1
|
He X, Chang X, Zhuang S, Liu J, Wang Y, Qin Y, Guo T. Genome-wide DNA methylation profile and predictive biomarkers in premature ovarian insufficiency. J Genet Genomics 2025; 52:596-599. [PMID: 39426591 DOI: 10.1016/j.jgg.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Affiliation(s)
- Xinmiao He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Xinyue Chang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Shuning Zhuang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Jianing Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Yuteng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Ting Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Wang L, Wang Y, Li B, Zhang Y, Song S, Ding W, Xu D, Zhao Z. BMP6 regulates AMH expression via SMAD1/5/8 in goat ovarian granulosa cells. Theriogenology 2023; 197:167-176. [PMID: 36525856 DOI: 10.1016/j.theriogenology.2022.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Anti-Müllerian hormone (AMH) is produced by ovarian granulosa cells (GCs)and plays a major role in inhibiting the recruitment of primordial follicles and reducing the sensitivity of growing follicles to follicle-stimulating hormone (FSH). Bone morphogenetic protein 6 (BMP6) has similar spatiotemporal expression to AMH during follicular development, suggesting that BMP6 may regulate AMH expression. However, the specific mechanism by which BMP6 regulates AMH expression remains unclear. The objectives of this study were to examine the molecular pathway by which BMP6 regulates AMH expression. The results showed that BMP6 promoted the secretion and expression of AMH in goat ovarian GCs. Mechanistically, BMP6 upregulated the expression of sex-determining region Y-box 9 (SOX9) and GATA-binding factor 4 (GATA4), which was associated with the transcriptional initiation of AMH. AMH expression was significantly decreased by GATA4 knockdown. Moreover, BMP6 treatment promoted the phosphorylation of SMAD1/5/8, whereas inhibiting the SMAD1/5/8 signaling pathway significantly abolished BMP6-induced upregulation of AMH and GATA4 expression. Interestingly, the activation of SMAD1/5/8 alone did not affect the expression of AMH or GATA4. The results suggested that BMP6 upregulated GATA4 through the SMAD1/5/8 signaling pathway, which in turn promoted AMH expression.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Yukun Wang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Bijun Li
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Yiyu Zhang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Shuaifei Song
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Wenfei Ding
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Dejun Xu
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China.
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China.
| |
Collapse
|
3
|
Sánchez-Baizán N, Ribas L, Piferrer F. Improved biomarker discovery through a plot twist in transcriptomic data analysis. BMC Biol 2022; 20:208. [PMID: 36153614 PMCID: PMC9509653 DOI: 10.1186/s12915-022-01398-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Transcriptomic analysis is crucial for understanding the functional elements of the genome, with the classic method consisting of screening transcriptomics datasets for differentially expressed genes (DEGs). Additionally, since 2005, weighted gene co-expression network analysis (WGCNA) has emerged as a powerful method to explore relationships between genes. However, an approach combining both methods, i.e., filtering the transcriptome dataset by DEGs or other criteria, followed by WGCNA (DEGs + WGCNA), has become common. This is of concern because such approach can affect the resulting underlying architecture of the network under analysis and lead to wrong conclusions. Here, we explore a plot twist to transcriptome data analysis: applying WGCNA to exploit entire datasets without affecting the topology of the network, followed with the strength and relative simplicity of DEG analysis (WGCNA + DEGs). We tested WGCNA + DEGs against DEGs + WGCNA to publicly available transcriptomics data in one of the most transcriptomically complex tissues and delicate processes: vertebrate gonads undergoing sex differentiation. We further validate the general applicability of our approach through analysis of datasets from three distinct model systems: European sea bass, mouse, and human. Results In all cases, WGCNA + DEGs clearly outperformed DEGs + WGCNA. First, the network model fit and node connectivity measures and other network statistics improved. The gene lists filtered by each method were different, the number of modules associated with the trait of interest and key genes retained increased, and GO terms of biological processes provided a more nuanced representation of the biological question under consideration. Lastly, WGCNA + DEGs facilitated biomarker discovery. Conclusions We propose that building a co-expression network from an entire dataset, and only thereafter filtering by DEGs, should be the method to use in transcriptomic studies, regardless of biological system, species, or question being considered. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01398-w.
