1
|
Shajan B, Bastiampillai T, Hellyer SD, Nair PC. Unlocking the secrets of trace amine-associated receptor 1 agonists: new horizon in neuropsychiatric treatment. Front Psychiatry 2024; 15:1464550. [PMID: 39553890 PMCID: PMC11565220 DOI: 10.3389/fpsyt.2024.1464550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/07/2024] [Indexed: 11/19/2024] Open
Abstract
For over seven decades, dopamine receptor 2 (D2 receptor) antagonists remained the mainstay treatment for neuropsychiatric disorders. Although it is effective for treating hyperdopaminergic symptoms, it is often ineffective for treating negative and cognitive deficits. Trace amine-associated receptor 1 (TAAR1) is a novel, pharmacological target in the treatment of schizophrenia and other neuropsychiatric conditions. Several TAAR1 agonists are currently being developed and are in various stages of clinical and preclinical development. Previous efforts to identify TAAR1 agonists have been hampered by challenges in pharmacological characterisation, the absence of experimentally determined structures, and species-specific preferences in ligand binding and recognition. Further, poor insights into the functional selectivity of the receptor led to the characterisation of ligands with analogous signalling mechanisms. Such approaches limited the understanding of divergent receptor signalling and their potential clinical utility. Recent cryogenic electron microscopic (cryo-EM) structures of human and mouse TAAR1 (hTAAR1 and mTAAR1, respectively) in complex with agonists and G proteins have revealed detailed atomic insights into the binding pockets, binding interactions and binding modes of several agonists including endogenous trace amines (β-phenylethylamine, 3-Iodothyronamine), psychostimulants (amphetamine, methamphetamine), clinical compounds (ulotaront, ralmitaront) and repurposed drugs (fenoldopam). The in vitro screening of drug libraries has also led to the discovery of novel TAAR1 agonists (asenapine, guanabenz, guanfacine) which can be used in clinical trials or further developed to treat different neuropsychiatric conditions. Furthermore, an understanding of unappreciated signalling mechanisms (Gq, Gs/Gq) by TAAR1 agonists has come to light with the discovery of selective compounds to treat schizophrenia-like phenotypes. In this review, we discuss the emergence of structure-based approaches in the discovery of novel TAAR1 agonists through drug repurposing strategies and structure-guided designs. Additionally, we discuss the functional selectivity of TAAR1 signalling, which provides important clues for developing disorder-specific compounds.
Collapse
Affiliation(s)
- Britto Shajan
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tarun Bastiampillai
- Department of Psychiatry, Monash University, Parkville, Melbourne, VIC, Australia
- Flinders Health and Medical Research Institute (FHMRI) College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Shane D. Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Pramod C. Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute (FHMRI) College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Paramonova P, Lebedev R, Sokolov A, Dar'in D, Kanov E, Murtazina R, Gainetdinov R, Kalinin S, Bakulina O. Azide-based in situ preparation of fused heterocyclic imines and their multicomponent reactions. Org Biomol Chem 2024; 22:8328-8336. [PMID: 39315616 DOI: 10.1039/d4ob01321b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Structurally diverse pyrroles, indoles and imidazoles bearing an N-ω-azidoalkyl moiety and an aldehyde or ketone function were prepared and successfully introduced into in situ imine generation via the intramolecular Staudinger/aza-Wittig tandem reaction. Reduction of the generated imines led to medicinally relevant nitrogen-containing fused heterocycles such as tetrahydropyrrolo[1,2-a]pyrazines and diazepines. Rare 8-membered hexahydropyrrolo[1,2-a][1,4]diazocine and 9-membered dihydro-4,8-(metheno)pyrrolo[1,2-a][1,4]diazacycloundecine were also synthesized. In addition, several one-pot transformations involving cyclic anhydrides or isocyanides (Castagnoli-Cushman, Ugi and azido-Ugi reactions) were added to the Staudinger/aza-Wittig sequence to afford novel fused polyheterocyclic delta-lactams, cyclic bisamides and tetrazoles in a multicomponent fashion. The synthesized compounds were profiled against human Trace Amine-Associated Receptor 1 (hTAAR1), and the best performing compound showed low nanomolar agonistic activity with an EC50 of 0.025 μM.
