1
|
Koutsoumpli G, Stasiukonyte N, Hoogeboom BN, Daemen T. An in vitro CD8 T-cell priming assay enables epitope selection for hepatitis C virus vaccines. Vaccine 2024; 42:126032. [PMID: 38964950 DOI: 10.1016/j.vaccine.2024.05.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
For the rational design of epitope-specific vaccines, identifying epitopes that can be processed and presented is essential. As algorithm-based epitope prediction is frequently discordant with actually recognized CD8+ T-cell epitopes, we developed an in vitro CD8 T-cell priming protocol to enable the identification of truly and functionally expressed HLA class I epitopes. The assay was established and validated to identify epitopes presented by hepatitis C virus (HCV)-infected cells. In vitro priming of naïve CD8 T cells was achieved by culturing unfractionated PBMCs in the presence of a specific cocktail of growth factors and cytokines, and next exposing the cells to hepatic cells expressing the NS3 protein of HCV. After a 10-day co-culture, HCV-specific T-cell responses were identified based on IFN-γ ELISpot analysis. For this, the T cells were restimulated with long synthetic peptides (SLPs) spanning the whole NS3 protein sequence allowing the identification of HCV-specificity. We demonstrated that this protocol resulted in the in vitro priming of naïve precursors to antigen-experienced T-cells specific for 11 out of 98 SLPs tested. These 11 SLPs contain 12 different HLA-A*02:01-restricted epitopes, as predicted by a combination of three epitope prediction algorithms. Furthermore, we identified responses against 3 peptides that were not predicted to contain any immunogenic HLA class I epitopes, yet showed HCV-specific responses in vitro. Separation of CD8+ and CD8- T cells from PBMCs primed in vitro showed responses only upon restimulation with short peptides. We established an in vitro method that enables the identification of HLA class I epitopes resulting from cross-presented antigens and that can cross-prime T cells and allows the effective selection of functional immunogenic epitopes, but also less immunogenic ones, for the design of tailored therapeutic vaccines against persistent viral infections and tumor antigens.
Collapse
Affiliation(s)
- Georgia Koutsoumpli
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO Box 30 001, HPC EB88, 9700RB Groningen, the Netherlands
| | - Neringa Stasiukonyte
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO Box 30 001, HPC EB88, 9700RB Groningen, the Netherlands
| | - Baukje Nynke Hoogeboom
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO Box 30 001, HPC EB88, 9700RB Groningen, the Netherlands
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO Box 30 001, HPC EB88, 9700RB Groningen, the Netherlands.
| |
Collapse
|
2
|
Zhang J, Guo J, Yang N, Huang Y, Hu T, Rao C. Endoplasmic reticulum stress-mediated cell death in liver injury. Cell Death Dis 2022; 13:1051. [PMID: 36535923 PMCID: PMC9763476 DOI: 10.1038/s41419-022-05444-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum is an important intracellular organelle that plays an important role in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are induced when the body is exposed to adverse external stimuli. It has been established that ERS can induce different cell death modes, including autophagy, apoptosis, ferroptosis, and pyroptosis, through three major transmembrane receptors on the ER membrane, including inositol requirement enzyme 1α, protein kinase-like endoplasmic reticulum kinase and activating transcription factor 6. These different modes of cell death play an important role in the occurrence and development of various diseases, such as neurodegenerative diseases, inflammation, metabolic diseases, and liver injury. As the largest metabolic organ, the liver is rich in enzymes, carries out different functions such as metabolism and secretion, and is the body's main site of protein synthesis. Accordingly, a well-developed endoplasmic reticulum system is present in hepatocytes to help the liver perform its physiological functions. Current evidence suggests that ERS is closely related to different stages of liver injury, and the death of hepatocytes caused by ERS may be key in liver injury. In addition, an increasing body of evidence suggests that modulating ERS has great potential for treating the liver injury. This article provided a comprehensive overview of the relationship between ERS and four types of cell death. Moreover, we discussed the mechanism of ERS and UPR in different liver injuries and their potential therapeutic strategies.
