1
|
Nguyen TM, Kim J, Hung NT, Tho NH, Tran QM, Van Hung H. Comparison of antioxidant and antimicrobial activities of submerged culture mycelium and basidioma extracts of Tropicoporus linteus. Food Sci Biotechnol 2025; 34:169-179. [PMID: 39758739 PMCID: PMC11695526 DOI: 10.1007/s10068-024-01612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/21/2024] [Accepted: 05/17/2024] [Indexed: 01/07/2025] Open
Abstract
This research aimed to assess the biological characteristics of both submerged culture mycelium and artificial basidioma of Tropicoporus linteus NTH-PL4. The extraction yield from the basidioma surpassed that of the mycelium. The use of hot water extract resulted in the highest total carbohydrate content, predominantly found in the basidioma. Conversely, the 75% methanol extract exhibited higher levels of total phenolics and total flavonoids, predominantly in the mycelium. Tests on antioxidant capacity indicated that 75% methanol yielded the best results among the tested solvents, with the basidioma extract displaying superior DPPH scavenging, ferrous ion chelation, and reduction power compared to the mycelium extract. Moreover, ethyl acetate emerged as an effective solvent, yielding a stronger extract from the basidioma. Compound analysis revealed higher concentrations of gallic acid, salicylic acid, caffeic acid, and ellagic acid in the mycelium for the solvents used, while hispidin and beta-glucan exhibited an opposite trend. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01612-1.
Collapse
Affiliation(s)
- Tuan Manh Nguyen
- Institute of Life Science, Thai Nguyen University of Agriculture and Forestry, 251-210 Quyet Thang, Thai Nguyen, 250-000 Vietnam
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences and Engineering, Kyonggi University, Suwon, Gyeonggi-do 16227 Republic of Korea
| | - Nguyen The Hung
- Department of Agronomy, Thai Nguyen University of Agriculture and Forestry, 251-210 Quyet Thang, Thai Nguyen, 250-000 Vietnam
| | - Nguyen Huu Tho
- Department of Agronomy, Thai Nguyen University of Agriculture and Forestry, 251-210 Quyet Thang, Thai Nguyen, 250-000 Vietnam
| | - Quan Minh Tran
- Institute of Life Science, Thai Nguyen University of Agriculture and Forestry, 251-210 Quyet Thang, Thai Nguyen, 250-000 Vietnam
| | - Hoang Van Hung
- Institute of Life Science, Thai Nguyen University of Agriculture and Forestry, 251-210 Quyet Thang, Thai Nguyen, 250-000 Vietnam
| |
Collapse
|
2
|
Hsieh CC, Hou CY, Lei HY, Khumsupan D, Chai HJ, Lim PK, Hsu CC, Wu SJ, Cheng KW, Chen YC, Cheng KC. Aromatic compounds and organic acids identified from Ganoderma formosanum exhibit synergistic anti-melanogenic effects. J Food Drug Anal 2024; 32:532-543. [PMID: 39752867 PMCID: PMC11698587 DOI: 10.38212/2224-6614.3509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/20/2024] [Indexed: 01/07/2025] Open
Abstract
This study reveals the anti-tyrosinase activity of Ganoderma formosanum extracts, pinpointing compounds including gluconic acid, mesalamine, L-pyroglutamic acid, esculetin, 5-hydroxyindole, and salicylic acid, as effective melanin production inhibitors in melanoma cells and zebrafish embryos. Furthermore, multiple molecular docking simulations provided insights into interactions between the identified compounds and tyrosinase, increasing binding affinity up to -16.36 kcal/mol. The enhanced binding of identified compounds to tyrosinase facilitated synergistic inhibitory effects on melanin production. This study highlights the potential of GFE-EA as a source of natural tyrosinase inhibitors and contributes to understanding the role of active compounds extracted from G. formosanum.
Collapse
Affiliation(s)
- Chen-Che Hsieh
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei,
Taiwan, R.O.C.
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157,
Taiwan, R.O.C.
| | - Hsiao-Yun Lei
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei,
Taiwan, R.O.C.
| | - Darin Khumsupan
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei,
Taiwan, R.O.C.
| | - Huey-Jine Chai
- Seafood Technology Division, Fisheries Research Institute, Ministry of Agriculture, Keelung 20246,
Taiwan, R.O.C.
| | - Pek-Kui Lim
- School of Food Studies and Gastronomy, Taylor’s University, Subang Jaya, Selangor 47500,
Malaysia
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617,
Taiwan, R.O.C.
| | - Sz-Jie Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei,
Taiwan, R.O.C.
| | - Kai-Wen Cheng
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617,
Taiwan, R.O.C.
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 106,
Taiwan, R.O.C.
- The Master Program in Global Agriculture Technology and Genomic Sciences, International College, National Taiwan University, Taipei 106,
Taiwan, R.O.C.
| | - Kuan-Chen Cheng
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei,
Taiwan, R.O.C.
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei,
Taiwan, R.O.C.
