1
|
Delgado C, Nogara PA, Miranda MD, Rosa AS, Ferreira VNS, Batista LT, Oliveira TKF, Omage FB, Motta F, Bastos IM, Orian L, Rocha JBT. In Silico and In Vitro Studies of the Approved Antibiotic Ceftaroline Fosamil and Its Metabolites as Inhibitors of SARS-CoV-2 Replication. Viruses 2025; 17:491. [PMID: 40284934 PMCID: PMC12031345 DOI: 10.3390/v17040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
The SARS-CoV-2 proteases Mpro and PLpro are critical targets for antiviral drug development for the treatment of COVID-19. The 1,2,4-thiadiazole functional group is an inhibitor of cysteine proteases, such as papain and cathepsins. This chemical moiety is also present in ceftaroline fosamil (CF), an FDA-approved fifth-generation cephalosporin antibiotic. This study investigates the interactions between CF, its primary metabolites (M1 is dephosphorylated CF and M2 is an opened β-lactam ring) and derivatives (protonated M1H and M2H), and its open 1,2,4-thiadiazole rings derivatives (open-M1H and open-M2H) with SARS-CoV-2 proteases and evaluates CF's effects on in vitro viral replication. In silico analyses (molecular docking and molecular dynamics (MD) simulations) demonstrated that CF and its metabolites are potential inhibitors of PLpro and Mpro. Docking analysis indicated that the majority of the ligands were more stable with Mpro than PLpro; however, in vitro biochemical analysis indicated PLpro as the preferred target for CF. CF inhibited viral replication in the human Calu-3 cell model at submicromolar concentrations when added to cell culture medium at 12 h. Our results suggest that CF should be evaluated as a potential repurposing agent for COVID-19, considering not only viral proteases but also other viral targets and relevant cellular pathways. Additionally, the reactivity of sulfur in the 1,2,4-thiadiazole moiety warrants further exploration for the development of viral protease inhibitors.
Collapse
Affiliation(s)
- Cássia Delgado
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97000-000, RS, Brazil; (C.D.); (J.B.T.R.)
| | - Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97000-000, RS, Brazil; (C.D.); (J.B.T.R.)
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul), Bagé 96400-000, RS, Brazil
| | - Milene Dias Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (L.T.B.); (T.K.F.O.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Alice Santos Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (L.T.B.); (T.K.F.O.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Vivian Neuza Santos Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (L.T.B.); (T.K.F.O.)
| | - Luisa Tozatto Batista
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (L.T.B.); (T.K.F.O.)
| | - Thamara Kelcya Fonseca Oliveira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (V.N.S.F.); (L.T.B.); (T.K.F.O.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Folorunsho Bright Omage
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13000-000, SP, Brazil;
| | - Flávia Motta
- Laboratório de interface patógeno-hospedeiro, Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (F.M.); (I.M.B.)
| | - Izabela Marques Bastos
- Laboratório de interface patógeno-hospedeiro, Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (F.M.); (I.M.B.)
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35129 Padova, Italy;
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97000-000, RS, Brazil; (C.D.); (J.B.T.R.)
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90000-000, RS, Brazil
| |
Collapse
|
2
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Santos LC, Fernandes AMS, Alves IA, Serafini MR, Silva LDSE, de Freitas HF, Leite LCC, Santos CC. Trends in Viral Vector-Based Vaccines for Tuberculosis: A Patent Review (2010-2023). Vaccines (Basel) 2024; 12:876. [PMID: 39204002 PMCID: PMC11359462 DOI: 10.3390/vaccines12080876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Tuberculosis (TB) is an ancient global public health problem. Several strategies have been applied to develop new and more effective vaccines against TB, from attenuated or inactivated mycobacteria to recombinant subunit or genetic vaccines, including viral vectors. This review aimed to evaluate patents filed between 2010 and 2023 for TB vaccine candidates. It focuses on viral vector-based strategies. A search was carried out in Espacenet, using the descriptors "mycobacterium and tuberculosis" and the classification A61K39. Of the 411 patents preliminarily identified, the majority were related to subunit vaccines, with 10 patents based on viral vector platforms selected in this study. Most of the identified patents belong to the United States or China, with a concentration of patent filings between 2013 and 2023. Adenoviruses were the most explored viral vectors, and the most common immunodominant Mycobacterium tuberculosis (Mtb) antigens were present in all the selected patents. The majority of patents were tested in mouse models by intranasal or subcutaneous route of immunization. In the coming years, an increased use of this platform for prophylactic and/or therapeutic approaches for TB and other diseases is expected. Along with this, expanding knowledge about the safety of this technology is essential to advance its use.
Collapse
Affiliation(s)
- Lana C. Santos
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | - Antônio Márcio Santana Fernandes
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | - Izabel Almeida Alves
- Departamento do Medicamento, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Estado da Bahia, Salvador 41150-000, BA, Brazil
| | - Mairim Russo Serafini
- Departamento de Farmácia, Universidade Federal do Sergipe, São Cristóvão 49100-000, SE, Brazil;
| | - Leandra da Silva e Silva
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | | | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | - Carina C. Santos
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil
| |
Collapse
|
4
|
Spano D, Catara G. Targeting the Ubiquitin-Proteasome System and Recent Advances in Cancer Therapy. Cells 2023; 13:29. [PMID: 38201233 PMCID: PMC10778545 DOI: 10.3390/cells13010029] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Ubiquitination is a reversible post-translational modification based on the chemical addition of ubiquitin to proteins with regulatory effects on various signaling pathways. Ubiquitination can alter the molecular functions of tagged substrates with respect to protein turnover, biological activity, subcellular localization or protein-protein interaction. As a result, a wide variety of cellular processes are under ubiquitination-mediated control, contributing to the maintenance of cellular homeostasis. It follows that the dysregulation of ubiquitination reactions plays a relevant role in the pathogenic states of human diseases such as neurodegenerative diseases, immune-related pathologies and cancer. In recent decades, the enzymes of the ubiquitin-proteasome system (UPS), including E3 ubiquitin ligases and deubiquitinases (DUBs), have attracted attention as novel druggable targets for the development of new anticancer therapeutic approaches. This perspective article summarizes the peculiarities shared by the enzymes involved in the ubiquitination reaction which, when deregulated, can lead to tumorigenesis. Accordingly, an overview of the main pharmacological interventions based on targeting the UPS that are in clinical use or still in clinical trials is provided, also highlighting the limitations of the therapeutic efficacy of these approaches. Therefore, various attempts to circumvent drug resistance and side effects as well as UPS-related emerging technologies in anticancer therapeutics are discussed.