Collapse
Affiliation(s)
- Jian Zhang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Jiafu Guo
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Nannan Yang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Yan Huang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Tingting Hu
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Chaolong Rao
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XState Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| |
Collapse
|
3
|
Tang Y, Zhou X, Cao T, Chen E, Li Y, Lei W, Hu Y, He B, Liu S. Endoplasmic Reticulum Stress and Oxidative Stress in Inflammatory Diseases. DNA Cell Biol 2022; 41:924-934. [PMID: 36356165 DOI: 10.1089/dna.2022.0353] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yun Tang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - En Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenbo Lei
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Devi P, Punga T, Bergqvist A. Activation of the Ca2+/NFAT Pathway by Assembly of Hepatitis C Virus Core Protein into Nucleocapsid-like Particles. Viruses 2022; 14:v14040761. [PMID: 35458491 PMCID: PMC9031069 DOI: 10.3390/v14040761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) is the primary pathogen responsible for liver cirrhosis and hepatocellular carcinoma. The main virion component, the core (C) protein, has been linked to several aspects of HCV pathology, including oncogenesis, immune evasion and stress responses. We and others have previously shown that C expression in various cell lines activates Ca2+ signaling and alters Ca2+ homeostasis. In this study, we identified two distinct C protein regions that are required for the activation of Ca2+/NFAT signaling. In the basic N-terminal domain, which has been implicated in self-association of C, amino acids 1–68 were critical for NFAT activation. Sedimentation analysis of four mutants in this domain revealed that association of the C protein into nucleocapsid-like particles correlated with NFAT-activated transcription. The internal, lipid droplet-targeting domain was not required for NFAT-activated transcription. Finally, the C-terminal ER-targeting domain was required in extenso for the C protein to function. Our results indicate that targeting of HCV C to the ER is necessary but not sufficient for inducing Ca2+/NFAT signaling. Taken together, our data are consistent with a model whereby proteolytic intermediates of C with an intact transmembrane ER-anchor assemble into pore-like structures in the ER membrane.
Collapse
Affiliation(s)
- Priya Devi
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden;
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE 75123 Uppsala, Sweden;
| | - Anders Bergqvist
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden;
- Clinical Microbiology and Hospital Infection Control, Uppsala University Hospital, SE 75185 Uppsala, Sweden
- Correspondence: ; Tel.: +46-186113937
| |
Collapse
|
5
|
AbdElHady MS, Ibrahim ST, Adam A, Elnekidy A, Lewis N, Gawesh RI. DO VITAMIN D DEFICIENCY AND HEPATITIS C VIRUS INFECTION PLAY A ROLE IN OXIDATIVE STRESS IN PATIENTS ON MAINTENANCE HEMODIALYSIS? ALEXANDRIA JOURNAL OF MEDICINE 2021. [DOI: 10.1080/20905068.2021.1956831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mahmoud S. AbdElHady
- Department of Internal Medicine and Nephrology Department, Kafr ELSheikh University, Egypt
| | - Sara T Ibrahim
- Department of Internal Medicine and Nephrology Department, Faculty of Medicine, Alexandria University, Alexandria Egypt
| | - Ahmed Adam
- Department of Internal Medicine and Nephrology Department, Faculty of Medicine, Alexandria University, Alexandria Egypt
| | - Abelaziz Elnekidy
- Department of Radiodiagnosis Faculty of Medicine Alexandria University, Egypt
| | - Neveen Lewis
- Department of Clinical Pathology Department, Alexandria University Hospital, Egypt
| | - Rasha Ibrahim Gawesh
- Department of Internal Medicine and Nephrology Department, Faculty of Medicine, Alexandria University, Alexandria Egypt
| |
Collapse
|
6
|
Ebrahimi M, Norouzi P, Aazami H, Moosavi-Movahedi AA. Review on oxidative stress relation on COVID-19: Biomolecular and bioanalytical approach. Int J Biol Macromol 2021; 189:802-818. [PMID: 34418419 PMCID: PMC8372478 DOI: 10.1016/j.ijbiomac.2021.08.095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 disease has put life of people in stress worldwide from many aspects. Since the virus has mutated in absolutely short period of time the challenge to find a suitable vaccine has become harder. Infection to COVID-19, especially at severe life threatening states is highly dependent on the strength of the host immune system. This system is partially dependent on the balance between oxidative stress and antioxidant. Besides, this virus still has unknown mechanism of action companied by a probable commune period. From another hand, some reactive oxygen species (ROS) levels can be helpful on the state determination of the disease. Thus it could be possible to use modern bioanalytical techniques for their detection and determination, which could indicate the disease state at the golden time window since they have the potential to show whether specific DNA, RNA, enzymes and proteins are affected. This also could be used as a preclude study or a reliable pathway to define the best optimized time of cure beside effective medical actions. Herein, some ROS and their relation with SARS-CoV-2 virus have been considered. In addition, modern bioelectroanalytical techniques on this approach from quantitative and qualitative points of view have been reviewed.