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung,
Taiwan, R.O.C.
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung,
Taiwan, R.O.C.
| |
Collapse
|
3
|
Sun H, Yu W, Li H, Hu X, Wang X. Bioactive Components of Areca Nut: An Overview of Their Positive Impacts Targeting Different Organs. Nutrients 2024; 16:695. [PMID: 38474823 PMCID: PMC10935369 DOI: 10.3390/nu16050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Areca catechu L. is a widely cultivated tropical crop in Southeast Asia, and its fruit, areca nut, has been consumed as a traditional Chinese medicinal material for more than 10,000 years, although it has recently attracted widespread attention due to potential hazards. Areca nut holds a significant position in traditional medicine in many areas and ranks first among the four southern medicines in China. Numerous bioactive compounds have been identified in areca nuts, including alkaloids, polyphenols, polysaccharides, and fatty acids, which exhibit diverse bioactive functions, such as anti-bacterial, deworming, anti-viral, anti-oxidant, anti-inflammatory, and anti-tumor effects. Furthermore, they also display beneficial impacts targeting the nervous, digestive, and endocrine systems. This review summarizes the pharmacological functions and underlying mechanisms of the bioactive ingredients in areca nut. This helps to ascertain the beneficial components of areca nut, discover its medicinal potential, and guide the utilization of the areca nut.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Wenzhen Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| |
Collapse
|
4
|
Jiang F, Chen R, Tang C, Li LQ, Yan JK, Zhang H. Polysaccharide extracted from cultivated Sanghuangporous vaninii spores using three-phase partitioning with enzyme/ultrasound pretreatment: Physicochemical characteristics and its biological activity in vitro. Int J Biol Macromol 2023; 253:126622. [PMID: 37657579 DOI: 10.1016/j.ijbiomac.2023.126622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Sanghuangporous vaninii, as a valuable dietary supplement and medicinal ingredient, contains abundant bioactive polysaccharides that have health-promoting effects. In the present study, four polysaccharides (SVSPs-C, SVSPs-E, SVSPs-U, and SVSPs-E/U) were extracted for the first time from S. vaninii spores by three-phase partitioning (TPP), enzyme pretreatment before TPP (E-TPP), ultrasonic pretreatment before TPP (U-TPP), and enzyme pretreatment followed by ultrasonic before TPP (E/U-TPP) methods, respectively. Their physicochemical characteristics and in vitro pharmacological functions were determined and compared. Results showed that four TPP-based extraction methods had remarkable impacts on the extraction yield, chemical properties, monosaccharide compositions, and molecular weights (Mw) of SVSPs. Specifically, SVSPs-E/U obtained by E/U-TPP showed the highest extraction yield (25.40 %), carbohydrate content (88.50 %), and the lowest protein content (0.86 %). The four SVSPs had high-Mw (183.8-329.1 kDa) and low-Mw (23.0-156.4 kDa) fractions and mainly consisted of galactose, glucose, and mannose with different contents. In vitro bioactivities assays indicated that SVSPs-E/U possessed stronger antioxidant, hypoglycemic, hypouricemic, immunostimulatory, and antitumor activities than those of SVSPs-C, SVSPs-E, and SVSPs-U. Therefore, our results provide an efficient and promising extraction technique for bioactive polysaccharides from S. vaninii spores, as well as SVSPs had the potential to be applied in functional food, pharmaceutical, and cosmetics fields.
Collapse
Affiliation(s)
- Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Chuanhong Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Long-Qing Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jing-Kun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
5
|
Kang JW, Hyun SH, Kim HM, Park SY, Lee JA, Lee IC, Bae JS. The effects of fucoidan-rich polysaccharides extracted from Sargassum horneri on enhancing collagen-related skin barrier function as a potential cosmetic product. J Cosmet Dermatol 2023. [PMID: 38031658 DOI: 10.1111/jocd.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Sargassum horneri came ashore after flowing from the South China Sea to Jeju Island a few years ago. This caused a significant environmental impact on coastal areas where S. horneri has accumulated because of decomposition and the release of toxic substances, such as hydrogen sulfide. AIMS In this study, we evaluated a biological ingredient prepared from fucoidan-rich S. horneri and demonstrated its antiwrinkle effects on ultraviolet B (UVB)-induced fibroblast cells. MATERIALS AND METHODS Fucoidan samples from S. horneri were prepared according to a previously published process with modifications. The compositional analysis of S. horneri fucoidan extract (SHFE) as well as its effects on antiaging were examined to determine its utility as a functional material. RESULTS SHFE exhibited antioxidant properties using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Treatment of UVB-induced fibroblasts with SHFE significantly increased the synthesis of procollagen compared with adenosine treatment and inhibited MMP-1 and MMP-3 expression. In a clinical study, SHFE lotion improved skin barrier effects in forearms and transepidermal water loss (TEWL) values were reduced after 3 weeks of use compared with a placebo. CONCLUSION SHFE has utility as an additive with functional antiaging effects for a range of cosmetic products as it restores skin hydration in the epidermal barrier.