Collapse
Affiliation(s)
- Daniela Spano
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
5
|
Santos MM, Santos AM, Nascimento Júnior JAC, Andrade TDA, Rajkumar G, Frank LA, Serafini MR. The management of osteoarthritis symptomatology through nanotechnology: a patent review. J Microencapsul 2023; 40:475-490. [PMID: 37698545 DOI: 10.1080/02652048.2023.2258955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Osteoarthritis is considered a degenerative joint disease that is characterised by inflammation, chronic pain, and functional limitation. The increasing development of nanotechnology in drug delivery systems has provided new ideas and methods for osteoarthritis therapy. This review aimed to evaluate patents that have developed innovations, therapeutic strategies, and alternatives using nanotechnology in osteoarthritis treatment. The results show patents deposited from 2015 to November 2021 in the online databases European Patent Office and World Intellectual Property Organisation. A total of 651 patents were identified for preliminary assessment and 16 were selected for full reading and discussion. The evaluated patents are focused on the intraarticular route, oral route, and topical route for osteoarthritis treatment. The intraarticular route presented a higher patent number, followed by the oral and topical routes, respectively. The development of new technologies allows us to envision a promising and positive future in osteoarthritis treatment.
Collapse
Affiliation(s)
| | | | | | | | - Gomathi Rajkumar
- Department of Botany, Sri Sarada College for Women (Autonomous), Affiliated to Periyar University, Salem, India
| | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
6
|
Rahman MA, Amin MA, Yeasmin MN, Islam MZ. Molecular Biomarker Identification Using a Network-Based Bioinformatics Approach That Links COVID-19 With Smoking. Bioinform Biol Insights 2023; 17:11779322231186481. [PMID: 37461741 PMCID: PMC10350588 DOI: 10.1177/11779322231186481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
The COVID-19 coronavirus, which primarily affects the lungs, is the source of the disease known as SARS-CoV-2. According to "Smoking and COVID-19: a scoping review," about 32% of smokers had a severe case of COVID-19 pneumonia at their admission time and 15% of non-smokers had this case of COVID-19 pneumonia. We were able to determine which genes were expressed differently in each group by comparing the expression of gene transcriptomic datasets of COVID-19 patients, smokers, and healthy controls. In all, 37 dysregulated genes are common in COVID-19 patients and smokers, according to our analysis. We have applied all important methods namely protein-protein interaction, hub-protein interaction, drug-protein interaction, tf-gene interaction, and gene-MiRNA interaction of bioinformatics to analyze to understand deeply the connection between both smoking and COVID-19 severity. We have also analyzed Pathways and Gene Ontology where 5 significant signaling pathways were validated with previous literature. Also, we verified 7 hub-proteins, and finally, we validated a total of 7 drugs with the previous study.
Collapse
Affiliation(s)
| | - Md Al Amin
- Department of Computer Science & Engineering, Prime University, Dhaka, Bangladesh
| | - Most Nilufa Yeasmin
- Department of Information & Communication Technology, Islamic University, Kushtia, Bangladesh
| | - Md Zahidul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia, Bangladesh
| |
Collapse
|
7
|
der Weid IV, de Souza Mendes CD, Fonseca PC, Viveiros Rosa SG. Patent profile for the approved and in clinical trials Mpox vaccines. Pharm Pat Anal 2023; 12:103-111. [PMID: 37671905 DOI: 10.4155/ppa-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023]
Abstract
Mpox disease was reported in 110 countries since May 2022, with 88,026 cases and 148 deaths by 21 June 2023. Although some drugs were already approved for Mpox treatment, the available smallpox vaccines can provide 85% cross-prevention, but there are no scientific publications describing the patent portfolio for Mpox vaccines. This paper aims to contribute to the identification of the status of the smallpox vaccine patents now applied for Mpox. We retrieved ten vaccines, but only a few had a patent portfolio and one under patent litigation processes in three continents. Also, no specific Mpox vaccine was retrieved and, in this sense, technological monitoring studies should be performed to provide a future vision regarding Mpox prophylaxis.
Collapse
Affiliation(s)
- Irene von der Weid
- National Institute of Industrial Property, Division of Studies & Projects, Rio de Janeiro, Rio de Janeiro, 20090-910, Brazil
| | - Cristina d'Urso de Souza Mendes
- National Institute of Industrial Property, Division of Studies & Projects, Rio de Janeiro, Rio de Janeiro, 20090-910, Brazil
| | - Paula C Fonseca
- National Institute of Industrial Property, Patent Division IX, Rio de Janeiro, Rio de Janeiro, 20090-910, Brazil
| | - Sandro G Viveiros Rosa
- National Institute of Indrustrial Property, Patent Division I, Rio de Janeiro, Rio de Janeiro, 20090-910, Brazil
| |
Collapse
|
8
|
Bekheit MS, Panda SS, Girgis AS. Potential RNA-dependent RNA polymerase (RdRp) inhibitors as prospective drug candidates for SARS-CoV-2. Eur J Med Chem 2023; 252:115292. [PMID: 36965227 PMCID: PMC10023213 DOI: 10.1016/j.ejmech.2023.115292] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
The SARS-CoV-2 pandemic is considered as one of the most disastrous pandemics for human health and the world economy. RNA-dependent RNA polymerase (RdRp) is one of the key enzymes that control viral replication. RdRp is an attractive and promising therapeutic target for the treatment of SARS-CoV-2 disease. It has attracted much interest of medicinal chemists, especially after the approval of Remdesivir. This study highlights the most promising SARS-CoV-2 RdRp repurposed drugs in addition to natural and synthetic agents. Although many in silico predicted agents have been developed, the lack of in vitro and in vivo experimental data has hindered their application in drug discovery programs.
Collapse
Affiliation(s)
- Mohamed S Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Siva S Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA, 30912, USA.
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
9
|
Investigating the Potential Anti-SARS-CoV-2 and Anti-MERS-CoV Activities of Yellow Necklacepod among Three Selected Medicinal Plants: Extraction, Isolation, Identification, In Vitro, Modes of Action, and Molecular Docking Studies. Metabolites 2022; 12:metabo12111109. [PMID: 36422249 PMCID: PMC9696309 DOI: 10.3390/metabo12111109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The anti-MERS-CoV activities of three medicinal plants (Azadirachta indica, Artemisia judaica, and Sophora tomentosa) were evaluated. The highest viral inhibition percentage (96%) was recorded for S. tomentosa. Moreover, the mode of action for both S. tomentosa and A. judaica showed 99.5% and 92% inhibition, respectively, with virucidal as the main mode of action. Furthermore, the anti-MERS-CoV and anti-SARS-CoV-2 activities of S. tomentosa were measured. Notably, the anti-SARS-CoV-2 activity of S. tomentosa was very high (100%) and anti-MERS-CoV inhibition was slightly lower (96%). Therefore, the phytochemical investigation of the very promising S. tomentosa L. led to the isolation and structural identification of nine compounds (1−9). Then, both the CC50 and IC50 values for the isolated compounds against SARS-CoV-2 were measured. Compound 4 (genistein 4’-methyl ether) achieved superior anti-SARS-CoV-2 activity with an IC50 value of 2.13 µm. Interestingly, the mode of action of S. tomentosa against SARS-CoV-2 showed that both virucidal and adsorption mechanisms were very effective. Additionally, the IC50 values of S. tomentosa against SARS-CoV-2 and MERS-CoV were found to be 1.01 and 3.11 µg/mL, respectively. In addition, all the isolated compounds were subjected to two separate molecular docking studies against the spike (S) and main protease (Mpr°) receptors of SARS-CoV-2.