Collapse
Affiliation(s)
- Mehrnaz Ebrahimi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Hossein Aazami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Abstract
Introduction: Oxidative stress underlies the pathophysiology of various etiologies of chronic liver disease and contributes to the development of hepatocarcinogenesis.Areas covered: This review focuses on the impact of oxidative stress in various etiologies of chronic liver disease such as alcoholic liver disease (ALD), nonalcoholic steatohepatitis (NASH), hepatitis B virus (HBV), and hepatitis C virus (HCV) infection. The efficacy of antioxidants in laboratory, animal, and clinical studies in chronic liver disease is also reviewed.Expert opinion: Currently, there are limited targeted pharmacotherapeutics for NASH and no pharmacotherapeutics for ALD and antioxidant supplementation may be useful in these conditions to improve liver function and reverse fibrosis. Antioxidants may also be used in patients with HBV or HCV infection to supplement antiviral therapies. Specific genotypes of antioxidant and prooxidant genes render patients more susceptible to liver cirrhosis and hepatocellular carcinoma while other individual characteristics like age, genotype, and metabolomic profiling can influence the efficacy of antioxidants on CLD. More research needs to be done to establish the safety, efficacy, and dosage of antioxidants and to establish the ideal patient profile that will benefit the most from antioxidant treatment.
Collapse
Affiliation(s)
- Sophia Seen
- Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
8
|
Li J, Chen H, Lou J, Bao G, Wu C, Lou Z, Wang X, Ding J, Li Z, Xiao J, Xu H, Gao W, Zhou K. Exenatide improves random-pattern skin flap survival via TFE3 mediated autophagy augment. J Cell Physiol 2021; 236:3641-3659. [PMID: 33044023 DOI: 10.1002/jcp.30102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/05/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
Random-pattern skin flaps are widely applied to rebuild and restore soft-tissue damage in reconstructive surgery; however, ischemia and subsequent ischemia-reperfusion injury lead to flap necrosis and are major complications. Exenatide, a glucagon-like peptide-1 analog, exerts therapeutic benefits for diabetic wounds, cardiac injury, and nonalcoholic fatty liver disease. Furthermore, Exenatide is a known activator of autophagy, which is a complex process of subcellular degradation that may enhance the viability of random skin flaps. In this study, we explored whether exenatide can improve skin flap survival. Our results showed that exenatide augments autophagy, increases flap viability, enhances angiogenesis, reduces oxidative stress, and alleviates pyroptosis. Coadministration of exenatide with 3-methyladenine and chloroquine, potent inhibitors of autophagy, reversed the beneficial effects, suggesting that the therapeutic benefits of exenatide for skin flaps are due largely to autophagy activation. Mechanistically, we identified that exenatide enhanced activation and nuclear translocation of TFE3, which leads to autophagy activation. Furthermore, we found that exenatide activates the AMPK-SKP2-CARM1 and AMPK-mTOR signaling pathways, which likely lead to exenatide's effects on activating TFE3. Overall, our findings suggest that exenatide may be a potent therapy to prevent flap necrosis, and we also reveal novel mechanistic insight into exenatide's effect on flap survival.
Collapse
Affiliation(s)
- Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Huanwen Chen
- School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Junsheng Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Guodong Bao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Zhiling Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Xingyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Zhijie Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
10
|
Mira C, Yepes JO, Henao LF, Montoya Guzmán M, Navas MC. EXPRESIÓN DE LA PROTEÍNA CORE DEL VIRUS DE LA HEPATITIS C EN CÉLULAS HEPG2 USANDO EL VIRUS DEL BOSQUE DE SEMLIKI. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v26n1.79365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El Virus de la Hepatitis C (VHC) codifica la proteína Core. Core, además de ser la subunidad de la cápside, participa en diferentes mecanismos de patogénesis de la infección por VHC. Dado que el sistema de replicación in vitrodel VHC presenta limitaciones, el uso de vectores virales podría ser una herramienta útil para estudiar las propiedades de la proteína Core. Con el fin de validar el vector con el Virus del Bosque de Semliki (SFV) para el estudio de Core en células HepG2, se evaluó la expresión de la proteína verde fluorescente (GFP) y la proteína Core utilizando este vector viral. Las expresiones de GFP y Core se detectaron en células HepG2 transducidas con rSFV de 24 a 96 horas postransducción. La expresión de la proteína Core fue inferior a la expresión de GFP en las células HepG2. Teniendo en cuenta que la proteína Core del VHC puede regular la actividad del gen p53, se evaluó el nivel transcripcional de este gen. Se observó una disminución en el nivel de mARN de p53 en las células luego de la transducción, comparado con las células control. Aunque las células transducidas con rSFV-Core presentaron el menor nivel de mARN de p53,la diferencia no fue significativa comparada con las células transducidas con rSFV-GFP. Los resultados confirman que rSFV permite la expresión transitoria de proteínas heterólogas en líneas celulares de hepatoma humano. Se necesitan estudios adicionales para determinar si la expresión disminuida de Core puede deberse a degradación de la proteína viral.