Collapse
Affiliation(s)
- Polina Paramonova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
| | - Rodion Lebedev
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
| | - Alexander Sokolov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
- Saint Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg, 191036, Russia
| | - Evgeny Kanov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Saint Petersburg University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ramilya Murtazina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Raul Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Saint Petersburg University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
| |
Collapse
|
3
|
Garisetti V, Dhanabalan AK, Dasararaju G. Discovery of potential TAAR1 agonist targeting neurological and psychiatric disorders: An in silico approach. Int J Biol Macromol 2024; 264:130528. [PMID: 38431013 DOI: 10.1016/j.ijbiomac.2024.130528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a G-protein-coupled receptor which is primarily expressed in the brain. It is activated by trace amines which play a role in regulating neurotransmitters like dopamine, serotonin and norepinephrine. TAAR1 agonists have potential applications in the treatment of neurological and psychiatric disorders, especially schizophrenia. In this study, we have used a structure-based virtual screening approach to identify potential TAAR1 agonist(s). We have modelled the structure of TAAR1 and predicted the binding pocket. Further, molecular docking of a few well-known antipsychotic drugs was carried out with TAAR1 model, which showed key interactions with the binding pocket. From screening a library of 5 million compounds from the Enamine REAL Database using structure-based virtual screening method, we shortlisted 12 compounds which showed good docking score, glide energy and interactions with the key residues. One lead compound (Z31378290) was finally selected. The lead compound showed promising binding affinity and stable interactions with TAAR1 during molecular dynamics simulations and demonstrated better van der Waals and binding energy than the known agonist, ulotaront. Our findings suggest that the lead compound may serve as a potential TAAR1 agonist, offering a promising avenue for the development of new therapies for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Vasavi Garisetti
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Anantha Krishnan Dhanabalan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Gayathri Dasararaju
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| |
Collapse
|
4
|
Liu H, Zheng Y, Wang Y, Wang Y, He X, Xu P, Huang S, Yuan Q, Zhang X, Wang L, Jiang K, Chen H, Li Z, Liu W, Wang S, Xu HE, Xu F. Recognition of methamphetamine and other amines by trace amine receptor TAAR1. Nature 2023; 624:663-671. [PMID: 37935377 DOI: 10.1038/s41586-023-06775-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1), the founding member of a nine-member family of trace amine receptors, is responsible for recognizing a range of biogenic amines in the brain, including the endogenous β-phenylethylamine (β-PEA)1 as well as methamphetamine2, an abused substance that has posed a severe threat to human health and society3. Given its unique physiological role in the brain, TAAR1 is also an emerging target for a range of neurological disorders including schizophrenia, depression and drug addiction2,4,5. Here we report structures of human TAAR1-G-protein complexes bound to methamphetamine and β-PEA as well as complexes bound to RO5256390, a TAAR1-selective agonist, and SEP-363856, a clinical-stage dual agonist for TAAR1 and serotonin receptor 5-HT1AR (refs. 6,7). Together with systematic mutagenesis and functional studies, the structures reveal the molecular basis of methamphetamine recognition and underlying mechanisms of ligand selectivity and polypharmacology between TAAR1 and other monoamine receptors. We identify a lid-like extracellular loop 2 helix/loop structure and a hydrogen-bonding network in the ligand-binding pockets, which may contribute to the ligand recognition in TAAR1. These findings shed light on the ligand recognition mode and activation mechanism for TAAR1 and should guide the development of next-generation therapeutics for drug addiction and various neurological disorders.
Collapse
Affiliation(s)
- Heng Liu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - You Zheng
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue Wang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumeng Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecule Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijie Huang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Wang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kexin Jiang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Zhen Li
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China.
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China.
