1
|
Härtig W, Saul A, Kacza J, Grosche J, Goldhammer S, Michalski D, Wirths O. Immunolesion-induced loss of cholinergic projection neurones promotes β-amyloidosis and tau hyperphosphorylation in the hippocampus of triple-transgenic mice. Neuropathol Appl Neurobiol 2014; 40:106-20. [DOI: 10.1111/nan.12050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/28/2013] [Indexed: 01/13/2023]
Affiliation(s)
- W. Härtig
- Paul Flechsig Institute for Brain Research; University of Leipzig; Leipzig Germany
| | - A. Saul
- Division of Molecular Psychiatry; Department of Psychiatry; University of Göttingen; Göttingen Germany
| | - J. Kacza
- Institute of Anatomy, Histology and Embryology; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| | - J. Grosche
- Paul Flechsig Institute for Brain Research; University of Leipzig; Leipzig Germany
| | - S. Goldhammer
- Paul Flechsig Institute for Brain Research; University of Leipzig; Leipzig Germany
| | - D. Michalski
- Department of Neurology; University of Leipzig; Leipzig Germany
| | - O. Wirths
- Division of Molecular Psychiatry; Department of Psychiatry; University of Göttingen; Göttingen Germany
| |
Collapse
|
2
|
Westbroek W, Gustafson AM, Sidransky E. Exploring the link between glucocerebrosidase mutations and parkinsonism. Trends Mol Med 2011; 17:485-93. [PMID: 21723784 PMCID: PMC3351003 DOI: 10.1016/j.molmed.2011.05.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 01/02/2023]
Abstract
Clinical, genetic and pathological studies demonstrate that mutations in glucocerebrosidase (GBA), which encodes the lysosomal enzyme deficient in Gaucher disease (GD), are risk factors for Parkinson disease (PD) and related disorders. Some patients with GD and Gaucher carriers develop parkinsonism. Furthermore, subjects with PD have an increased frequency of GBA mutations. GBA-mutation carriers exhibit diverse parkinsonian phenotypes and have glucocerebrosidase-positive Lewy bodies. Although the mechanism for this association is unknown, we present several theories, including protein aggregation, prion transmission, lipid accumulation and impaired autophagy, mitophagy or trafficking. Each model has inherent limitations, and a second-hit mutation might be essential. Elucidation of the basis for this link will have important consequences for studying these diseases and should provide insights into lysosomal pathways and potential treatment strategies.
Collapse
Affiliation(s)
- Wendy Westbroek
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Ann Marie Gustafson
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Yap TL, Gruschus JM, Velayati A, Westbroek W, Goldin E, Moaven N, Sidransky E, Lee JC. Alpha-synuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases. J Biol Chem 2011; 286:28080-8. [PMID: 21653695 PMCID: PMC3151053 DOI: 10.1074/jbc.m111.237859] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/03/2011] [Indexed: 01/26/2023] Open
Abstract
The presynaptic protein α-synuclein (α-syn), particularly in its amyloid form, is widely recognized for its involvement in Parkinson disease (PD). Recent genetic studies reveal that mutations in the gene GBA are the most widespread genetic risk factor for parkinsonism identified to date. GBA encodes for glucocerebrosidase (GCase), the enzyme deficient in the lysosomal storage disorder, Gaucher disease (GD). In this work, we investigated the possibility of a physical linkage between α-syn and GCase, examining both wild type and the GD-related N370S mutant enzyme. Using fluorescence and nuclear magnetic resonance spectroscopy, we determined that α-syn and GCase interact selectively under lysosomal solution conditions (pH 5.5) and mapped the interaction site to the α-syn C-terminal residues, 118-137. This α-syn-GCase complex does not form at pH 7.4 and is stabilized by electrostatics, with dissociation constants ranging from 1.2 to 22 μm in the presence of 25 to 100 mm NaCl. Intriguingly, the N370S mutant form of GCase has a reduced affinity for α-syn, as does the inhibitor conduritol-β-epoxide-bound enzyme. Immunoprecipitation and immunofluorescence studies verified this interaction in human tissue and neuronal cell culture, respectively. Although our data do not preclude protein-protein interactions in other cellular milieux, we suggest that the α-syn-GCase association is favored in the lysosome, and that this noncovalent interaction provides the groundwork to explore molecular mechanisms linking PD with mutant GBA alleles.