Collapse
|
11
|
Chen H, Feng R, Muhammad I, Abbas G, Zhang Y, Ren Y, Huang X, Zhang R, Diao L, Wang X, Li G. Protective effects of hypericin against infectious bronchitis virus induced apoptosis and reactive oxygen species in chicken embryo kidney cells. Poult Sci 2020; 98:6367-6377. [PMID: 31399732 PMCID: PMC7107269 DOI: 10.3382/ps/pez465] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Avian infectious bronchitis virus (IBV), a coronavirus, causes infectious bronchitis leading to enormous economic loss in the poultry industry worldwide. Hypericin (HY) is an excellent compound that has been investigated in antiviral, antineoplastic, and antidepressant. To investigate the inhibition effect of HY on IBV infection in chicken embryo kidney (CEK) cells, 3 different experimental designs: pre-treatment of cells prior to IBV infection, direct treatment of IBV-infected cells, and pre-treatment of IBV prior to cell infection were used. Quantitative real-time PCR (qRT-PCR), immunofluorescence assay (IFA), flow cytometry, and fluorescence microscopy were performed and virus titer was determined by TCID50. The results revealed that HY had a good anti-IBV effect when HY directly treated the IBV-infected cells, and virus infectivity decreased in a dose-dependent manner. Furthermore, HY inhibited IBV-induced apoptosis in CEK cells, and significantly reduced the mRNA expression levels of Fas, FasL, JNK, Bax, Caspase 3, and Caspase 8, and significantly increased Bcl-2 mRNA expression level in CEK cells. In addition, HY treatment could decrease IBV-induced reactive oxygen species (ROS) generation in CEK cells. These results suggested that HY showed potential antiviral activities against IBV infection involving the inhibition of apoptosis and ROS generation in CEK cells.
Collapse
Affiliation(s)
- Huijie Chen
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.,College of Biological and Pharmaceutical Engineering, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Rui Feng
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ishfaq Muhammad
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ghulam Abbas
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yudong Ren
- College of Electrical and Information, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodan Huang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ruili Zhang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lei Diao
- College of Biological and Pharmaceutical Engineering, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guangxing Li
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Ríos-Ocampo WA, Navas MC, Buist-Homan M, Faber KN, Daemen T, Moshage H. Hepatitis C Virus Proteins Core and NS5A Are Highly Sensitive to Oxidative Stress-Induced Degradation after eIF2α/ATF4 Pathway Activation. Viruses 2020; 12:v12040425. [PMID: 32283772 PMCID: PMC7232227 DOI: 10.3390/v12040425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is accompanied by increased oxidative stress and endoplasmic reticulum stress as a consequence of viral replication, production of viral proteins, and pro-inflammatory signals. To overcome the cellular stress, hepatocytes have developed several adaptive mechanisms like anti-oxidant response, activation of Unfolded Protein Response and autophagy to achieve cell survival. These adaptive mechanisms could both improve or inhibit viral replication, however, little is known in this regard. In this study, we investigate the mechanisms by which hepatocyte-like (Huh7) cells adapt to cellular stress in the context of HCV protein overexpression and oxidative stress. Huh7 cells stably expressing individual HCV (Core, NS3/4A and NS5A) proteins were treated with the superoxide anion donor menadione to induce oxidative stress. Production of reactive oxygen species and activation of caspase 3 were quantified. The activation of the eIF2α/ATF4 pathway and changes in the steady state levels of the autophagy-related proteins LC3 and p62 were determined either by quantitative polymerase chain reaction (qPCR) or Western blotting. Huh7 cells expressing Core or NS5A demonstrated reduced oxidative stress and apoptosis. In addition, phosphorylation of eIF2α and increased ATF4 and CHOP expression was observed with subsequent HCV Core and NS5A protein degradation. In line with these results, in liver biopsies from patients with hepatitis C, the expression of ATF4 and CHOP was confirmed. HCV Core and NS5A protein degradation was reversed by antioxidant treatment or silencing of the autophagy adaptor protein p62. We demonstrated that hepatocyte-like cells expressing HCV proteins and additionally exposed to oxidative stress adapt to cellular stress through eIF2a/ATF4 activation and selective degradation of HCV pro-oxidant proteins Core and NS5A. This selective degradation is dependent on p62 and results in increased resistance to apoptotic cell death induced by oxidative stress. This mechanism may provide a new key for the study of HCV pathology and lead to novel clinically applicable therapeutic interventions.