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecule Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - H Eric Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Fei Xu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
5
|
Cichero E, Francesconi V, Casini B, Casale M, Kanov E, Gerasimov AS, Sukhanov I, Savchenko A, Espinoza S, Gainetdinov RR, Tonelli M. Discovery of Guanfacine as a Novel TAAR1 Agonist: A Combination Strategy through Molecular Modeling Studies and Biological Assays. Pharmaceuticals (Basel) 2023; 16:1632. [PMID: 38004497 PMCID: PMC10674299 DOI: 10.3390/ph16111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) is an attractive target for the design of innovative drugs to be applied in diverse pharmacological settings. Due to a non-negligible structural similarity with endogenous ligands, most of the agonists developed so far resulted in being affected by a low selectivity for TAAR1 with respect to other monoaminergic G protein-coupled receptors, like the adrenoreceptors. This study utilized comparative molecular docking studies and quantitative-structure activity relationship (QSAR) analyses to unveil key structural differences between TAAR1 and alpha2-adrenoreceptor (α2-ADR), with the aim to design novel TAAR1 agonists characterized by a higher selectivity profile and reduced off-target effects. While the presence of hydrophobic motives is encouraged towards both the two receptors, the introduction of polar/positively charged groups and the ligand conformation deeply affect the TAAR1 or α2-ADR putative selectivity. These computational methods allowed the identification of the α2A-ADR agonist guanfacine as an attractive TAAR1-targeting lead compound, demonstrating nanomolar activity in vitro. In vivo exploration of the efficacy of guanfacine showed that it is able to decrease the locomotor activity of dopamine transporter knockout (DAT-KO) rats. Therefore, guanfacine can be considered as an interesting template molecule worthy of structural optimization. The dual activity of guanfacine on both α2-ADR and TAAR1 signaling and the related crosstalk between the two pathways will deserve more in-depth investigation.
Collapse
Affiliation(s)
- Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Valeria Francesconi
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Beatrice Casini
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Monica Casale
- Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, 16148 Genoa, Italy;
| | - Evgeny Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrey S. Gerasimov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia; (I.S.); (A.S.)
| | - Artem Savchenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia; (I.S.); (A.S.)
| | - Stefano Espinoza
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy;
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| |
Collapse
|
6
|
Barnes DA, Hoener MC, Moore CS, Berry MD. TAAR1 Regulates Purinergic-induced TNF Secretion from Peripheral, But Not CNS-resident, Macrophages. J Neuroimmune Pharmacol 2023; 18:100-111. [PMID: 36380156 DOI: 10.1007/s11481-022-10053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) is an established neuroregulatory G protein-coupled receptor with recent studies suggesting additional functions related to immunomodulation. Our lab has previously investigated TAAR1 expression within cells of the innate immune system and herein we aim to further elucidate TAAR1 function in both peripherally-derived and CNS-resident macrophages. The selective TAAR1 agonist RO5256390 was used in combination with common damage associated molecular patterns (ATP and ADP) to observe the effect of TAAR1 agonism on modulating cytokine secretion and metabolic profiles. In mouse bone-marrow derived macrophages, TAAR1 agonism inhibited TNF secretion following ATP stimulation, which appeared to be downstream of an associated pro-inflammatory shift in metabolic profile and transcriptional regulation of TNF synthesis. In contrast, TAAR1 agonism had no effect on ADP-induced TNF and IL-6 secretion in mouse microglia in either the presence or absence of astrocytes. In summary, we report a novel interaction between TAAR1 and purinergic signaling in peripherally-derived, but not CNS-resident, macrophages. These findings provide the first evidence of trace aminergic and purinergic crosstalk, and support the potential for TAAR1 as a novel therapeutic target in inflammatory disorders.