Collapse
Affiliation(s)
- Thai Leong Yap
- From the Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, and
| | - James M. Gruschus
- From the Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, and
| | - Arash Velayati
- the Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Wendy Westbroek
- the Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Ehud Goldin
- the Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Nima Moaven
- the Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Ellen Sidransky
- the Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jennifer C. Lee
- From the Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, and
| |
Collapse
|
4
|
Shim S, Lee W, Chung H, Jung YK. Amyloid β-induced FOXRED2 mediates neuronal cell death via inhibition of proteasome activity. Cell Mol Life Sci 2011; 68:2115-27. [PMID: 20972601 PMCID: PMC11115111 DOI: 10.1007/s00018-010-0561-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/16/2010] [Accepted: 10/05/2010] [Indexed: 01/03/2023]
Abstract
Proteasome inhibition has been regarded as one of the mediators of Aβ neurotoxicity. In this study, we found that FOXRED2, a novel endoplasmic reticulum (ER) residential protein, is highly up-regulated by Aβ in rat cortical neurons and SH-SY5Y cells. Over-expression of FOXRED2 inhibits proteasome activity in the microsomal fractions containing ER and interferes with proteasome assembly, as evidenced by gel filtration and native gel electrophoresis analysis. In contrast, reduced expression of FOXRED2 rescues Aβ-induced inhibition of proteasome activity. FOXRED2 is an unstable protein with two degradation boxes and one KEN box, and its N-terminal oxidoreductase domain is required for proteasome inhibition. Ectopic expression of FOXRED2 induces ER stress-mediated cell death via caspase-12, which is inhibited by Salubrinal. Further, down-regulation of FOXRED2 expression attenuates Aβ-induced cell death and the ER stress response. These results suggest that up-regulated FOXRED2 inhibits proteasome activity by interfering with 26S proteasome assembly to contribute to Aβ neurotoxicity via an ER stress response.
Collapse
Affiliation(s)
- SangMi Shim
- Creative Research Initiative (CRI)–Acceleration Research Laboratory, School of Biological Science/Bio-MAX Institute, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Korea
| | - WonJae Lee
- Creative Research Initiative (CRI)–Acceleration Research Laboratory, School of Biological Science/Bio-MAX Institute, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Korea
| | - HaeWon Chung
- Creative Research Initiative (CRI)–Acceleration Research Laboratory, School of Biological Science/Bio-MAX Institute, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Korea
| | - Yong-Keun Jung
- Creative Research Initiative (CRI)–Acceleration Research Laboratory, School of Biological Science/Bio-MAX Institute, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Korea
| |
Collapse
|
5
|
Liu Y, Ho LH, Carver JA, Pukala TL. Ion Mobility Mass Spectrometry Studies of the Inhibition of Alpha Synuclein Amyloid Fibril Formation by ( - )-Epigallocatechin-3-Gallate. Aust J Chem 2011. [DOI: 10.1071/ch10334] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ion mobility-mass spectrometry (IM-MS) is emerging as an important biophysical technique for the structural analysis of proteins and their assemblies, in particular for structurally heterogeneous systems such as those on the protein misfolding and aggregation pathway. Using IM-MS we have monitored amyloid fibril formation of A53T α-synuclein, a mutant synuclein protein associated with Parkinson’s disease, and identified that a conformational change towards a more compact structure occurs during the initial stages of aggregation. Binding of A53T α-synuclein to a flavenoid based amyloid fibril inhibitor, (–)-epigallocatechin-3-gallate, has been observed with a 1:1 stoichiometry. By analysis of ion collision cross-sections, we show epigallocatechin gallate binding prevents protein conformational change, and in turn decreases the formation of fibrillar aggregates.
Collapse
|
6
|
McCall LI, Matlashewski G. Localization and induction of the A2 virulence factor in Leishmania: evidence that A2 is a stress response protein. Mol Microbiol 2010; 77:518-30. [DOI: 10.1111/j.1365-2958.2010.07229.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Härtig W, Goldhammer S, Bauer U, Wegner F, Wirths O, Bayer TA, Grosche J. Concomitant detection of beta-amyloid peptides with N-terminal truncation and different C-terminal endings in cortical plaques from cases with Alzheimer's disease, senile monkeys and triple transgenic mice. J Chem Neuroanat 2010; 40:82-92. [PMID: 20347032 DOI: 10.1016/j.jchemneu.2010.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/26/2022]
Abstract
