1
|
Armenta-Leyva B, Munguía-Ramírez B, Cheng TY, Ye F, Henao-Díaz A, Giménez-Lirola LG, Zimmerman J. Normalizing real-time PCR results in routine testing. J Vet Diagn Invest 2024; 36:78-85. [PMID: 37919959 PMCID: PMC10734596 DOI: 10.1177/10406387231206080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Normalization, the process of controlling for normal variation in sampling and testing, can be achieved in real-time PCR assays by converting sample quantification cycles (Cqs) to "efficiency standardized Cqs" (ECqs). We calculated ECqs as E-ΔCq, where E is amplification efficiency and ΔCq is the difference between sample and reference standard Cqs. To apply this approach to a commercial porcine reproductive and respiratory syndrome virus (PRRSV) RT-qPCR assay, we created reference standards by rehydrating and then diluting (1 × 10-4) a PRRSV modified-live vaccine (PRRS MLV; Ingelvac) with serum or oral fluid (OF) to match the sample matrix to be tested. Sample ECqs were calculated using the mean E and reference standard Cq calculated from the 4 reference standards on each plate. Serum (n = 132) and OF (n = 130) samples were collected from each of 12 pigs vaccinated with a PRRSV MLV from -7 to 42 d post-vaccination, tested, and sample Cqs converted to ECqs. Mean plate Es were 1.75-2.6 for serum and 1.7-2.3 for OF. Mean plate reference standard Cqs were 29.1-31.3 for serum and 29.2-31.5 for OFs. Receiver operating characteristic analysis calculated the area under the curve for serum and OF sample ECqs as 0.999 (95% CI: 0.997, 1.000) and 0.947 (0.890, 1.000), respectively. For serum, diagnostic sensitivity and specificity of the commercial PRRSV RT-qPCR assay were estimated as 97.9% and 100% at an ECq cutoff ≥ 0.20, and for OF, 82.6% and 100%, respectively, at an ECq cutoff ≥ 0.45.
Collapse
Affiliation(s)
- Betsy Armenta-Leyva
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Lloyd Veterinary Medical Center, Iowa State University, Ames, IA, USA
| | - Berenice Munguía-Ramírez
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Lloyd Veterinary Medical Center, Iowa State University, Ames, IA, USA
| | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, OH, USA
| | - Fangshu Ye
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | | | - Luis G. Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Lloyd Veterinary Medical Center, Iowa State University, Ames, IA, USA
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Lloyd Veterinary Medical Center, Iowa State University, Ames, IA, USA
| |
Collapse
|
2
|
Patrone PN, Kearsley AJ, Majikes JM, Liddle JA. Analysis and uncertainty quantification of DNA fluorescence melt data: Applications of affine transformations. Anal Biochem 2020; 607:113773. [PMID: 32526200 DOI: 10.1016/j.ab.2020.113773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/22/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022]
Abstract
Fluorescence-based measurements are a standard tool for characterizing the thermodynamic properties of DNA systems. Nonetheless, experimental melt data obtained from polymerase chain-reaction (PCR) machines (for example) often leads to signals that vary significantly between datasets. In many cases, this lack of reproducibility has led to difficulties in analyzing results and computing reasonable uncertainty estimates. To address this problem, we propose a data analysis procedure based on constrained, convex optimization of affine transformations, which can determine when and how melt curves collapse onto one another. A key aspect of this approach is its ability to provide a reproducible and more objective measure of whether a collection of datasets yields a consistent "universal" signal according to an appropriate model of the raw signals. Importantly, integrating this validation step into the analysis hardens the measurement protocol by allowing one to identify experimental conditions and/or modeling assumptions that may corrupt a measurement. Moreover, this robustness facilitates extraction of thermodynamic information at no additional cost in experimental time. We illustrate and test our approach on experiments of Förster resonance energy transfer (FRET) pairs used study the thermodynamics of DNA loops.
Collapse
|
3
|
Majikes JM, Patrone PN, Schiffels D, Zwolak M, Kearsley AJ, Forry SP, Liddle JA. Revealing thermodynamics of DNA origami folding via affine transformations. Nucleic Acids Res 2020; 48:5268-5280. [PMID: 32347943 PMCID: PMC7261180 DOI: 10.1093/nar/gkaa283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/07/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023] Open
Abstract
Structural DNA nanotechnology, as exemplified by DNA origami, has enabled the design and construction of molecularly-precise objects for a myriad of applications. However, limitations in imaging, and other characterization approaches, make a quantitative understanding of the folding process challenging. Such an understanding is necessary to determine the origins of structural defects, which constrain the practical use of these nanostructures. Here, we combine careful fluorescent reporter design with a novel affine transformation technique that, together, permit the rigorous measurement of folding thermodynamics. This method removes sources of systematic uncertainty and resolves problems with typical background-correction schemes. This in turn allows us to examine entropic corrections associated with folding and potential secondary and tertiary structure of the scaffold. Our approach also highlights the importance of heat-capacity changes during DNA melting. In addition to yielding insight into DNA origami folding, it is well-suited to probing fundamental processes in related self-assembling systems.
