were screened, and the PI3K-Akt signaling pathway might play crucial roles in the therapeutic process. In-vitro experiments revealed that the selected core compounds, including forsythoside B, baicalin, baicalein, and forsythin, all have antibacterial activity, in which baicalein had the strongest ability and a synergistic effect in combination with MEM or PE. Their synergy exhibited a stronger effect on biofilms of MDR KP, inhibiting biofilm formation, disrupting formed biofilms, and removing the residual structures of dead bacteria. Baicalein was predicted to have stable binding capacity to LuxS and LuxR genes by molecular docking, and RT-PCR results verified that the combination of baicalein with MEM or PE was effective in inhibiting the expression of QS genes (LuxS and LuxR) and consequently suppressing biofilm formation. CONCLUSION The core Chinese herbal medicine in the ChP. to treat lung diseases has a multi-component, multi-target, and multi-pathway synergy to improve bacterial pneumonia. Experimental studies have confirmed that the bioactive compound baicalein was able to combat MDR KP alone and synergistic with MEM or PE, inhibited and disrupted biofilms via regulating LuxS and LuxR genes, and further disturbed quorum sensing system to promote the therapeutic efficacy, which provides a new pathway and rationale for treating MDR KP-induced bacterial pneumonia.
Collapse
Affiliation(s)
- Xi Qin
- Henan University of Chinese Medicine, Henan, Zhengzhou, 450000, China
| | - Yali Wu
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou 450000, China.
| | - Ya Zhao
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou 450000, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuru Ji
- Henan University of Chinese Medicine, Henan, Zhengzhou, 450000, China
| | - Jinhao Jia
- Henan University of Chinese Medicine, Henan, Zhengzhou, 450000, China
| | - Mengqi Huo
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou 450000, China
| | - Xiaoyu Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Qing Ma
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou 450000, China
| | - Xiaoyan Wang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou 450000, China
| | - Xiaofei Chen
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou 450000, China
| | - Hui Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou 450000, China
| | - Mingliang Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou 450000, China
| | - Liuqing Yang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou 450000, China
| | - Weixia Li
- Henan University of Chinese Medicine, Henan, Zhengzhou, 450000, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou 450000, China.
| | - Jinfa Tang
- Henan University of Chinese Medicine, Henan, Zhengzhou, 450000, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou 450000, China.
| |
Collapse
|
9
|
Efficacy of Fosfomycin-Containing Regimens for Treatment of Bacteremia Due to Pan-Drug Resistant Acinetobacter baumannii in Critically Ill Patients: A Case Series Study. Pathogens 2023; 12:pathogens12020286. [PMID: 36839558 PMCID: PMC9961360 DOI: 10.3390/pathogens12020286] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Acinetobacter baumannii (AB) has evolved over the last decades as a major problem in carbapenem-resistant gram-negative nosocomial infections, associated with high mortality rates especially in the intensive care unit (ICU). Recent reports highlight the increasing prevalence of resistance to colistin, a last resort therapeutic option for carbapenem-resistant AB. We retrospectively evaluated the characteristics, treatment regimens and outcomes of twenty patients with pan-drug resistant (PDR) AB primary bacteremia hospitalized in the ICU of the University General Hospital of Patras, during a two-year period (October 2020-September 2022). The 28-day mortality reached 50%. Between survivors and non-survivors, no differences were found regarding age, gender, and Charlson comorbidity index (CCI). However, non-survivors had higher APACHE II scores and higher prevalence of septic shock and COVID-19 infection. A significantly higher percentage in the survivor group received Fosfomycin as part of the combination regimen. Inclusion of fosfomycin in the combination therapeutic regimen was associated with significantly better survival as compared to non-fosfomycin-containing regimens. In view of the increasing prevalence of PDR-AB infections in ICUs, its associated high rates of mortality and the lack of effective treatment options, the observed survival benefit with fosfomycin inclusion in the therapeutic regimen merits further validation in larger prospective studies.
Collapse
|