Collapse
|
10
|
Goyal R, Gautam RK, Chopra H, Dubey AK, Singla RK, Rayan RA, Kamal MA. Comparative highlights on MERS-CoV, SARS-CoV-1, SARS-CoV-2, and NEO-CoV. EXCLI JOURNAL 2022; 21:1245-1272. [PMID: 36483910 PMCID: PMC9727256 DOI: 10.17179/excli2022-5355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/23/2022] [Indexed: 01/25/2023]
Abstract
The severe acute respiratory syndrome (SARS-CoV, now SARS-CoV-1), middle east respiratory syndrome (MERS-CoV), Neo-CoV, and 2019 novel coronavirus (SARS-CoV-2/COVID-19) are the most notable coronaviruses, infecting the number of people worldwide by targeting the respiratory system. All these viruses are of zoonotic origin, predominantly from bats which are one of the natural reservoir hosts for coronaviruses. Thus, the major goal of our review article is to compare and contrast the characteristics and attributes of these coronaviruses. The SARS-CoV-1, MERS-CoV, and COVID-19 have many viral similarities due to their classification, they are not genetically related. COVID-19 shares approximately 79 % of its genome with SARS-CoV-1 and about 50 % with MERS-CoV. The shared receptor protein, ACE2 exhibit the most striking genetic similarities between SARS-CoV-1 and SARS-CoV-2. SARS-CoV primarily replicates in the epithelial cells of the respiratory system, but it may also affect macrophages, monocytes, activated T cells, and dendritic cells. MERS-CoV not only infects and replicates inside the epithelial and immune cells, but it may lyse them too, which is one of the common reasons for MERS's higher mortality rate. The details of infections caused by SARS-CoV-2 and lytic replication mechanisms in host cells are currently mysterious. In this review article, we will discuss the comparative highlights of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and Neo-CoV, concerning their structural features, morphological characteristics, sources of virus origin and their evolutionary transitions, infection mechanism, computational study approaches, pathogenesis and their severity towards several diseases, possible therapeutic approaches, and preventive measures.
Collapse
Affiliation(s)
- Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India,MM School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rupesh K. Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Rau, Indore, India-453331,*To whom correspondence should be addressed: Rupesh K. Gautam, Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Opposite IIM Indore, Rau-Pithampur Road, Indore – 453331 (M.P.), India; Tel.: +91 9413654324, E-mail:
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India-140401
| | | | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China,School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Rehab A. Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, 5422031, Egypt
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China,King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh,Enzymoics, 7 Peterlee Place, Hebersham NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
11
|
Delgado CP, Rocha JBT, Orian L, Bortoli M, Nogara PA. In silico studies of M pro and PL pro from SARS-CoV-2 and a new class of cephalosporin drugs containing 1,2,4-thiadiazole. Struct Chem 2022; 33:2205-2220. [PMID: 36106095 PMCID: PMC9463509 DOI: 10.1007/s11224-022-02036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
The SARS-CoV-2 proteases Mpro and PLpro are important targets for the development of antivirals against COVID-19. The functional group 1,2,4-thiadiazole has been indicated to inhibit cysteinyl proteases, such as papain and cathepsins. Of note, the 1,2,4-thiadiazole moiety is found in a new class of cephalosporin FDA-approved antibiotics: ceftaroline fosamil, ceftobiprole, and ceftobiprole medocaril. Here we investigated the interaction of these new antibiotics and their main metabolites with the SARS-CoV-2 proteases by molecular docking, molecular dynamics (MD), and density functional theory (DFT) calculations. Our results indicated the PLpro enzyme as a better in silico target for the new antibacterial cephalosporins. The results with ceftaroline fosamil and the dephosphorylate metabolite compounds should be tested as potential inhibitor of PLpro, Mpro, and SARS-CoV-2 replication in vitro. In addition, the data here reported can help in the design of new potential drugs against COVID-19 by exploiting the S atom reactivity in the 1,2,4-thiadiazole moiety. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-022-02036-5.
Collapse
Affiliation(s)
- Cássia Pereira Delgado
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS 97105-900 Brazil
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS 97105-900 Brazil
| | - Laura Orian
- Dipartimento di Scuenze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padua, Italy
| | - Marco Bortoli
- Institut de Química Computacionali Catàlisi (IQCC), Departament de Química, Facultat de Ciències, Universitat de Girona, C/M. A. Capmany 69, 17003 Girona, Spain
| | - Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS 97105-900 Brazil
| |
Collapse
|
12
|
Zhang C, Liu C, Jiang L, Cui L, Li C, Song G, Xu R, Geng X, Luan C, Chen F, Chen Y, Zhu B, Zhu W. Verification of SARS-CoV-2-encoded small RNAs and contribution to infection-associated lung inflammation. Chin Med J (Engl) 2022; 135:1858-1860. [PMID: 35838380 PMCID: PMC9521766 DOI: 10.1097/cm9.0000000000002059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Cheng Zhang
- Department of Women and Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210036, China
| | - Cheng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lin Jiang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lunbiao Cui
- Department of NHC Key Laboratory of Enteric Pathogen Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Chunyu Li
- Department of Women and Children Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210036, China
| | - Guoxin Song
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Rui Xu
- Department of Emergency Medical Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiangnan Geng
- Department of Clinical Engineering, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Changxing Luan
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yan Chen
- Department of Outpatient and Emergency Management, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Baoli Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Wei Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
13
|
Liu K, Zhang X, Hu Y, Chen W, Kong X, Yao P, Cong J, Zuo H, Wang J, Li X, Wei B. What, Where, When and How of COVID-19 Patents Landscape: A Bibliometrics Review. Front Med (Lausanne) 2022; 9:925369. [PMID: 35847804 PMCID: PMC9283760 DOI: 10.3389/fmed.2022.925369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Two years after COVID-19 came into being, many technologies have been developed to bring highly promising bedside methods to help fight this epidemic disease. However, owing to viral mutation, how far the promise can be realized remains unclear. Patents might act as an additional source of information for informing research and policy and anticipating important future technology developments. A comprehensive study of 3741 COVID-19-related patents (3,543 patent families) worldwide was conducted using the Derwent Innovation database. Descriptive statistics and social network analysis were used in the patent landscape. The number of COVID-19 applications, especially those related to treatment and prevention, continued to rise, accompanied by increases in governmental and academic patent assignees. Although China dominated COVID-19 technologies, this position is worth discussing, especially in terms of the outstanding role of India and the US in the assignee collaboration network as well as the outstanding invention portfolio in Italy. Intellectual property barriers and racist treatment were reduced, as reflected by individual partnerships, transparent commercial licensing and diversified portfolios. Critical technological issues are personalized immunity, traditional Chinese medicine, epidemic prediction, artificial intelligence tools, and nucleic acid detection. Notable challenges include balancing commercial competition and humanitarian interests. The results provide a significant reference for decision-making by researchers, clinicians, policymakers, and investors with an interest in COVID-19 control.