Collapse
|
4
|
BMP6 Promotes the Secretion of 17 Beta-Estradiol and Progesterone in Goat Ovarian Granulosa Cells. Animals (Basel) 2022; 12:ani12162132. [PMID: 36009721 PMCID: PMC9404746 DOI: 10.3390/ani12162132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to investigate the effects of BMP6 on the function of goat ovarian granulosa cells (GCs). The results showed that the exogenous addition of BMP6 did not affect the EdU-positive ratio of ovarian GCs and had no significant effect on the mRNA and protein expression levels of the proliferation-related gene PCNA (p > 0.05). Meanwhile, BMP6 had no significant effect on the cycle phase distribution of GCs but increased the mRNA expression of CDK4 (p < 0.05) and CCND1 (p < 0.01) and decreased the mRNA expression of CCNE1 (p < 0.01). Moreover, BMP6 had no significant effect on the apoptosis rate of GCs and did not affect the mRNA expression levels of apoptosis-related genes BAX, BCL2, and Caspase3 (p > 0.05). Importantly, BMP6 upregulated the secretion of 17 beta-estradiol (E2) and progesterone (P4) in ovarian GCs (p < 0.01). Further studies found that BMP6 inhibited the mRNA expression of 3β-HSD and steroid synthesis acute regulator (StAR) but significantly promoted the mRNA expression of the E2 synthesis rate-limiting enzyme CYP19A1 and the P4 synthesis rate-limiting enzyme CYP11A1 (p < 0.01). Taken together, these results showed that the exogenous addition of BMP6 did not affect the proliferation, cell cycle, and apoptosis of goat ovarian GCs but promoted the secretion of E2 and progesterone P4 in ovarian GCs by upregulating the mRNA expressions of CYP19A1 and CYP11A1.
Collapse
|
5
|
Lv J, Ge W, Ding Z, Zeng J, Wang W, Duan H, Zhang Y, Zhao X, Hu J. Regulatory role of dihydrotestosterone on BMP-6 receptors in granular cells of sheep antral follicles. Gene 2022; 810:146066. [PMID: 34838638 DOI: 10.1016/j.gene.2021.146066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic protein-6 (BMP-6) and dihydrotestosterone (DHT) affect steroid synthesis in follicles and regulate cell proliferation in the ovaries of female animals. However, little is known about granular cells (GCs) in sheep. We identified the key BMP-6 receptors, activin receptor-like kinase(ALK-6), and bone morphogenetic protein receptor type 2 (BMPRII) in sheep follicles using immunohistochemistry (IHC) and immunofluorescence (IF). Both ALK-6 and BMPRII were expressed in the GC layer, GC membranes, and cytoplasm. We evaluated ALK-6 and BMPRII expression at the follicular development stage using quantitative real-time PCR and western blotting to detect sheep GCs from large, medium, and small follicles (diameters of ≥5, 2-5, and ≤2 mm, respectively). The mRNA abundance and protein expression of ALK-6 and BMPRII were significantly higher in GCs from large follicles compared to those in GCs from small follicles (P < 0.05) and were the lowest in GCs from medium follicles. To assess whether DHT affects ALK-6 and BMPRII expression in sheep GCs, we cultured GCs from large follicles in vitro then incubated them with DHT (10-11, 10-9, 10-7 M). We found that 10-7-M DHT significantly inhibited ALK-6 and BMPRII mRNA and protein (P < 0.05). We further explored whether DHT regulates ALK-6 and BMPRII through the nuclear androgen receptor (AR) pathway and found that 10-6-M flutamide, a non-selective androgen inhibitor, partially relieved the inhibitory effect of 10-7-M DHT on ALK-6 and BMPRII expression. Thus, GCs in sheep antral follicles differentially expressed ALK-6 and BMPRII at various stages, indicating that BMP-6 plays different roles to some extent during the development of antral follicles, and that high concentrations of DHT can inhibit the expression of ALK-6 and BMPRII via the androgen receptor pathway in sheep GCs. The present study aimed to determine the expression of the main BMP-6-related main receptors, namely, ALK-6 and BMPRII, during the development of GCs in sheep antral follicles and a potential mechanism of DHT regulation in sheep GCs. Our findings lay a foundation for the further exploration of the effects of ovarian BMP-6 expression on follicular development.
Collapse
Affiliation(s)
- Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Wenbo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Wenjuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China.
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China.
| |
Collapse
|
6
|
Simon SE, Radhika G, Aravindakshan TV, Thomas M, Raji K. Discovery of single nucleotide polymorphisms in bone morphogenetic protein (BMP) genes of goats by double digest restriction-site associated DNA sequencing. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Two native goat breeds from Kerala, Malabari and Attappady Black, differ significantly in prolificacy (i.e. no. of kids born/kidding). Prolificacy is an important economic trait and the subject of genetic research showing that bone morphogenetic protein (BMP) genes have a significant effect. Double digest restriction-site associated DNA sequencing (ddRADseq) is a highly efficient and low cost technology for high density discovery of single nucleotide polymorphisms (SNPs), which could serve as predictive markers for animal breeding programs.
Aims
The study was aimed at discovering SNPs in BMP genes that affect prolificacy, using ddRADseq followed by validation of selected SNP.
Methods
Blood DNA samples of 10 highly prolific Malabari and 10 less prolific Attappady Black goats were pooled by group and subjected to ddRADseq. SNPs observed in BMP genes were investigated and compared between groups. A validation study was done for the c.614–32789C>T variant in 100 Malabari and 50 Attappady Black goats by using PCR-RFLP.