Collapse
Affiliation(s)
- David A Barnes
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, NL, A1B 3X9, Canada
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Marius C Hoener
- Neuroscience and Rare Diseases Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070, Basel, Switzerland
| | - Craig S Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Mark D Berry
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
7
|
Pardella E, Ippolito L, Giannoni E, Chiarugi P. Nutritional and metabolic signalling through GPCRs. FEBS Lett 2022; 596:2364-2381. [PMID: 35776088 DOI: 10.1002/1873-3468.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022]
Abstract
Deregulated metabolism is a well-known feature of several challenging diseases, including diabetes, obesity and cancer. Besides their important role as intracellular bioenergetic molecules, dietary nutrients and metabolic intermediates are released in the extracellular environment. As such, they may achieve unconventional roles as hormone-like molecules by activating cell-surface G-protein-coupled receptors (GPCRs) that regulate several pathophysiological processes. In this review, we provide an insight into the role of lactate, succinate, fatty acids, amino acids, ketogenesis-derived and β-oxidation-derived intermediates as extracellular signalling molecules. Moreover, the mechanisms by which their cognate metabolite-sensing GPCRs integrate nutritional and metabolic signals with specific intracellular pathways will be described. A better comprehension of these aspects is of fundamental importance to identify GPCRs as novel druggable targets.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| |
Collapse
|
8
|
Tonelli M. One step away from the breakthrough of TAAR1 agonists for the treatment of neuropsychiatric disorders. Curr Med Chem 2022; 29:4893-4895. [PMID: 35170404 DOI: 10.2174/0929867329666220216111512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n. 3, 16132, Genoa, Italy
| |
Collapse
|
9
|
Heffernan MLR, Herman LW, Brown S, Jones PG, Shao L, Hewitt MC, Campbell JE, Dedic N, Hopkins SC, Koblan KS, Xie L. Ulotaront: A TAAR1 Agonist for the Treatment of Schizophrenia. ACS Med Chem Lett 2022; 13:92-98. [PMID: 35047111 PMCID: PMC8762745 DOI: 10.1021/acsmedchemlett.1c00527] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
![]()
Ulotaront (SEP-363856)
is a trace-amine associated receptor 1 (TAAR1)
agonist with 5-HT1A receptor agonist activity in Phase 3 clinical
development, with FDA Breakthrough Therapy Designation, for the treatment
of schizophrenia. TAAR1 is a G-protein-coupled receptor (GPCR) that
is expressed in cortical, limbic, and midbrain monoaminergic regions.
It is activated by endogenous trace amines, and is believed to play
an important role in modulating dopaminergic, serotonergic, and glutamatergic
circuitry. TAAR1 agonism data are reported herein for ulotaront and
its analogues in comparison to endogenous TAAR1 agonists. In addition,
a human TAAR1 homology model was built around ulotaront to identify
key interactions and attempt to better understand the scaffold-specific
TAAR1 agonism structure–activity relationships.
Collapse
Affiliation(s)
| | - Lee W. Herman
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Scott Brown
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Philip G. Jones
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Liming Shao
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Michael C. Hewitt
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - John E. Campbell
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Nina Dedic
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Seth C. Hopkins
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Kenneth S. Koblan
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Linghong Xie
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| |
Collapse
|
10
|
Potential of Ligands for Trace Amine-Associated Receptor 1 (TAAR1) in the Management of Substance Use Disorders. CNS Drugs 2021; 35:1239-1248. [PMID: 34766253 PMCID: PMC8787759 DOI: 10.1007/s40263-021-00871-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
Trace amines, including β-phenylethylamine (β-PEA), p-tyramine (TYR), tryptamine (TRP), and p-octopamine (OCT), represent a group of amines expressed at low levels in the mammalian brain. Given the close structural similarities to traditional monoamines, links between trace amines and the monoaminergic system have long been suspected. Trace amine-associated receptor 1 (TAAR1), the most well characterized receptor in the TAAR family, has been shown to be potently activated by trace amines such as TYR and PEA. Further, catecholamine metabolites and amphetamine analogs are also potent agonists of TAAR1, implicating the receptor in mediating the monoaminergic system and in substance use disorders. In the central nervous system, TAAR1 is expressed in brain regions involved in dopaminergic, serotonergic, and glutamatergic transmission, and genetic animal models and electrophysiological studies have revealed that TAAR1 is a potent modulator of the monoaminergic system. Selective and potent engineered TAAR1 ligands, including full (RO5166017 and RO5256390) and partial (RO5203648, RO5263397 and RO5073012) agonists and the antagonist EPPTB (N-(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl) benzamide, RO5212773), serve as invaluable tools for the investigation of TAAR1 functions and display significant potential for the development of TAAR1-based pharmacotherapies for the treatment of substance use disorders. Despite a number of advances that have been made, more clinical studies are warranted in order to test the potential and efficacy of TAAR1 ligands in the treatment of psychiatric disorders, including substance use disorders.