Collapse
Affiliation(s)
- Kunmeng Liu
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Xiaoming Zhang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Weijie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Xiangjun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Peifen Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Jinyu Cong
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Huali Zuo
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Hong Kong SAR, China
| | - Jian Wang
- Science College, Shandong Jiaotong University, Jinan, China
| | - Xiang Li
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- *Correspondence: Benzheng Wei,
| |
Collapse
|
14
|
Ghahremanian S, Rashidi MM, Raeisi K, Toghraie D. Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review. J Mol Liq 2022; 354:118901. [PMID: 35309259 PMCID: PMC8916543 DOI: 10.1016/j.molliq.2022.118901] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/11/2023]
Abstract
Since the commencement of the novel Coronavirus, the disease has quickly turned into a worldwide crisis so that there has been growing attention in discovering possible hit compounds for tackling this pandemic. Discovering standard treatment strategies is a serious challenge because little information is available about this emerged infectious virus. Regarding the high impact of time, applying computational procedures to choose promising drugs from a catalog of licensed medications provides a precious chance for combat against the life-threatening disorder of COVID-19. Molecular dynamics (MD) simulation is a promising approach for assessing the binding affinity of ligand-receptor as well as observing the conformational trajectory of docked complexes over time. Given that many computational studies are performed using MD along with the molecular docking on various candidates as antiviral inhibitors of COVID-19 protease, there is a demand to conduct a comprehensive review of the most important studies to reveal and compare the potential introduced agents that this study covers this defect. In this context, the present review intends to prepare an overview of these studies by considering RMSD, RMSF, radius of gyration, binding free energy, and Solvent-Accessible Surface Area (SASA) as effective parameters for evaluation. The outcomes will offer a road map for adjusting antiviral inhibitors, which can facilitate the selection and development of drug candidates for use in the medical therapy. Finally, the molecular modeling approaches rendered by this study may be valuable for future computational studies.
Collapse
Affiliation(s)
- Shabnam Ghahremanian
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Mohammad Mehdi Rashidi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
- Faculty of Mechanical and Industrial Engineering, Quchan University of Technology, Quchan, Iran
| | - Kimai Raeisi
- Department of Basic Science, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| |
Collapse
|
15
|
Nucleic Acids as Biotools at the Interface between Chemistry and Nanomedicine in the COVID-19 Era. Int J Mol Sci 2022; 23:ijms23084359. [PMID: 35457177 PMCID: PMC9031702 DOI: 10.3390/ijms23084359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
The recent development of mRNA vaccines against the SARS-CoV-2 infection has turned the spotlight on the potential of nucleic acids as innovative prophylactic agents and as diagnostic and therapeutic tools. Until now, their use has been severely limited by their reduced half-life in the biological environment and the difficulties related to their transport to target cells. These limiting aspects can now be overcome by resorting to chemical modifications in the drug and using appropriate nanocarriers, respectively. Oligonucleotides can interact with complementary sequences of nucleic acid targets, forming stable complexes and determining their loss of function. An alternative strategy uses nucleic acid aptamers that, like the antibodies, bind to specific proteins to modulate their activity. In this review, the authors will examine the recent literature on nucleic acids-based strategies in the COVID-19 era, focusing the attention on their applications for the prophylaxis of COVID-19, but also on antisense- and aptamer-based strategies directed to the diagnosis and therapy of the coronavirus pandemic.
Collapse
|
16
|
In-silico investigation of phenolic compounds from leaves of Phillyrea Angustifolia L. as a potential inhibitor against the SARS-CoV-2 main protease (Mpro PDB ID:5R83) using a virtual screening method. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [PMCID: PMC8983096 DOI: 10.1016/j.jscs.2022.101473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Aghamirza Moghim Aliabadi H, Eivazzadeh‐Keihan R, Beig Parikhani A, Fattahi Mehraban S, Maleki A, Fereshteh S, Bazaz M, Zolriasatein A, Bozorgnia B, Rahmati S, Saberi F, Yousefi Najafabadi Z, Damough S, Mohseni S, Salehzadeh H, Khakyzadeh V, Madanchi H, Kardar GA, Zarrintaj P, Saeb MR, Mozafari M. COVID-19: A systematic review and update on prevention, diagnosis, and treatment. MedComm (Beijing) 2022; 3:e115. [PMID: 35281790 PMCID: PMC8906461 DOI: 10.1002/mco2.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 01/09/2023] Open
Abstract
Since the rapid onset of the COVID-19 or SARS-CoV-2 pandemic in the world in 2019, extensive studies have been conducted to unveil the behavior and emission pattern of the virus in order to determine the best ways to diagnosis of virus and thereof formulate effective drugs or vaccines to combat the disease. The emergence of novel diagnostic and therapeutic techniques considering the multiplicity of reports from one side and contradictions in assessments from the other side necessitates instantaneous updates on the progress of clinical investigations. There is also growing public anxiety from time to time mutation of COVID-19, as reflected in considerable mortality and transmission, respectively, from delta and Omicron variants. We comprehensively review and summarize different aspects of prevention, diagnosis, and treatment of COVID-19. First, biological characteristics of COVID-19 were explained from diagnosis standpoint. Thereafter, the preclinical animal models of COVID-19 were discussed to frame the symptoms and clinical effects of COVID-19 from patient to patient with treatment strategies and in-silico/computational biology. Finally, the opportunities and challenges of nanoscience/nanotechnology in identification, diagnosis, and treatment of COVID-19 were discussed. This review covers almost all SARS-CoV-2-related topics extensively to deepen the understanding of the latest achievements (last updated on January 11, 2022).
Collapse
Affiliation(s)
- Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry LaboratoryDepartment of Medical BiotechnologyBiotechnology Research CenterPasteur Institute of IranTehranIran
- Advance Chemical Studies LaboratoryFaculty of ChemistryK. N. Toosi UniversityTehranIran
| | | | - Arezoo Beig Parikhani
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | | | - Ali Maleki
- Department of ChemistryIran University of Science and TechnologyTehranIran
| | | | - Masoume Bazaz
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | | | | | - Saman Rahmati
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | - Fatemeh Saberi
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Zeinab Yousefi Najafabadi
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- ImmunologyAsthma & Allergy Research InstituteTehran University of Medical SciencesTehranIran
| | - Shadi Damough
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | - Sara Mohseni
- Non‐metallic Materials Research GroupNiroo Research InstituteTehranIran
| | | | - Vahid Khakyzadeh
- Department of ChemistryK. N. Toosi University of TechnologyTehranIran
| | - Hamid Madanchi
- School of MedicineSemnan University of Medical SciencesSemnanIran
- Drug Design and Bioinformatics UnitDepartment of Medical BiotechnologyBiotechnology Research CenterPasteur Institute of IranTehranIran
| | - Gholam Ali Kardar
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- ImmunologyAsthma & Allergy Research InstituteTehran University of Medical SciencesTehranIran
| | - Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Mohammad Reza Saeb
- Department of Polymer TechnologyFaculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
18
|
Waseem R, Ullah I, Irfan M, Dominari A, Elmahi OKO, Tahir MJ. MERS
and
COVID
‐19: A double burden for the healthcare system of Saudi Arabia. Health Sci Rep 2022; 5:e2515. [PMID: 35224228 PMCID: PMC8855489 DOI: 10.1002/hsr2.515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rabia Waseem
- Karachi Medical and Dental College Karachi Pakistan
| | - Irfan Ullah
- Kabir Medical College, Gandhara University Peshawar Pakistan
| | - Muhammad Irfan
- Internal Medicine Hayatabad Medical Complex Peshawar Pakistan
| | - Asimina Dominari
- School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | | | - Muhammad Junaid Tahir
- Ameer‐ud‐Din Medical College, University of Health and Sciences Lahore Pakistan
- Lahore General Hospital Lahore Pakistan
| |
Collapse
|
19
|
Abstract
The COVID-19 pandemic has prompted several institutions to offer free, dedicated websites and tools to foster research and access to urgently needed innovative solutions by facilitating the search and analysis of information within the large amount of scientific and patent literature which was published since January 2020. This situation is clearly exceptional and challenging for patent information users searching for relevant disclosures at a given date in a reliable manner. This article provides an overview of search criteria and strategies, main databases and websites, number of publications, biological sequence information and experimental data sets covering COVID-19 findings within scientific and patent literature have been disclosed between January and August 2020. The analysis of non-patent literature has been focused on the identification, date assignment, disambiguation, and access to experimental data. The analysis of patent literature has been focused on the trends found within the earliest filed and published patent documents in representative jurisdictions worldwide. Some practical advice and strategies for technical, medical, or patentability assessment of COVID-19-related innovations across different information formats and resources are proposed.