Key results
In total, 6333 variants were identified by ddRADseq. Three variants were identified in BMP genes, which included two intronic variants c.614–32789C>T and c.490+6793T>C, in genes BMP6 and BMP5 and a downstream gene variant near the BMPR1B gene. According to ddRADseq data, variants in BMP5 and BMP6 differed in allelic distribution between Malabari and Attappady Black goats. For c.490+6793T>C in BMP5, the CC genotype was predominant in the highly prolific Malabari whereas TC was present in the Attappady Black group. The variant c.614–32789C>T in BMP6 was genotyped as TC in Malabari and CC in Attappady Black goats by ddRADseq. This variant was predicted to have an effect on splicing, according to the tool SplicePort. On the basis of bioinformatics analysis and the role of BMP6 gene in follicular dynamics, the variant in BMP6 was selected for further validation studies. All three genotypes were identified by PCR-RFLP; the C allele was the rare allele in the population with an allele frequency of 0.36. Presence of both alleles C and T and the three genotypes CC, TC and TT in this larger population substantiated the robustness of ddRADseq technique.
Conclusions
The technique discovered high confidence SNPs, which could be used for further validation and association studies to develop markers for selection of animals and for genetic improvement of this complex trait.
Implications
Techniques such as ddRADseq provide a large number of SNPs, and investigation of those polymorphisms found across the genome will help to identify new loci affecting traits of interest. This, in turn, will aid in exploring genetically complex traits in a faster and cheaper manner.
Collapse
|
7
|
Liu Y, Chen M, Zhao X, Ren X, Shao S, Zou M, Zhang L. Bone morphogenetic protein 6 expression in cumulus cells is negatively associated with oocyte maturation. HUM FERTIL 2019; 24:290-297. [PMID: 31495245 DOI: 10.1080/14647273.2019.1660003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bone morphogenetic protein 6 (BMP6) is a regulatory peptide secreted by oocytes and granulosa cells that locally regulates folliculogenesis and follicular development. To determine BMP6 location, we studied BMP6 expression in human follicles using immunohistochemistry, real-time polymerase chain reaction (RT-PCR) and western blot analysis. RT-PCR was performed on 354 individual cumulus cell (CC) masses from 48 women to investigate the relationship between BMP6 mRNA expression in CCs and oocyte developmental potential. Results showed that BMP6 protein was mainly located in oocytes from preantral follicles and in granulosa cells from antral follicles. BMP6 mRNA expression was much higher in oocytes than in CCs and mural granulosa cells (mGCs) from preovulatory follicles (p < 0.01), and BMP6 protein level was higher in CCs than in mGCs (p < 0.05). BMP6 mRNA expression was higher in CCs from immature oocytes than in those from mature oocytes (p < 0.05). However, BMP6 mRNA expression in CCs was not associated with oocyte fertilization, embryo morphological grading, or implantation. In conclusion, BMP6 was mainly expressed in oocytes at all human follicular developmental stages and BMP6 mRNA expression in CCs may be negatively correlated with oocyte maturation. BMP6 expression could therefore be used as a biomarker of oocyte maturation.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Mei Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xue Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Shumin Shao
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Min Zou
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.,Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
8
|
Yang F, He L, Luo B, Ye F, Cui C, Yu X, Xu H, Zhao X, Yin H, Li D, Zhu Q, Wang Y. Effect of Bone Morphogenetic Protein 6 (BMP6) on Chicken Granulose Cells Proliferation and Progesterone Synthesis. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- F Yang
- Sichuan Agricultural University, China
| | - L He
- Sichuan Agricultural University, China
| | - B Luo
- Sichuan Agricultural University, China
| | - F Ye
- Sichuan Agricultural University, China
| | - C Cui
- Sichuan Agricultural University, China
| | - X Yu
- Sichuan Agricultural University, China
| | - H Xu
- Sichuan Agricultural University, China
| | - X Zhao
- Sichuan Agricultural University, China
| | - H Yin
- Sichuan Agricultural University, China
| | - D Li
- Sichuan Agricultural University, China
| | - Q Zhu
- Sichuan Agricultural University, China
| | - Y Wang
- Sichuan Agricultural University, China
| |
Collapse
|
9
|
El-Halawany N, Kandil OM, Shawky AEMA, Al-Tohamy AF, El-Sayd YA, Abdel-Shafy H, Abou-Fandoud ESI, Abdel-Azeem SN, El-Rahim AHA, Abdoon AS, Michal JJ, Jiang Z. Investigating the effect of GDF9 , BMP15 , BMP6 and BMPR1B polymorphisms on Egyptian sheep fecundity and their transcripts expression in ovarian cells. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Dev Biol 2017; 427:258-269. [DOI: 10.1016/j.ydbio.2017.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022]
|