Collapse
Affiliation(s)
- Jung-Wook Kang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
- College of Fusion and Convergence, Seowon University, Cheongju, Republic of Korea
| | - Seung Hun Hyun
- Durae Corporation, Jeju Bio Center, Jeju-si, Republic of Korea
| | - Hyo-Min Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sook-Young Park
- Human Interface Media Center, Jeju National University, Jeju-si, Republic of Korea
| | - Jung-A Lee
- Human Interface Media Center, Jeju National University, Jeju-si, Republic of Korea
| | - In-Chul Lee
- Department of cosmetic science and technology, Seowon University, Cheongju, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Ashour RMS, El-Shiekh RA, Sobeh M, Abdelfattah MAO, Abdel-Aziz MM, Okba MM. Eucalyptus torquata L. flowers: a comprehensive study reporting their metabolites profiling and anti-gouty arthritis potential. Sci Rep 2023; 13:18682. [PMID: 37907626 PMCID: PMC10618445 DOI: 10.1038/s41598-023-45499-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Gouty arthritis is one of the most common metabolic disorders affecting people. Plant based drugs can lower the risk of this health disorder. The anti-gouty potential of Eucalyptus torquata flowers methanol extract (ETME) was evaluated in vitro via measuring the inhibitory effects of five pro-inflammatory enzymes; xanthine oxidase (XO), hyaluronidase, lipoxygenase (5-LOX), cyclooxygenases COX-1, and COX-2, in addition to evaluating the inhibition of histamine release, albumin denaturation, membrane stabilization, tyrosinase, and protease inhibitory activities. Also, its antioxidant potential was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assays and ferric reducing power assay (FRAP). HPLC-PDA-MS/MS was used to identify the metabolites in the tested extract. The latter exhibited substantial anti-arthritic properties in all assays with comparable potential to the corresponding reference drugs. HPLC-MS/MS analysis of this bioactive extract tentatively annotated 46 metabolites including phloroglucinols, gallic and ellagic acids derivatives, terpenes, flavonoids, fatty acids, and miscellaneous metabolites. Our study highlights the medicinal importance of E. torquata as an anti-gouty candidate and opens new avenues of gouty management.
Collapse
Affiliation(s)
- Rehab M S Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Mohamed A O Abdelfattah
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Marwa M Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, 11651, Egypt
| | - Mona M Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
7
|
Linsaenkart P, Ruksiriwanich W, Jantrawut P, Chittasupho C, Rachtanapun P, Jantanasakulwong K, Sommano SR, Prom-u-thai C, Jamjod S, Arjin C, Sringarm K, Barba FJ. Natural Melanogenesis Inhibitor, Antioxidant, and Collagen Biosynthesis Stimulator of Phytochemicals in Rice Bran and Husk Extracts from Purple Glutinous Rice ( Oryza sativa L. cv. Pieisu 1 CMU) for Cosmetic Application. PLANTS (BASEL, SWITZERLAND) 2023; 12:970. [PMID: 36840317 PMCID: PMC9962111 DOI: 10.3390/plants12040970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Oryza sativa L. cv. Pieisu 1 CMU (PES1CMU) has a high anthocyanin content in the colored bran and high phenolic content in the husk. Biologically active compounds in plants are available as dietary supplements and cosmetics. To expand the utilization of natural resources, PES1CMU will be a natural remedy for skin hyperpigmentation and aging. Cell-free tyrosinase inhibition and scavenging assays were used to screen all extracts, including PES1CMU-rice bran oil (RBO), PES1CMU-defatted rice bran (DFRB), and PES1CMU-husk (H). PES1CMU extracts were first examined in IBMX-stimulated B16 cells and H2O2-induced fibroblasts. The results exhibited that PES1CMU-DFRB was the most effective inhibitor of mushroom tyrosinase, intracellular melanin production (fold change of 1.11 ± 0.01), and tyrosinase activity (fold change of 1.22 ± 0.10) in IBMX-stimulated B16 cells. Particularly, PES1CMU-DFRB showed a comparable whitening effect to the standard arbutin with no significant difference (p > 0.05). Moreover, PES1CMU-DFRB and PES1CMU-H demonstrated strong scavenging activities. After accelerated cell aging caused by H2O2 exposure in fibroblasts, the levels of malondialdehyde production in all PES1CMU-treated fibroblasts were comparable with those of standard l-ascorbic acid (p > 0.05). Besides, PES1CMU-DFRB and PES1CMU-H treatment significantly inhibited collagen degradation against MMP-2 compared to l-ascorbic acid-treated cells (p > 0.05). PES1CMU rice-processing wastes (DFRB and H) could become potential natural sources for dermatocosmetic constituents in skin anti-aging and whitening products.