Collapse
|
20
|
Santos AM, Santos MM, Nascimento Júnior JAC, Brito JRLR, de Araújo Andrade T, Frank LA, Serafini MR. Mapping of New Pharmacological Alternatives in the Face of the Emergence of Antibiotic Resistance in COVID-19 Patents Treated for Opportunistic Respiratory Bacterial Pathogens. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:34-53. [PMID: 35593343 DOI: 10.2174/1574891x16666220518142347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/12/2021] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The increase in bacterial resistance against antibiotics is thought to be another type of pandemic after COVID-19. Emergency treatment based on antibiotics is a major influence in increasing this resistance. Bacteria, such as Klebsiella pneumoniae, are the most affected by the indiscriminate use of antibiotics, since they are resistant to most antibiotics currently available on the market. OBJECTIVE This review aimed to evaluate patents of new drugs and formulations, for the treatment of infections caused by Klebsiella pneumoniae. METHODS The present patent review was carried out through a specialized search database Espacenet. The selection was based on the criteria of patents published from 2010 to May 2021, in any language, and containing the keywords in title or abstract. Also, a research was performed on the PubMed database, using the inclusion criteria. RESULTS Twenty-two patents were selected for the analysis according to the aim of the study. The advance of new patents has been mostly observed in the World Intellectual Property Organization, China, and United States. The results showed that the main approach was the drug association, followed by drug carriers, new isolated products, and vaccines. CONCLUSION It has been observed that few studies use new drug alternatives for the treatment, probably due to the higher cost of the development and lack of investments. The effectiveness and safety of these therapies depend on the acceptance, the correct prescription, and rational use of medicines. Therefore, this review can further develop new treatments as alternatives against Klebsiella pneumoniae and pneumonia caused by it.
Collapse
Affiliation(s)
| | - Mariana Mendonça Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - José Adão Carvalho Nascimento Júnior
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Tatianny de Araújo Andrade
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luiza Abrahão Frank
- Department of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mairim Russo Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
21
|
Siminea N, Popescu V, Sanchez Martin JA, Florea D, Gavril G, Gheorghe AM, Iţcuş C, Kanhaiya K, Pacioglu O, Popa IL, Trandafir R, Tusa MI, Sidoroff M, Păun M, Czeizler E, Păun A, Petre I. Network analytics for drug repurposing in COVID-19. Brief Bioinform 2021; 23:6447433. [PMID: 34864885 PMCID: PMC8690228 DOI: 10.1093/bib/bbab490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
To better understand the potential of drug repurposing in COVID-19, we analyzed control strategies over essential host factors for SARS-CoV-2 infection. We constructed comprehensive directed protein–protein interaction (PPI) networks integrating the top-ranked host factors, the drug target proteins and directed PPI data. We analyzed the networks to identify drug targets and combinations thereof that offer efficient control over the host factors. We validated our findings against clinical studies data and bioinformatics studies. Our method offers a new insight into the molecular details of the disease and into potentially new therapy targets for it. Our approach for drug repurposing is significant beyond COVID-19 and may be applied also to other diseases.
Collapse
Affiliation(s)
- Nicoleta Siminea
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania.,Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei, 010014, Romania
| | - Victor Popescu
- Department of Information Technologies, Åbo Akademi University, 3 Tuomiokirkontori, 20500, Finland
| | - Jose Angel Sanchez Martin
- Department of Computer Science, Technical University of Madrid, 7 Calle Ramiro de Maeztu, 28040, Spain
| | - Daniela Florea
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Georgiana Gavril
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Ana-Maria Gheorghe
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Corina Iţcuş
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Krishna Kanhaiya
- Department of Information Technologies, Åbo Akademi University, 3 Tuomiokirkontori, 20500, Finland
| | - Octavian Pacioglu
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Ioana Laura Popa
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Romica Trandafir
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Maria Iris Tusa
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Manuela Sidoroff
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Mihaela Păun
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania.,Faculty of Administration and Business, University of Bucharest, 4-12 Regina Elisabeta Boulevard, 030018, Romania
| | - Eugen Czeizler
- Department of Information Technologies, Åbo Akademi University, 3 Tuomiokirkontori, 20500, Finland.,Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Andrei Păun
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania.,Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei, 010014, Romania
| | - Ion Petre
- Department of Mathematics and Statistics, University of Turku, 5 Vesilinnantie, 20014, Finland.,Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| |
Collapse
|
22
|
Flores-Félix JD, Gonçalves AC, Alves G, Silva LR. Consumption of Phenolic-Rich Food and Dietary Supplements as a Key Tool in SARS-CoV-19 Infection. Foods 2021; 10:2084. [PMID: 34574194 PMCID: PMC8469666 DOI: 10.3390/foods10092084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
The first cases of COVID-19, which is caused by the SARS-CoV-2, were reported in December 2019. The vertiginous worldwide expansion of SARS-CoV-2 caused the collapse of health systems in several countries due to the high severity of the COVID-19. In addition to the vaccines, the search for active compounds capable of preventing and/or fighting the infection has been the main direction of research. Since the beginning of this pandemic, some evidence has highlighted the importance of a phenolic-rich diet as a strategy to reduce the progression of this disease, including the severity of the symptoms. Some of these compounds (e.g., curcumin, gallic acid or quercetin) already showed capacity to limit the infection of viruses by inhibiting entry into the cell through its binding to protein Spike, regulating the expression of angiotensin-converting enzyme 2, disrupting the replication in cells by inhibition of viral proteases, and/or suppressing and modulating the host's immune response. Therefore, this review intends to discuss the most recent findings on the potential of phenolics to prevent SARS-CoV-2.