Collapse
|
11
|
Kiguchi N, Ko MC. Potential therapeutic targets for the treatment of opioid abuse and pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:335-371. [PMID: 35341570 PMCID: PMC10948018 DOI: 10.1016/bs.apha.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although μ-opioid peptide (MOP) receptor agonists are effective analgesics available in clinical settings, their serious adverse effects put limits on their use. The marked increase in abuse and misuse of prescription opioids for pain relief and opioid overdose mortality in the past decade has seriously impacted society. Therefore, safe analgesics that produce potent analgesic effects without causing MOP receptor-related adverse effects are needed. This review highlights the potential therapeutic targets for the treatment of opioid abuse and pain based on available evidence generated through preclinical studies and clinical trials. To ameliorate the abuse-related effects of opioids, orexin-1 receptor antagonists and mixed nociceptin/MOP partial agonists have shown promising results in translational aspects of animal models. There are several promising non-opioid targets for selectively inhibiting pain-related responses, including nerve growth factor inhibitors, voltage-gated sodium channel inhibitors, and cannabinoid- and nociceptin-related ligands. We have also discussed several emerging and novel targets. The current medications for opioid abuse are opioid receptor-based ligands. Although neurobiological studies in rodents have discovered several non-opioid targets, there is a translational gap between rodents and primates. Given that the neuroanatomical aspects underlying opioid abuse and pain are different between rodents and primates, it is pivotal to investigate the functional profiles of these non-opioid compounds compared to those of clinically used drugs in non-human primate models before initiating clinical trials. More pharmacological studies of the functional efficacy, selectivity, and tolerability of these newly discovered compounds in non-human primates will accelerate the development of effective medications for opioid abuse and pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
12
|
Trace amine-associated receptor 1 (TAAR1): Potential application in mood disorders: A systematic review. Neurosci Biobehav Rev 2021; 131:192-210. [PMID: 34537265 DOI: 10.1016/j.neubiorev.2021.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
There is a need for innovation with respect to therapeutics in psychiatry. Available evidence indicates that the trace amine-associated receptor 1 (TAAR1) agonist SEP-363856 is promising, as it improves measures of cognitive and reward function in schizophrenia. Hedonic and cognitive impairments are transdiagnostic and constitute major burdens in mood disorders. Herein, we systematically review the behavioural and genetic literature documenting the role of TAAR1 in reward and cognitive function, and propose a mechanistic model of TAAR1's functions in the brain. Notably, TAAR1 activity confers antidepressant-like effects, enhances attention and response inhibition, and reduces compulsive reward seeking without impairing normal function. Further characterization of the responsible mechanisms suggests ion-homeostatic, metabolic, neurotrophic, and anti-inflammatory enhancements in the limbic system. Multiple lines of evidence establish the viability of TAAR1 as a biological target for the treatment of mood disorders. Furthermore, the evidence suggests a role for TAAR1 in reward and cognitive function, which is attributed to a cascade of events that are relevant to the cellular integrity and function of the central nervous system.
Collapse
|
13
|
Trace Amine-Associated Receptor 1 Contributes to Diverse Functional Actions of O-Phenyl-Iodotyramine in Mice but Not to the Effects of Monoamine-Based Antidepressants. Int J Mol Sci 2021; 22:ijms22168907. [PMID: 34445611 PMCID: PMC8396211 DOI: 10.3390/ijms22168907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/29/2022] Open
Abstract
Trace Amine-Associated Receptor 1 (TAAR1) is a potential target for the treatment of depression and other CNS disorders. However, the precise functional roles of TAAR1 to the actions of clinically used antidepressants remains unclear. Herein, we addressed these issues employing the TAAR1 agonist, o-phenyl-iodotyramine (o-PIT), together with TAAR1-knockout (KO) mice. Irrespective of genotype, systemic administration of o-PIT led to a similar increase in mouse brain concentrations. Consistent with the observation of a high density of TAAR1 in the medial preoptic area, o-PIT-induced hypothermia was significantly reduced in TAAR1-KO mice. Furthermore, the inhibition of a prepulse inhibition response by o-PIT, as well as its induction of striatal tyrosine hydroxylase phosphorylation and elevation of extracellular DA in prefrontal cortex, were all reduced in TAAR1-KO compared to wildtype mice. O-PIT was active in both forced-swim and marble-burying tests, and its effects were significantly blunted in TAAR1-KO mice. Conversely, the actions on behaviour and prefrontal cortex dialysis of a broad suite of clinically used antidepressants were unaffected in TAAR1-KO mice. In conclusion, o-PIT is a useful tool for exploring the hypothermic and other functional antidepressant roles of TAAR1. By contrast, clinically used antidepressants do not require TAAR1 for expression of their antidepressant properties.