Collapse
Affiliation(s)
- Pichchapa Linsaenkart
- Doctor of Philosophy Program in Pharmacy, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | | | - Sansanee Jamjod
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, 46100 València, Spain
| |
Collapse
|
8
|
Zhang ZF, Song TT, Chen JF, Lv GY. Recovery of a hypolipidemic polysaccharide from artificially cultivated Sanghuangporus vaninii with an effective method. Front Nutr 2023; 9:1095556. [PMID: 36712537 PMCID: PMC9880258 DOI: 10.3389/fnut.2022.1095556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
In this study, an effective method was developed to extract the polysaccharide from Sanghuangporus vaninii (PFSV) by destroying the cell wall. Box-Behnken design was employed to determine the optimal processing conditions as follows: processing temperature (80°C), processing time (0.81 h) and amount of HCl (1.5 ml). Under these conditions, the yield of PFSV reached 5.94 ± 0.16%. The purified polysaccharide (PFSV-2) was found to be a hetero-polysaccharide with an average molecular weight of 20.377 kDa. The backbone of PFSV-2 was composed of an →6)-α-Galp-(1→ and →2,6)-β-Manp-(1→ and →2)-α-Fucp-(1→ and was branched of t-α-Manp-(1→ at position 2 of residue B. PFSV-2 showed hypolipidemic activity by decreasing lipid accumulation and the levels of total cholesterol and triglycerides in zebrafish larvae. Furthermore, PFSV-2 downregulated the pparg, fasn, and HMGCRb genes and upregulated the pparab and acaca genes. These findings suggested PFSV-2 may be a promising candidate in lipid regulation therapy.
Collapse
|
9
|
Fu L, Song J, Lu N, Yan J, Lin J, Wang W. Effects of Cultivation Methods on the Nutritional Content, Active Component Content, and Antioxidant Activity of Fruiting Bodies of Sanghuangporus baumii (Agaricomycetes). Int J Med Mushrooms 2023; 25:45-54. [PMID: 37585315 DOI: 10.1615/intjmedmushrooms.2023048534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
To provide a scientific reference for improving the sawdust cultivation of Sanghuangporus baumii, comparative studies were conducted on the contents of nutritional components and active components and the antioxidant activity of the fruiting bodies of S. baumii cultivated with sawdust and cut logs. The results indicate that, first, cultivation methods had little effect on the contents of crude fat and the measured 16 kinds of amino acids [including total essential amino acids (EAA), total nonessential amino acids (NEAA), EAA/NEAA, and EAA/total amino acid (TAA)], but had a great influence on the contents of crude protein, crude fiber and TAA. These results suggest that the nutritional content under sawdust cultivation was significantly higher than that under cut-log cultivation. Second, the cultivation methods had little effect on the content of triterpenoids but had a great effect on the contents of polysaccharides, total flavonoids and total phenols, which showed that cut-log cultivation was significantly higher than sawdust cultivation. Third, the cultivation methods had a great effect on the antioxidant activities (ABTS and FRAP), which showed that cut-log cultivation was significantly higher than sawdust cultivation. The contents of polysaccharides, total flavonoids, and total phenols and the ABTS and FRAP activities using sawdust cultivation were lower than those using cut-log cultivation, which may be related to the mushroom strains, cultivation medium formula and cultivation technology. The results provide a solid basis for the improvement and promotion of new cultivation technologies for S. baumii.
Collapse
Affiliation(s)
- Lizhong Fu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Jiling Song
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Na Lu
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Jing Yan
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Jiayao Lin
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| |
Collapse
|
10
|
Dimitrova-Shumkovska J, Kosharkoska-Spasovska F, Krstanoski L, Karadelev M. Antioxidant properties of fortified yogurt with medicinal mushrooms from Phellinus species. J Food Biochem 2022; 46:e14364. [PMID: 35929368 DOI: 10.1111/jfbc.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
In light of the powerful therapeutic features of Phellinus species and due to the absence of toxic compounds, our investigations were aimed at screening of the antioxidant profile of fortified yogurts with hot water extracts from Phellinus torulosus and Phellinus igniarius leveled to 10%, 5%, and 1% final fortification concentrations after acknowledging their superior bioactive content and radical scavenging capacities (59.77% and 56.73% of DPPH inhibition, respectively) versus cold water extracts (29.87% and 33.18% inhibition rates). Fortified samples signified dose-dependent increases in their inhibition rates during the storage period, with significant differences between 10% fortifications on the 7 day of storage in favor of the samples fortified with P. torulosus. Explicitly, P. torulosus showed 16% higher DPPH and 62.5% higher LPO neutralizing activity than yogurt enriched with P. igniarius. However, prolonged refrigeration tended to equalize antioxidant profiles in both fortified yogurts. Total titratable acidity and pH levels of the fortified yogurts as most important parameters for consumer acceptance were unaltered during storage. PRACTICAL APPLICATIONS: It is a common scientific perception that bioactive compounds present in wild medicinal fungi are the main contributors for their in vitro antioxidant efficiency. On account of these attributes, Phellinus species have been exploited in Far East Asia as safe remedies for many disorders thus making them attractive fortifying ingredients; however, according to our knowledge these mushrooms have never been used as natural additives in beverages. Given the current popularity of yogurt consumption as seen from the global market profits, as well as experimental evidences of enhanced potency of extract in comparison with powder due to maximal bioavailability of antioxidants, it is our belief that this study will increase the interest in the manufacture of functional foods with extracts from wild mushrooms.