Collapse
Affiliation(s)
- José David Flores-Félix
- CICS-UBI–Health Sciences Research Centre, Faculty of Health Science, University of Beira Interior, 6200-506 Covilhã, Portugal; (J.D.F.-F.); (A.C.G.); (G.A.)
| | - Ana C. Gonçalves
- CICS-UBI–Health Sciences Research Centre, Faculty of Health Science, University of Beira Interior, 6200-506 Covilhã, Portugal; (J.D.F.-F.); (A.C.G.); (G.A.)
| | - Gilberto Alves
- CICS-UBI–Health Sciences Research Centre, Faculty of Health Science, University of Beira Interior, 6200-506 Covilhã, Portugal; (J.D.F.-F.); (A.C.G.); (G.A.)
| | - Luís R. Silva
- CICS-UBI–Health Sciences Research Centre, Faculty of Health Science, University of Beira Interior, 6200-506 Covilhã, Portugal; (J.D.F.-F.); (A.C.G.); (G.A.)
- Unidade de Investigação para o Desenvolvimento do Interior (UDI/IPG), Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
23
|
Nogara PA, Omage FB, Bolzan GR, Delgado CP, Aschner M, Orian L, Teixeira Rocha JB. In silico Studies on the Interaction between Mpro and PLpro From SARS-CoV-2 and Ebselen, its Metabolites and Derivatives. Mol Inform 2021; 40:e2100028. [PMID: 34018687 PMCID: PMC8236915 DOI: 10.1002/minf.202100028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 has mobilized scientific attention in search of a treatment. The cysteine-proteases, main protease (Mpro) and papain-like protease (PLpro) are important targets for antiviral drugs. In this work, we simulate the interactions between the Mpro and PLpro with Ebselen, its metabolites and derivatives with the aim of finding molecules that can potentially inhibit these enzymes. The docking data demonstrate that there are two main interactions between the thiol (-SH) group of Cys (from the protease active sites) and the electrophilic centers of the organoselenium molecules, i. e. the interaction with the carbonyl group (O=C… SH) and the interaction with the Se moiety (Se… SH). Both interactions may lead to an adduct formation and enzyme inhibition. Density Functional Theory (DFT) calculations with Ebselen indicate that the energetics of the thiol nucleophilic attack is more favorable on Se than on the carbonyl group, which is in accordance with experimental data (Jin et al. Nature, 2020, 582, 289-293). Therefore, organoselenium molecules should be further explored as inhibitors of the SARS-CoV-2 proteases. Furthermore, we suggest that some metabolites of Ebselen (e. g. Ebselen diselenide and methylebselenoxide) and derivatives ethaselen and ebsulfur should be tested in vitro as inhibitors of virus replication and its proteases.
Collapse
Affiliation(s)
- Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Folorunsho Bright Omage
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Gustavo Roni Bolzan
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Cássia Pereira Delgado
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of Medicine1300 Morris Park Avenue, BronxNY10461USA
| | - Laura Orian
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| |
Collapse
|
24
|
Abduljabbar MH. Clinical efficacy of Nafamostat Mesylate in combination with Favipiravir for COVID-19 pneumonia treatment review article. Ann Med Surg (Lond) 2021; 68:102560. [PMID: 34276987 PMCID: PMC8277971 DOI: 10.1016/j.amsu.2021.102560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Alleviation and treatment of the extensive detrimental implications of COVID-19 have materialised into the primary objectives of scientists and virologists along with pathologists assigned with the responsibility of provisioning of care for infected patients. Development and introduction of vaccines have been, till to date, primarily at the prototypical phase. The significance of utilisation of combined drug therapies has been considered to be paramount from the perspective of application of clinical information collected from previous viral epidemics. One prospective treatment application has involved the Multi Drug Therapy (MDT) based approach with utilisation of the combination of drugs Nafamostat Mesylate and Favipiravir with the purpose of reduction of the infectious intensity of COVID-19 viral strain. On account of the extensive prevalence of patients becoming infected with the Novel Coronavirus strain, MDT procedures have been mostly favoured by scientists and clinical virologists with the explicit objective of determination of the probability of such combined drug therapies in terms of assisting the recovery of COVID-19 infected patients. The previous researches conducted on the procedural particulars of treatments regarding effective antidote development for COVID-19 infected patients had brought forth various clinical outcomes on such innovative treatment initiatives concerning the observed effects of MDTs on such patients. The corresponding research literature review endeavour has been oriented towards collecting information regarding 2 specifically utilised medicinal substances (the previously mentioned Nafamostat Mesylate and Favipiravir drugs) for treatment purposes of COVID-19 infected individuals. Such drugs generally are associated with pharmaceutical categories such as antivirals, immune modulators, antibiotics and anticoagulants. These compounds have been utilised in a direct manner by hospital inpatients and such occurrences have permitted the researchers to examine the implications of such drugs on health conditions of COVID-19 patients in laboratory conditions as well. The corresponding study has been responsible for considering the clinical research findings of the combination of such drugs through comparison of observed outcomes. Novel type strain of coronavirus named SARS-CoV-2 is the causative agent of severe respiratory distress named COVID. Nafamostat Mesylate and Favipiravir reduce the infectious intensity of SARS-CoV-2 viral strain. Favipiravir strongly inhibits the enzyme RNA polymerase. Favipiravir was strongly considered to be as the choice for the inhibition of the SARS CoV-2 virus strain. Nafamostat Mesylate had anti-inflammatory and anti-coagulation effect in the severe conditions.
Collapse
Affiliation(s)
- Maram H Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| |
Collapse
|
25
|
Trends in the development of remdesivir based inventions against COVID-19 and other disorders: A patent review. J Infect Public Health 2021; 14:1075-1086. [PMID: 34243049 PMCID: PMC8236076 DOI: 10.1016/j.jiph.2021.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
The development of remdesivir has been a breakthrough for COVID-19 treatment. It has been approved in about 50 countries, including Saudi Arabia, since 2020. The generic structure of remdesivir was first disclosed in 2009. This patent review summarizes the remdesivir based inventions to treat/prevent COVID-19 and other disorders from 2009 to May 16, 2021, emphasizing the patents related to medical and pharmaceutical sciences. The primary patents/patent applications of remdesivir are related to its compositions, new combinations with other therapeutic agents, delivery systems, and new indications. The inventive combinations have displayed synergistic effects against COVID-19, whereas the delivery systems/compositions have improved patient compliance. The inventions related to new indications of remdesivir to treat Ebola, hepatitis, idiopathic pulmonary fibrosis, diabetic nephropathy, and cardiovascular complications enhance its therapeutic area. Many new innovative combinations and delivery systems of remdesivir are anticipated to provide better treatment for COVID-19.