Collapse
|
14
|
Sapegin AV, Peshkov AA, Kanov EV, Gainetdinov RR, Duszyńska B, Bojarski AJ, Krasavin M. Novel medium-sized di(het)areno-fused 1,4,7-(oxa)thiadiazecines as probes for aminergic receptors. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Levashova E, Firsov A, Bakulina O, Peshkov A, Kanov E, Gainetdinov RR, Krasavin M. Rare cis-configured 2,4-disubstituted 1-alkylpiperidines: synthesized and tested against trace-amine-associated receptor 1 (TAAR1). MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Sun J, Chen J, Kumata K, Xiao Z, Rong J, Haider A, Shao T, Wang L, Xu H, Zhang MR, Liang SH. Imaging the trace amine-associated receptor 1 by positron emission tomography. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Novel 1-Amidino-4-Phenylpiperazines as Potent Agonists at Human TAAR1 Receptor: Rational Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Pharmaceuticals (Basel) 2020; 13:ph13110391. [PMID: 33202687 PMCID: PMC7697893 DOI: 10.3390/ph13110391] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
Targeting trace amine-associated receptor 1 (TAAR1) receptor continues to offer an intriguing opportunity to develop innovative therapies in different pharmacological settings. Pursuing our endeavors in the search for effective and safe human TAAR1 (hTAAR1) ligands, we synthesized a new series of 1-amidino-4-phenylpiperazine derivatives (1–16) based on the application of a combined pharmacophore model/scaffold simplification strategy for an in-house series of biguanide-based TAAR1 agonists. Most of the novel compounds proved to be more effective than their prototypes, showing nanomolar EC50 values in functional activity at hTAAR1 and low general cytotoxicity (CC50 > 80 µM) when tested on the Vero-76 cell line. In this new series, the main determinant for TAAR1 agonism ability appears to result from the appropriate combination between the steric size and position of the substituents on the phenyl ring rather than from their different electronic nature, since both electron-withdrawing and electron donor groups are permitted. In particular, the ortho-substitution seems to impose a more appropriate spatial geometry to the molecule that entails an enhanced TAAR1 potency profile, as experienced, in the following order, by compounds 15 (2,3-diCl, EC50 = 20 nM), 2 (2-CH3, EC50 = 30 nM), 6 (2-OCH3, EC50 = 93 nM) and 3 (2-Cl, EC50 = 160 nM). Apart from the interest in them as valuable leads for the development of promising hTAAR1 agonists, these simple small molecules have further allowed us to identify the minimal structural requirements for producing an efficient hTAAR1 targeting ability.