Collapse
Affiliation(s)
- Jasmina Dimitrova-Shumkovska
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss. Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Frosina Kosharkoska-Spasovska
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss. Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Ljupcho Krstanoski
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss. Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Mitko Karadelev
- Mycological Laboratory, Department of Botany, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss. Cyril and Methodius, Skopje, Republic of North Macedonia
| |
Collapse
|
11
|
Pholiota nameko Polysaccharides Protect against Ultraviolet A-Induced Photoaging by Regulating Matrix Metalloproteinases in Human Dermal Fibroblasts. Antioxidants (Basel) 2022; 11:antiox11040739. [PMID: 35453423 PMCID: PMC9029720 DOI: 10.3390/antiox11040739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
Ultraviolet-A (UVA) exposure is a major cause of skin aging and can induce oxidative damage and accelerate skin wrinkling. Many natural polysaccharides exhibit a UV protective effect. In research on Pholiota nameko polysaccharides (PNPs), a natural macromolecular polysaccharide (4.4–333.487 kDa), studies have shown that PNPs can significantly decrease elastase activity to protect against UVA-induced aging in Hs68 human dermal fibroblasts. Cellular experiments in the present study indicated that PNPs can protect against UVA-induced oxidative damage in Hs68 cells by inhibiting the production of reactive oxygen species. Furthermore, PNPs significantly attenuated UVA-induced cell aging by decreasing the protein expression of matrix metalloproteinase 1, 3, and 9. Pretreatment of Hs68 cells with PNP-40, PNP-60, and PNP-80 before UVA irradiation increased protein expression of tissue inhibitor metalloproteinase 1 by 41%, 42%, and 56% relative to untreated cells. In conclusion, this study demonstrates that PNPs are a natural resource with potentially beneficial effects in protecting against UVA-induced skin aging.
Collapse
|
12
|
Bhat BB, Kamath PP, Chatterjee S, Bhattacherjee R, Nayak UY. Recent Updates on Nanocosmeceutical Skin Care and Anti-Aging Products. Curr Pharm Des 2022; 28:1258-1271. [PMID: 35319358 DOI: 10.2174/1381612828666220321142140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
Nanotechnology is an innovative area of science that deals with things smaller than 100 nanometers. The influence of nanotechnology in the cosmetic industry is overwhelming since it can enhance the properties attained by the particles at the nano level which includes color, solubility, etc, and also promotes the bioavailability of API. A plethora of nanomaterials can be employed in cosmetics including organic and inorganic nanoparticles. Unlike orthodox carriers, they facilitate easy penetration of the product into the skin and thereby increasing the stability and allowing a controlled drug release so that they can permeate deeper into the skin and start revitalizing it. Nanomaterials rejuvenate the skin by forming an occlusive barrier to inhibit the loss of water from the skin's surface and thereby moisturize the skin. Nano-cosmeceuticals are used to provide better protection against UV radiation, facilitate deeper skin penetration, and give long-lasting effects. Although they still have some safety concerns, hence detailed characterization or risk assessments are required to fulfill the standard safety requirements. In this review, an attempt is made to make a brief overview of various nanocosmeceutical skincare and anti-aging products.
Collapse
Affiliation(s)
- Bhavana B Bhat
- Department of Pharmaceutical Management, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prateeksha Prakash Kamath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swarnab Chatterjee
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rishav Bhattacherjee
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
13
|
He PY, Hou YH, Yang Y, Li N. The anticancer effect of extract of medicinal mushroom Sanghuangprous vaninii against human cervical cancer cell via endoplasmic reticulum stress-mitochondrial apoptotic pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114345. [PMID: 34146628 DOI: 10.1016/j.jep.2021.114345] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanghuangprous vaninii (Ljub.) L.W. Zhou & Y.C. Dai, known as "Sanghuang" in China, is mainly distributed in the northeast of China. As a traditional medicinal mushroom, "Sanghuang" is medicinally used for resolving the symptoms of gynecological tumors including vaginal bleeding, leucorrhea, abdominal pain and abdominal mass. This mushroom is potential for gynecological cancers therapy. However, there is a lack of scientific evidence on its anti-tumor activity against human cervical cancer, the most common gynecological cancer. AIM OF THE STUDY To identify the anti-tumor potential of the extract of Sanghuangprous vaninii (ESV) on human cervical cancer SiHa cells, and explore detailed mechanisms of ESV inducing cancer cell death. MATERIALS AND METHODS The anti-proliferation effects were evaluated by Cell Counting Kit-8 (CCK8) assay. Transmission electron microscope was applied to determined the cellular ultrastructure changes. The cell cycle distribution, quantification of apoptotic cells, mitochondrial transmembrane potential, reactive oxygen species (ROS) level, and cytosolic calcium level were determined by flow cytometer. Western blot analysis was used to explore the alterations in the expression levels of endoplasmic reticulum stress-marked and apoptosis-related proteins. The in-vivo anti-tumor effect was identified by mouse xenograft model. RESULTS ESV significantly inhibited the proliferation of SiHa cells in vivo and vitro. Blocking cell cycle and causing cell apoptosis contributed to cell death induced by ESV. Mechanistically, ESV induced endoplasmic reticulum stress evidenced by the elevated expressions of GRP78 and CHOP, which accompanied by the release of calcium (Ca2+). The Ca2+ overload and oxidative stress facilitated the collapse of mitochondrial membrane potential and subsequently activated caspase-3 and -9, which eventually lead to cell apoptosis. CONCLUSIONS Our results revealed that Sanghuangprous vaninii was effective against human cervical cancer SiHa cells in vitro and vivo. There is a promising potential that Sanghuangprous vaninii might be a candidate for cervical cancer therapy.