Collapse
|
26
|
Yuan X, Li X. Pledging Patent Rights for Fighting Against the COVID-19: From the Ethical and Efficiency Perspective. JOURNAL OF BUSINESS ETHICS : JBE 2021; 179:683-696. [PMID: 34177015 PMCID: PMC8211307 DOI: 10.1007/s10551-021-04873-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/10/2021] [Indexed: 05/28/2023]
Abstract
In response to the great crises of the COVID-19 coronavirus, virtually all new technologies protected by patent rights have been used in practice from diagnostics, therapeutic, medical equipment, and vaccine to prevention, tracking, and containment of COVID-19. However, the moral justification of patent rights is questioned when pharmaceutical patents conflict with public health. This paper proposes a revised approach of deciding on how to address the conflicts between business ethics and patent protections and then compares the different mechanisms of clearing patent thickets. Our findings highlight that patent pledges may not only contribute to achieving the maximized substantive justice of the public but also help patent pledgors fulfill procedural justice. The advantages of patent pledges have attracted many patent holders to make public statements during the COVID-19 pandemic. In contrast, the disadvantages of a free license may make patent pledges not sustainable for a long time without the related supporting measures. Our findings will be helpful for policymakers or company managers to make an appropriate decision on rationally utilizing patent portfolios for fighting against public health crises.
Collapse
Affiliation(s)
- Xiaodong Yuan
- School of Management, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xiaotao Li
- School of Literature, Law and Economics, Wuhan University of Science and Technology (WUST), Wuhan, China
| |
Collapse
|
27
|
Ranjan P, Thomas V, Kumar P. 2D materials as a diagnostic platform for the detection and sensing of the SARS-CoV-2 virus: a bird's-eye view. J Mater Chem B 2021; 9:4608-4619. [PMID: 34013310 PMCID: PMC8559401 DOI: 10.1039/d1tb00071c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Worldwide infections and fatalities caused by the SARS-CoV-2 virus and its variants responsible for COVID-19 have significantly impeded the economic growth of many nations. People in many nations have lost their livelihoods, it has severely impacted international relations and, most importantly, health infrastructures across the world have been tormented. This pandemic has already left footprints on human psychology, traits, and priorities and is certainly going to lead towards a new world order in the future. As always, science and technology have come to the rescue of the human race. The prevention of infection by instant and repeated cleaning of surfaces that are most likely to be touched in daily life and sanitization drives using medically prescribed sanitizers and UV irradiation of textiles are the first steps to breaking the chain of transmission. However, the real challenge is to develop and uplift medical infrastructure, such as diagnostic tools capable of prompt diagnosis and instant and economic medical treatment that is available to the masses. Two-dimensional (2D) materials, such as graphene, are atomic sheets that have been in the news for quite some time due to their unprecedented electronic mobilities, high thermal conductivity, appreciable thermal stability, excellent anchoring capabilities, optical transparency, mechanical flexibility, and a unique capability to integrate with arbitrary surfaces. These attributes of 2D materials make them lucrative for use as an active material platform for authentic and prompt (within minutes) disease diagnosis via electrical or optical diagnostic tools or via electrochemical diagnosis. We present the opportunities provided by 2D materials as a platform for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Pranay Ranjan
- Department of Physics, UAE University, Al-Ain, Abu Dhabi 15551, United Arab Emirates
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, USA.
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, India.
| |
Collapse
|
28
|
Gossen J, Albani S, Hanke A, Joseph BP, Bergh C, Kuzikov M, Costanzi E, Manelfi C, Storici P, Gribbon P, Beccari AR, Talarico C, Spyrakis F, Lindahl E, Zaliani A, Carloni P, Wade RC, Musiani F, Kokh DB, Rossetti G. A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics. ACS Pharmacol Transl Sci 2021; 4:1079-1095. [PMID: 34136757 PMCID: PMC8009102 DOI: 10.1021/acsptsci.0c00215] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/27/2022]
Abstract
The SARS-CoV-2 coronavirus outbreak continues to spread at a rapid rate worldwide. The main protease (Mpro) is an attractive target for anti-COVID-19 agents. Unexpected difficulties have been encountered in the design of specific inhibitors. Here, by analyzing an ensemble of ∼30 000 SARS-CoV-2 Mpro conformations from crystallographic studies and molecular simulations, we show that small structural variations in the binding site dramatically impact ligand binding properties. Hence, traditional druggability indices fail to adequately discriminate between highly and poorly druggable conformations of the binding site. By performing ∼200 virtual screenings of compound libraries on selected protein structures, we redefine the protein's druggability as the consensus chemical space arising from the multiple conformations of the binding site formed upon ligand binding. This procedure revealed a unique SARS-CoV-2 Mpro blueprint that led to a definition of a specific structure-based pharmacophore. The latter explains the poor transferability of potent SARS-CoV Mpro inhibitors to SARS-CoV-2 Mpro, despite the identical sequences of the active sites. Importantly, application of the pharmacophore predicted novel high affinity inhibitors of SARS-CoV-2 Mpro, that were validated by in vitro assays performed here and by a newly solved X-ray crystal structure. These results provide a strong basis for effective rational drug design campaigns against SARS-CoV-2 Mpro and a new computational approach to screen protein targets with malleable binding sites.
Collapse
Affiliation(s)
- Jonas Gossen
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Faculty of
Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062, Germany
| | - Simone Albani
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Faculty of
Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062, Germany
| | - Anton Hanke
- Molecular
and Cellular Modeling Group, Heidelberg
Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, 69118, Germany
- Institute
of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany
| | - Benjamin P. Joseph
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Faculty of
Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062, Germany
| | - Cathrine Bergh
- Science for
Life Laboratory & Swedish e-Science Research Center, Department
of Applied Physics, KTH Royal Institute
of Technology, Stockholm, 11428, Sweden
| | - Maria Kuzikov
- Department
of Screening Port, Fraunhofer Institute
for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, Hamburg, 22525, Germany
| | - Elisa Costanzi
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14-km 163,5 in AREA Science Park, Basovizza,
Trieste, 34149, Italy
| | - Candida Manelfi
- Dompé
Farmaceutici SpA, Via Campo di Pile, L’Aquila, 67100, Italy
| | - Paola Storici
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14-km 163,5 in AREA Science Park, Basovizza,
Trieste, 34149, Italy
| | - Philip Gribbon
- Department
of Screening Port, Fraunhofer Institute
for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, Hamburg, 22525, Germany
| | | | - Carmine Talarico
- Dompé
Farmaceutici SpA, Via Campo di Pile, L’Aquila, 67100, Italy
| | - Francesca Spyrakis
- Department
of Drug Science and Technology, University
of Turin, via Giuria
9, Turin, 10125, Italy
| | - Erik Lindahl
- Science for
Life Laboratory & Swedish e-Science Research Center, Department
of Applied Physics, KTH Royal Institute
of Technology, Stockholm, 11428, Sweden
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-106 91, Sweden
| | - Andrea Zaliani
- Department
of Screening Port, Fraunhofer Institute
for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, Hamburg, 22525, Germany
| | - Paolo Carloni
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Faculty of
Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062, Germany
| | - Rebecca C. Wade
- Molecular
and Cellular Modeling Group, Heidelberg
Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, 69118, Germany
- Zentrum
für Molekulare Biologie der University Heidelberg, DKFZ-ZMBH
Alliance, INF 282, Heidelberg, 69120, Germany
- Interdisciplinary
Center for Scientific Computing (IWR), Heidelberg
University, INF 368, Heidelberg, 69120, Germany
| | - Francesco Musiani
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Daria B. Kokh
- Molecular
and Cellular Modeling Group, Heidelberg
Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, 69118, Germany
| | - Giulia Rossetti
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Institute
for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, Jülich, 52425, Germany
- Jülich
Supercomputing Center (JSC), Forschungszentrum
Jülich, Jülich, 52425, Germany
- Department
of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, 44517, Germany
| |
Collapse
|
29
|
A small interfering RNA (siRNA) database for SARS-CoV-2. Sci Rep 2021; 11:8849. [PMID: 33893357 PMCID: PMC8065152 DOI: 10.1038/s41598-021-88310-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) rapidly transformed into a global pandemic, for which a demand for developing antivirals capable of targeting the SARS-CoV-2 RNA genome and blocking the activity of its genes has emerged. In this work, we presented a database of SARS-CoV-2 targets for small interference RNA (siRNA) based approaches, aiming to speed the design process by providing a broad set of possible targets and siRNA sequences. The siRNAs sequences are characterized and evaluated by more than 170 features, including thermodynamic information, base context, target genes and alignment information of sequences against the human genome, and diverse SARS-CoV-2 strains, to assess possible bindings to off-target sequences. This dataset is available as a set of four tables, available in a spreadsheet and CSV (Comma-Separated Values) formats, each one corresponding to sequences of 18, 19, 20, and 21 nucleotides length, aiming to meet the diversity of technology and expertise among laboratories around the world. A metadata table (Supplementary Table S1), which describes each feature, is also provided in the aforementioned formats. We hope that this database helps to speed up the development of new target antivirals for SARS-CoV-2, contributing to a possible strategy for a faster and effective response to the COVID-19 pandemic.