Collapse
Affiliation(s)
- W. Alfredo Ríos-Ocampo
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.B.-H.); (K.N.F.); (H.M.)
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Gastrohepatology Group, Medicine School, University of Antioquia, Medellin 050010, Colombia;
- Correspondence: ; Tel.: +31-50-361-2364 or +31-638-955-716
| | - María-Cristina Navas
- Gastrohepatology Group, Medicine School, University of Antioquia, Medellin 050010, Colombia;
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.B.-H.); (K.N.F.); (H.M.)
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.B.-H.); (K.N.F.); (H.M.)
| | - Toos Daemen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.B.-H.); (K.N.F.); (H.M.)
| |
Collapse
|
13
|
Hazari Y, Bravo-San Pedro JM, Hetz C, Galluzzi L, Kroemer G. Autophagy in hepatic adaptation to stress. J Hepatol 2020; 72:183-196. [PMID: 31849347 DOI: 10.1016/j.jhep.2019.08.026] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
Autophagy is an evolutionarily ancient process whereby eukaryotic cells eliminate disposable or potentially dangerous cytoplasmic material, to support bioenergetic metabolism and adapt to stress. Accumulating evidence indicates that autophagy operates as a critical quality control mechanism for the maintenance of hepatic homeostasis in both parenchymal (hepatocytes) and non-parenchymal (stellate cells, sinusoidal endothelial cells, Kupffer cells) compartments. In line with this notion, insufficient autophagy has been aetiologically involved in the pathogenesis of multiple liver disorders, including alpha-1-antitrypsin deficiency, Wilson disease, non-alcoholic steatohepatitis, liver fibrosis and hepatocellular carcinoma. Here, we critically discuss the importance of functional autophagy for hepatic physiology, as well as the mechanisms whereby defects in autophagy cause liver disease.
Collapse
Affiliation(s)
- Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - José Manuel Bravo-San Pedro
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research in Aging, Novato, CA, USA.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université Paris Descartes/Paris V, Paris, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
Bender D, Hildt E. Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. Int J Mol Sci 2019; 20:ijms20184659. [PMID: 31546975 PMCID: PMC6769940 DOI: 10.3390/ijms20184659] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
With respect to their genome and their structure, the human hepatitis B virus (HBV) and hepatitis C virus (HCV) are complete different viruses. However, both viruses can cause an acute and chronic infection of the liver that is associated with liver inflammation (hepatitis). For both viruses chronic infection can lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Reactive oxygen species (ROS) play a central role in a variety of chronic inflammatory diseases. In light of this, this review summarizes the impact of both viruses on ROS-generating and ROS-inactivating mechanisms. The focus is on the effect of both viruses on the transcription factor Nrf2 (nuclear factor erythroid 2 (NF-E2)-related factor 2). By binding to its target sequence, the antioxidant response element (ARE), Nrf2 triggers the expression of a variety of cytoprotective genes including ROS-detoxifying enzymes. The review summarizes the literature about the pathways for the modulation of Nrf2 that are deregulated by HBV and HCV and describes the impact of Nrf2 deregulation on the viral life cycle of the respective viruses and the virus-associated pathogenesis.
Collapse
Affiliation(s)
- Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| |
Collapse
|
15
|
Navas MC, Stoll-Keller F, Pavlovic J. Lack of expression of hepatitis C virus core protein in human monocyte-erived dendritic cells using recombinant semliki forest virus. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n3.79368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C Virus belongs to the Flaviviridae family. One proposed mechanism of HCV persistence in the ability to infect hematopoietic cells, including Dendritic cells (DCs). HCV infection of DCs could impair their functions that represent one of the mechanisms, thus hampering viral clearance by the host immune system. Among HCV-encoded proteins, the highly conserved Core protein has been suggested to be responsible for the immunomodulatory properties of this Hepacivirus. Recombinant viral vectors expressing the HCV Core protein and allowing its transduction and therefore the expression of the protein into DCs could be useful tools for the analysis of the properties of the Core protein. Vaccinia Virus and retrovirus have been used to transduce human DCs. Likewise, gene transfer into DCs using Semliki Forest Virus has been reported. This study aimed to express the HCV Core protein in human monocyte-derived DCs using an SFV vector, in which the subgenomic RNA encoding the structural proteins was replaced by the HCV Core sequence and then analyze the effects of its expression on DCs functions.
Collapse
|