Collapse
Affiliation(s)
- Ping-Ya He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, PR China.
| | - Yu-Hao Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, PR China.
| | - Yue Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, PR China.
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, PR China.
| |
Collapse
|
14
|
Pavic A, Ilic-Tomic T, Glamočlija J. Unravelling Anti-Melanogenic Potency of Edible Mushrooms Laetiporus sulphureus and Agaricus silvaticus In Vivo Using the Zebrafish Model. J Fungi (Basel) 2021; 7:834. [PMID: 34682255 PMCID: PMC8540621 DOI: 10.3390/jof7100834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Severe drawbacks associated with the topical use of depigmenting agents in treatments of skin hyperigmentations impose a great demand for novel, effective, and safe melanogenesis inhibitors. Edible and medicinal mushrooms, known for numerous health-promoting properties, represent a rich reservoir of anti-melanogenic compounds, with the potential to be applied in preventing excessive skin pigmentation. Herein, using zebrafish (Danio rerio) as a preclinical animal model, we have demonstrated that ethanol extract of Laetiporus sulphureus (LSE) and Agaricus silvaticus (ASE) are not toxic at high doses up to 400-500 µg/mL while effectively inhibit melanogenesis in a dose-dependent manner. At depigmenting doses, the explored extracts showed no adverse effects on zebrafish embryos melanocytes. Even more, they did not provoke inflammation or neutropenia when applied at the highest dose ensuring almost complete the cells depigmentation. Since LSE and ASE have demonstrated significantly higher the therapeutic potential than kojic acid and hydroquinone, two well-known depigmenting agents, overall results of this study strongly suggest that the explored mushrooms extracts could be used as efficient and safe topical agents in treatments of skin hyperpigmentation disorders.
Collapse
Affiliation(s)
- Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Jasmina Glamočlija
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
15
|
Yadav D, Negi PS. Bioactive components of mushrooms: Processing effects and health benefits. Food Res Int 2021; 148:110599. [PMID: 34507744 DOI: 10.1016/j.foodres.2021.110599] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Mushrooms have been recognized for their culinary attributes for long and were relished in the most influential civilizations in history. Currently, they are the focus of renewed research because of their therapeutic abilities. Nutritional benefits from mushrooms are in the form of a significant source of essential proteins, dietary non-digestible carbohydrates, unsaturated fats, minerals, as well as various vitamins, which have enhanced its consumption, and also resulted in the development of various processed mushroom products. Mushrooms are also a crucial ingredient in traditional medicine for their healing potential and curative properties. The literature on the nutritional, nutraceutical, and therapeutic potential of mushrooms, and their use as functional foods for the maintenance of health was reviewed, and the available literature indicates the enormous potential of the bioactive compounds present in mushrooms. Future research should be focused on the development of processes to retain the mushroom bioactive components, and valorization of waste generated during processing. Further, the mechanisms of action of mushroom bioactive components should be studied in detail to delineate their diverse roles and functions in the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
16
|
Xing YM, Li B, Zeng X, Zhou LS, Lee TS, Lee MW, Chen XM, Guo SX. Use of transcriptomic profiling to identify candidate genes involved in Polyporus umbellatus sclerotial formation affected by oxalic acid. Sci Rep 2021; 11:17326. [PMID: 34462479 PMCID: PMC8405643 DOI: 10.1038/s41598-021-96740-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/09/2021] [Indexed: 11/09/2022] Open
Abstract
Polyporus umbellatus is a precious medicinal fungus. Oxalic acid was observed to affect sclerotial formation and sclerotia possessed more medicinal compounds than mycelia. In this study, the transcriptome of P. umbellatus was analysed after the fungus was exposed to various concentrations of oxalic acid. The differentially expressed genes (DEGs) encoding a series of oxidases were upregulated, and reductases were downregulated, in the low-oxalic-acid (Low OA) group compared to the control (No OA) group, while the opposite phenomenon was observed in the high-oxalic-acid (High OA) group. The detection of reactive oxygen species (ROS) in P. umbellatus mycelia was performed visually, and Ca2+ and H2O2 fluxes were measured using non-invasive micro-test technology (NMT). The sclerotial biomass in the Low OA group increased by 66%, however, no sclerotia formed in the High OA group. The ROS fluorescence intensity increased significantly in the Low OA group but decreased considerably in the High OA group. Ca2+ and H2O2 influx significantly increased in the Low OA group, while H2O2 exhibited efflux in the High OA group. A higher level of oxidative stress formed in the Low OA group. Different concentrations of oxalic acid were determined to affect P. umbellatus sclerotial formation in different ways.