Collapse
Affiliation(s)
- Jacob M Majikes
- National Institute of Standards and Technology, Gaithersburg, MD 20899-6203, USA
| | - Paul N Patrone
- National Institute of Standards and Technology, Gaithersburg, MD 20899-6203, USA
| | - Daniel Schiffels
- National Institute of Standards and Technology, Gaithersburg, MD 20899-6203, USA
| | - Michael Zwolak
- National Institute of Standards and Technology, Gaithersburg, MD 20899-6203, USA
| | - Anthony J Kearsley
- National Institute of Standards and Technology, Gaithersburg, MD 20899-6203, USA
| | - Samuel P Forry
- National Institute of Standards and Technology, Gaithersburg, MD 20899-6203, USA
| | - J Alexander Liddle
- National Institute of Standards and Technology, Gaithersburg, MD 20899-6203, USA
| |
Collapse
|
4
|
Shanks OC, Sivaganesan M, Peed L, Kelty CA, Blackwood AD, Greene MR, Noble RT, Bushon RN, Stelzer EA, Kinzelman J, Anan'eva T, Sinigalliano C, Wanless D, Griffith J, Cao Y, Weisberg S, Harwood VJ, Staley C, Oshima KH, Varma M, Haugland RA. Interlaboratory comparison of real-time PCR protocols for quantification of general fecal indicator bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:945-53. [PMID: 22133009 DOI: 10.1021/es2031455] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized protocol requires information on the reproducibility and sources of variation associated with qPCR methodology across laboratories. This study examines interlaboratory variability in the measurement of enterococci and Bacteroidales concentrations from standardized, spiked, and environmental sources of DNA using the Entero1a and GenBac3 qPCR methods, respectively. Comparisons are based on data generated from eight different research facilities. Special attention was placed on the influence of the DNA isolation step and effect of simplex and multiplex amplification approaches on interlaboratory variability. Results suggest that a crude lysate is sufficient for DNA isolation unless environmental samples contain substances that can inhibit qPCR amplification. No appreciable difference was observed between simplex and multiplex amplification approaches. Overall, interlaboratory variability levels remained low (<10% coefficient of variation) regardless of qPCR protocol.
Collapse
Affiliation(s)
- Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, Ohio, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Reiter M, Kirchner B, Müller H, Holzhauer C, Mann W, Pfaffl MW. Quantification noise in single cell experiments. Nucleic Acids Res 2011; 39:e124. [PMID: 21745823 PMCID: PMC3185419 DOI: 10.1093/nar/gkr505] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In quantitative single-cell studies, the critical part is the low amount of nucleic acids present and the resulting experimental variations. In addition biological data obtained from heterogeneous tissue are not reflecting the expression behaviour of every single-cell. These variations can be derived from natural biological variance or can be introduced externally. Both have negative effects on the quantification result. The aim of this study is to make quantitative single-cell studies more transparent and reliable in order to fulfil the MIQE guidelines at the single-cell level. The technical variability introduced by RT, pre-amplification, evaporation, biological material and qPCR itself was evaluated by using RNA or DNA standards. Secondly, the biological expression variances of GAPDH, TNFα, IL-1β, TLR4 were measured by mRNA profiling experiment in single lymphocytes. The used quantification setup was sensitive enough to detect single standard copies and transcripts out of one solitary cell. Most variability was introduced by RT, followed by evaporation, and pre-amplification. The qPCR analysis and the biological matrix introduced only minor variability. Both conducted studies impressively demonstrate the heterogeneity of expression patterns in individual cells and showed clearly today's limitation in quantitative single-cell expression analysis.
Collapse
Affiliation(s)
- M Reiter
- BioEPS GmbH, Lise-Meitner-Strasse 30, 85354 Freising, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009; 55:611-22. [PMID: 19246619 DOI: 10.1373/clinchem.2008.112797] [Citation(s) in RCA: 10957] [Impact Index Per Article: 684.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader's ability to evaluate critically the quality of the results presented or to repeat the experiments. CONTENT The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. SUMMARY Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results.
Collapse
Affiliation(s)
- Stephen A Bustin
- Centre for Academic Surgery, Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|