Collapse
|
18
|
Cosín-Roger J, Ortiz-Masia D, Barrachina MD, Calatayud S. Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment? Cells 2020; 9:cells9112345. [PMID: 33113952 PMCID: PMC7690732 DOI: 10.3390/cells9112345] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
G-protein-coupled receptors constitute the most diverse and largest receptor family in the human genome, with approximately 800 different members identified. Given the well-known metabolic alterations in cancer development, we will focus specifically in the 19 G-protein-coupled receptors (GPCRs), which can be selectively activated by metabolites. These metabolite sensing GPCRs control crucial processes, such as cell proliferation, differentiation, migration, and survival after their activation. In the present review, we will describe the main functions of these metabolite sensing GPCRs and shed light on the benefits of their potential use as possible pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- Jesús Cosín-Roger
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain
- Correspondence: ; Tel.: +34-963851234
| | - Dolores Ortiz-Masia
- Departament of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Maria Dolores Barrachina
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| | - Sara Calatayud
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| |
Collapse
|
19
|
Freitas ACL, Belchior GDS, Nemitz MC. International Patent Survey of Products and Processes Concerning Homeopathy. HOMEOPATHY 2020; 110:2-12. [PMID: 33063310 DOI: 10.1055/s-0040-1715581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Homeopathy is a complementary medicine characterized by the use of diluted and potentized medicines. Innovations in this area are constantly being proposed in the relevant literature, such as scientific articles and patents. The objective of this study was to carry out a patent survey of homeopathic products and processes. METHODS A free and international patent database, Espacenet, was used. The search was carried out using the keyword homeop*, with two approaches: (1) no date restrictions for the search and (2) a date limit for the publication years 2008 to 2018. The patents from the limited period were organized as depositor countries, ownerships and groups, including homeopathic formulations, equipment, packaging, production procedures, and analytical methods. RESULTS Without date restriction, 601 patents were identified in the survey. Of these, 174 were related to homeopathy and published in the period 2008 to 2018. Technologies come mainly from the following countries: United States (55 patents), Russia (24), Germany (15), France (13), India (12), Ukraine (11), Brazil (6), and China (6). Among the ownerships, 69% of patent applications were by independent depositors, 23% by companies, 7.5% by universities, and 0.5% by company/university partnerships. New formulations represented 75.9% of technologies, whilst the others comprised 14.3% for equipment, 3.8% for drugs packaging, 3.8% for production procedures, and 2.2% for analytical methods. CONCLUSIONS The present review helps visualize the homeopathy-related patents published in recent years, as well as the main countries and researchers investing in the field of homeopathy.
Collapse
Affiliation(s)
- Ana Carolina Lemos Freitas
- Curso de Farmácia, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé Professor Aloísio Teixeira, Novo Cavaleiros, Macaé, Rio de Janeiro, Brazil
| | - Gisele Da Silva Belchior
- Curso de Farmácia, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé Professor Aloísio Teixeira, Novo Cavaleiros, Macaé, Rio de Janeiro, Brazil
| | - Marina Cardoso Nemitz
- Curso de Farmácia, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé Professor Aloísio Teixeira, Novo Cavaleiros, Macaé, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Dodd S, F Carvalho A, Puri BK, Maes M, Bortolasci CC, Morris G, Berk M. Trace Amine-Associated Receptor 1 (TAAR1): A new drug target for psychiatry? Neurosci Biobehav Rev 2020; 120:537-541. [PMID: 33031817 DOI: 10.1016/j.neubiorev.2020.09.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
There are nine subfamilies of TAARs. They are predominantly intracellular, located in the central nervous system and peripherally. They have a role in homeostasis and rheostasis, and also in olfaction. They demonstrate significant cross-talk with the monoamine system and are involved in the regulation of cAMP signalling and K+ channels. There is evidence to suggest that TAAR1 may be a promising therapeutic target for the treatment of schizophrenia, psychosis in Parkinson's disease, substance use disorders, and the metabolic syndrome and obesity. TAAR1 expression may also be a prognostic biomarker for cancers. A number of TAAR modulators have been identified, including endogenous ligands and new chemical entities. Some of these agents have shown efficacy in animal models of addiction behaviours, depression and anxiety. Only one agent, SEP-363856, has progressed to randomised clinical trials in humans; however further, larger studies with SEP-363856 are required to clarify its suitability as a new treatment for schizophrenia spectrum disorders. SEP-363856 is an agonist of TAAR1 and 5HT1A and it is not clear to what extent its efficacy can be attributed to TAAR1 rather than to other drug targets. However, current research suggests that TAAR1 has an important role in human physiology and pathophysiology. TAAR1 modulators may become an important new drug class for the management of a wide array of mental disorders in the future.
Collapse
Affiliation(s)
- Seetal Dodd
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Youth Mental Health, University of Melbourne, Parkville, Australia; Department of Psychiatry, University of Melbourne, Parkville, Australia; University Hospital Geelong, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia.
| | - André F Carvalho
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, Toronto, ON, Canada
| | | | - Michael Maes
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Chiara C Bortolasci
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Gerwyn Morris
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Youth Mental Health, University of Melbourne, Parkville, Australia; Department of Psychiatry, University of Melbourne, Parkville, Australia; University Hospital Geelong, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia
| |
Collapse
|