Collapse
Affiliation(s)
- Yong-Mei Xing
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Bing Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xu Zeng
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Li-Si Zhou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Tae-Soo Lee
- Division of Life Sciences, University of Incheon, Incheon, 22012, Korea
| | - Min-Woong Lee
- Department of Life Science, Dongguk University, Seoul, 04620, Korea
| | - Xiao-Mei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| | - Shun-Xing Guo
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
17
|
Yu T, Zhong S, Sun Y, Sun H, Chen W, Li Y, Zhu J, Lu L, Huo J. Aqueous extracts of Sanghuangporus vaninii induce S-phase arrest and apoptosis in human melanoma A375 cells. Oncol Lett 2021; 22:628. [PMID: 34267820 PMCID: PMC8258622 DOI: 10.3892/ol.2021.12889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Sanghuangporus vaninii, also called 'Sanghuang' mushroom in Chinese, has various medicinal uses, but its effects on human melanoma cells have not been reported. The present study investigated the inhibitory ability and potential anticancer mechanism of the aqueous extracts of S. vaninii (SH). The results revealed that SH inhibited the proliferation of A375 human melanoma cells in a dose-dependent manner, and flow cytometry analysis suggested that SH induced A375 cell cycle arrest at S phase and apoptosis. Reverse transcription-quantitative PCR, western blotting and immunofluorescence analyses indicated that SH induced S-phase arrest by upregulating p21 expression, and p21 inhibited the expression of cyclin-cyclin-dependent kinases complexes at both the RNA and protein levels. In addition, SH induced apoptosis of A375 cells by inhibiting the expression levels of the anti-apoptosis gene Bcl-2. Therefore, the results suggested that SH may be a potential candidate for the treatment of human melanoma, thus providing new ideas for developing drugs that target melanoma.
Collapse
Affiliation(s)
- Taihen Yu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shi Zhong
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P.R. China
| | - Yuqing Sun
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P.R. China
| | - Haiyan Sun
- Haining Economic Crop Technical Service Station, Haining Agricultural and Rural Bureau, Haining, Zhejiang 314400, P.R. China
| | - Weiguo Chen
- Haining Economic Crop Technical Service Station, Haining Agricultural and Rural Bureau, Haining, Zhejiang 314400, P.R. China
| | - Yougui Li
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P.R. China
| | - Jianxun Zhu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P.R. China
| | - Longxi Lu
- Department of Environment & Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, P.R. China
| | - Jinxi Huo
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P.R. China
| |
Collapse
|
18
|
Zhang Y, Liu R, Liu C, Li S, Tsao R. Development of ultrasound-assisted mixture extraction and online extraction solution concentration coupled with countercurrent chromatography for the preparation of pure phytochemicals from Phellinus vaninii. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1171:122619. [PMID: 33752055 DOI: 10.1016/j.jchromb.2021.122619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/18/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Herein, ultrasound-assisted mixture extraction (UAME) and online extraction solution concentration (OESC) were conducted to extract products from crops and plants. These techniques were coupled with parallel countercurrent chromatography (PCCC) and applied for continuous extraction and online isolation of chemical constituents from Phellinus vaninii. The UAME instrument comprises extraction and solution separation chambers. It provides higher extraction efficiency and fewer impurities and is suitable for processing various sample matrices. The OESC device comprises a spray nozzle, concentrating cylinder, and hot-blast air nozzle. The mechanical parameters for UAME and OESC were optimized, and the operation of online UAME and OESC coupled with PCCC was described. Raw plant materials were extracted using a two-phase extractant comprising petroleum-ethyl acetate-ethanol-water (0.5:2.0:0.5:2.0, v/v/v/v). The aqueous and organic phases were then concentrated using the OESC technique. Two CCC runs were conducted for preparatory work. After extraction and online concentration, the concentrate was pumped into the CCC for separation. During PCCC separation, continuous automated extraction and concentration were still conducted. When the first cycle of the UAME/OESC/PCCC was completed, followed by the initiation of the second cycle, and the process was continued. Six target compounds with purities exceeding 97.22% were successfully separated using the CCC solvent systems comprising n-hexane-ethyl acetate-acetonitrile-water (5.5:2.5:5.0:0.4, v/v/v/v) and n-butanol-ethanol-water (4.5:1.3:6.5, v/v/v). Compared with conventional extraction methods, the proposed UAME/OESC/PCCC method has higher efficiency, facilitates high-purity separation of analytes, and offers opportunity for automation and systematic preparation of natural products.