The disturbed metabolism of beta-amyloid peptides generated from amyloid precursor protein is widely considered as a main factor during the pathogenesis of Alzheimer's disease. A neuropathological hallmark in the brains from cases with Alzheimer's disease are senile plaques mainly composed of hardly soluble beta-amyloid peptides comprising up to 43 amino acids. Age-dependent cortical beta-amyloidosis was also shown in several transgenic mice and old individuals from various mammalian species, e.g., non-human primates. Beta-amyloid(1-42) is believed to be the main component in the core of senile plaques, whereas less hydrophobic beta-amyloid(1-40) predominantly occurs in the outer rim of plaques. Amino-terminally truncated pyroglutamyl-beta-amyloid(pE3-x) was recently found to be a beta-amyloid species of high relevance to the progression of the disease. While a few biochemical studies provided data on the co-occurrence of several beta-amyloid forms, their concomitant histochemical detection is still lacking. Here, we present a novel triple immunofluorescence labelling of amino- and differently carboxy-terminally truncated beta-amyloid peptides in cortical plaques from a case with Alzheimer's disease, senile macaques and baboons, and triple transgenic mice with age-dependent beta-amyloidosis and tau hyperphosphorylation. Additionally, beta-amyloid(pE3-x) and total beta-amyloid were concomitantly detected with beta-amyloid peptides ending with amino acid 40 or 42, respectively. Simultaneous staining of several beta-amyloid species reveals for instance vascular amyloid containing beta-amyloid(pE3-x) in Alzheimer's disease and monkeys, and may contribute to the further elucidation of beta-amyloidosis in neurodegenerative disorders and animal models.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, Faculty of Medicine, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Yan Z, Wang J, Zhang Y, Qin M, Wang W. Nucleation process in the folding of a domain-swapped dimer. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:021910. [PMID: 20365598 DOI: 10.1103/physreve.81.021910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 12/07/2009] [Indexed: 05/29/2023]
Abstract
Nucleation processes are important for the understanding in protein dynamics. To evaluate the effect of nucleation mechanism in dimerization process, a domain-swapped dimer (Esp8) is simulated with the symmetrized Gō model and the classical Gō model. The pathways of the dimerization are analyzed with computational phi -analysis method. It is found out that some nuclei are observed in the kinetic steps of the dimeric association though the whole pathway is a process with multiple intermediate states. The key residues in the nuclei are rather similar to those observed in the monomeric folding. The differences with the monomeric cases are also discussed. These differences illustrate the effects of dimeric feature on the nucleation process. Besides, manual mutations are carried out to illustrate the importance of the interactions related to the nuclei. It is observed that the mutations in the nuclei-related interactions apparently change the dynamics while other mutations have little effect on the kinetics. All of these results outline a picture that the nucleation processes act as the fundamental steps of high-order organization of protein systems.
Collapse
Affiliation(s)
- Zhiqiang Yan
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
9
|
Adekar SP, Klyubin I, Macy S, Rowan MJ, Solomon A, Dessain SK, O'Nuallain B. Inherent anti-amyloidogenic activity of human immunoglobulin gamma heavy chains. J Biol Chem 2009; 285:1066-74. [PMID: 19889627 DOI: 10.1074/jbc.m109.044321] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously shown that a subpopulation of naturally occurring human IgGs were cross-reactive against conformational epitopes on pathologic aggregates of Abeta, a peptide that forms amyloid fibrils in the brains of patients with Alzheimer disease, inhibited amyloid fibril growth, and dissociated amyloid in vivo. Here, we describe similar anti-amyloidogenic activity that is a general property of free human Ig gamma heavy chains. A gamma(1) heavy chain, F1, had nanomolar binding to an amyloid fibril-related conformational epitope on synthetic oligomers and fibrils as well as on amyloid-laden tissue sections. F1 did not bind to native Abeta monomers, further indicating the conformational nature of its binding site. The inherent anti-amyloidogenic activity of Ig gamma heavy chains was demonstrated by nanomolar amyloid fibril and oligomer binding by polyclonal and monoclonal human heavy chains that were isolated from inert or weakly reactive antibodies. Most importantly, the F1 heavy chain prevented in vitro fibril growth and reduced in vivo soluble Abeta oligomer-induced impairment of rodent hippocampal long term potentiation, a cellular mechanism of learning and memory. These findings demonstrate that free human Ig gamma heavy chains comprise a novel class of molecules for developing potential therapeutics for Alzheimer disease and other amyloid disorders. Moreover, establishing the molecular basis for heavy chain-amyloidogenic conformer interactions should advance understanding on the types of interactions that these pathologic assemblies have with biological molecules.
Collapse
Affiliation(s)
- Sharad P Adekar
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Lindner AB, Demarez A. Protein aggregation as a paradigm of aging. Biochim Biophys Acta Gen Subj 2009; 1790:980-96. [PMID: 19527771 DOI: 10.1016/j.bbagen.2009.06.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 12/23/2022]
Abstract
The process of physiological decline leading to death of the individual is driven by the deteriorating capacity to withstand extrinsic and intrinsic hazards, resulting in damage accumulation with age. The dynamic changes with time of the network governing the outcome of misfolded proteins, exemplifying as intrinsic hazards, is considered here as a paradigm of aging. The main features of the network, namely, the non-linear increase of damage and the presence of amplifying feedback loops within the system are presented through a survey of the different components of the network and related cellular processes in aging and disease.
Collapse
Affiliation(s)
- Ariel B Lindner
- INSERM U571, Paris Descartes University, Paris, F-75015, France.
| | | |
Collapse
|