Collapse
Affiliation(s)
- Yuchi Zhang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Ruoyao Liu
- Faculty of Chemistry, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China.
| | - Sainan Li
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Rong Tsao
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
19
|
Rodboon T, Okada S, Suwannalert P. Germinated Riceberry Rice Enhanced Protocatechuic Acid and Vanillic Acid to Suppress Melanogenesis through Cellular Oxidant-Related Tyrosinase Activity in B16 Cells. Antioxidants (Basel) 2020; 9:247. [PMID: 32204345 PMCID: PMC7139339 DOI: 10.3390/antiox9030247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
The anti-melanogenic bioactivities of phytophenolic compounds have been well recognized. Riceberry rice contains a rich source of phenolic compounds that act as melanin inhibitors through their antioxidant and anti-tyrosinase properties. Germination has been shown to be an effective process to improve targeted phenolic compounds. In this study, germinated riceberry rice extract was tested for antioxidant activity. Total phenolic content was determined while the tyrosinase inhibitory effect was screened by the in vitro mushroom tyrosinase assay. Cytotoxicity of germinated riceberry rice extract was investigated in B16 cells before evaluating its activities on cellular tyrosinase, melanogenesis, melanin excretion, morphological appearance, and cellular oxidants. Germinated riceberry rice extract showed increased potency of antioxidants and was also twice as effective for mushroom tyrosinase inhibition when compared with ungerminated riceberry rice extract. In B16 cells, the extract inhibited cellular tyrosinase, melanogenesis, and cellular oxidants in a dose-dependent manner when compared with untreated cells. Germinated riceberry rice extract also displayed an effect on B16 cells morphology by reducing the number of melanin- containing cells and their dendriticity. Additionally, the germination of riceberry rice dominantly enhanced two phenolic acids, protocatechuic acid and vanillic acid, which have the potential for antioxidant-associated hyperpigmentation control. Thus, the restricted germination of riceberry rice tended to promote protocatechuic acid and vanillic acid, which dominantly displayed antioxidants and tyrosinase-related melanogenic inhibition.
Collapse
Affiliation(s)
- Teerapat Rodboon
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection & Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan;
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
20
|
Sung TJ, Wang YY, Liu KL, Chou CH, Lai PS, Hsieh CW. Pholiota nameko Polysaccharides Promotes Cell Proliferation and Migration and Reduces ROS Content in H 2O 2-Induced L929 Cells. Antioxidants (Basel) 2020; 9:antiox9010065. [PMID: 31936888 PMCID: PMC7022505 DOI: 10.3390/antiox9010065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 01/02/2023] Open
Abstract
Pholiota nameko, a type of edible and medicinal fungus, is currently grown extensively for food and traditional medicine in China and Japan. It possesses various biological activities, such as anti-inflammatory, anti-hyperlipidemia and antitumor activities. However, P. nameko has rarely been discussed in the field of dermatology; identifying its biological activities could be beneficial in development of a new natural ingredient used in wound care. To evaluate its in vitro wound healing activities, the present study assessed the antioxidant and anti-collagenase activities of P. nameko polysaccharides (PNPs) prepared through fractional precipitation (40%, 60% and 80% (v/v)); the assessments were conducted using reducing power, hydroxyl radical scavenging activity, dichloro-dihydro-fluorescein diacetate and collagenase activity assays. The ability of PNPs to facilitate L929 fibroblast cell proliferation and migration was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and scratch assays. The findings indicated that, among all fractions, PNP-80 showed the best antioxidant and anti-collagenase activity, as measured by their reducing power (IC50 of PNP-80 was 2.43 ± 0.17 mg/mL), the hydroxyl radical scavenging (IC50 of PNP-80 was 2.74 ± 0.11 mg/mL) and collagenase activity assay, and significantly reduced cellular ROS content, compared with that of H2O2-induced L929 cells. Moreover, PNP-80 significantly promoted L929 fibroblast proliferation and migration, compared with the control group. Overall, we suggested that PNP-80 could be a promising candidate for further evaluation of its potential application on wound healing.
Collapse
Affiliation(s)
- Tzu-Jung Sung
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; (T.-J.S.); (Y.-Y.W.); (K.-L.L.)
| | - Yu-Ying Wang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; (T.-J.S.); (Y.-Y.W.); (K.-L.L.)
| | - Kai-Lun Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; (T.-J.S.); (Y.-Y.W.); (K.-L.L.)
| | - Chun-Hsu Chou
- Dr. Jou Biotech Co., Ltd., No.21, Lugong S. 2nd Rd., Lukang Township, Changhua Country 505, Taiwan;
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; (T.-J.S.); (Y.-Y.W.); (K.-L.L.)
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0385 (ext. 5031); Fax: +886-4-2287-6211
| |
Collapse
|