Collapse
|
30
|
Liu K, Gu Z, Islam MS, Scherngell T, Kong X, Zhao J, Chen X, Hu Y. Global landscape of patents related to human coronaviruses. Int J Biol Sci 2021; 17:1588-1599. [PMID: 33907523 PMCID: PMC8071764 DOI: 10.7150/ijbs.58807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
At present, the COVID-19 pandemic is running rampant, having caused 2.18 million deaths. Characterizing the global patent landscape of coronaviruses is essential not only for informing research and policy, given the current pandemic crisis, but also for anticipating important future developments. While patents are a promising indicator of technological knowledge production widely used in innovation research, they are often an underused resource in biological sciences. In this study, we present a patent landscape for the seven coronaviruses known to infect humans. The information included in this paper provides a strong intellectual groundwork for the ongoing development of therapeutic agents and vaccines along with a deeper discussion of intellectual property rights under epidemic conditions. The results show that there has been a rapid increase in human coronavirus patents, especially COVID-19 patents. China and the United States play an outstanding role in global cooperation and patent application. The leading role of academic institutions and government is increasingly apparent. Notable technological issues related to human coronaviruses include pharmacochemical treatment, diagnosis of viral infection, viral-vector vaccines, and traditional Chinese medicine. Furthermore, a critical challenge lies in balancing commercial competition, enterprise profit, knowledge sharing, and public interest.
Collapse
Affiliation(s)
- Kunmeng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Zixuan Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Md Sahidul Islam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Thomas Scherngell
- Innovation Systems & Policy, AIT Austrian Institute of Technology, Vienna, Austria
| | - Xiangjun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
31
|
Nascimento Júnior JAC, Santos AM, Cavalcante RCM, Quintans-Júnior LJ, Walker CIB, Borges LP, Frank LA, Serafini MR. Mapping the technological landscape of SARS, MERS, and SARS-CoV-2 vaccines. Drug Dev Ind Pharm 2021; 47:673-684. [PMID: 33826439 PMCID: PMC8040490 DOI: 10.1080/03639045.2021.1908343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE The last two decades have seen the emergence of several viral outbreaks. Some of them are the severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and severe acute respiratory syndrome 2 (SARS-CoV2) - the cause of the coronavirus disease 2019 (COVID-19). Ever, vaccines for emergency use have been authorized for the control and prevention of COVID-19. Currently, there is an urgent need to develop a vaccine for prophylaxis of COVID-19 and for other future epidemics. METHODS This review describes patented vaccines for SARS and MERS-CoV and vaccines developed and approved for emergency use against the new coronavirus (COVID-19). The European Patent Office and the World Intellectual Property Organization were the patent databases used using specific terms. In addition, another search was carried out in the Clinical Trials in search of ongoing clinical studies focused on the COVID-19 vaccine. RESULTS The patent search showed that most vaccines are based on viral vector platforms, nucleic acids, or protein subunits. The review also includes an overview of completed and ongoing clinical trials for SARS-CoV-2 in several countries. CONCLUSION The information provided here lists vaccines for other types of coronavirus that have been used in the development of vaccines for COVID-19.
Collapse
Affiliation(s)
- José Adão Carvalho Nascimento Júnior
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Lucindo José Quintans-Júnior
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Cristiani Isabel Banderó Walker
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Escola de Saúde e Bem Estar UniRitter, Faculdade de Farmácia - Laureate International Universities, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mairim Russo Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
32
|
Beig Parikhani A, Bazaz M, Bamehr H, Fereshteh S, Amiri S, Salehi-Vaziri M, Arashkia A, Azadmanesh K. The Inclusive Review on SARS-CoV-2 Biology, Epidemiology, Diagnosis, and Potential Management Options. Curr Microbiol 2021; 78:1099-1114. [PMID: 33638671 PMCID: PMC7913045 DOI: 10.1007/s00284-021-02396-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/07/2021] [Indexed: 12/18/2022]
Abstract
A novel coronavirus member was reported in Wuhan City, Hubei Province, China, at the end of the year 2019. Initially, the infection spread locally, affecting the Wuhan people, and then expanded rapidly throughout the world. On 11 March 2020, the World Health Organization (WHO) proclaimed it a global pandemic. The virus is a new strain most closely related to a bat coronavirus (RaTG13) which was not previously discovered in humans and is now formally known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus disease 2019 (COVID-19) is the disease syndrome that the SARS-CoV-2 virus triggers. It is suggested that SARS-CoV-2 can be transmitted through aerosols, direct/indirect contact, and also during medical procedures and specimen handling. The infection is characterized by isolated flu-like symptoms, but there may be specific signs of fever, fatigue, cough, and shortness of breath, as well as the loss of smell and breathing difficulty. Within this report, we tried to review the most current scientific literature published by January 2021 on various aspects of the outbreak, including virus structure, pathogenesis, clinical presentation, epidemiology, diagnostic approaches, potential therapeutics and vaccines, and prospects. We hope this article makes a beneficial impact on public education to better deal with the SARS-CoV-2 crisis and push a step forward in the near term towards its prevention and control.
Collapse
Affiliation(s)
- Arezoo Beig Parikhani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Masoume Bazaz
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hadi Bamehr
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers, Pasteur Institute of Iran, Tehran, Iran
- Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
- Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
- Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
33
|
Ahmad S, Waheed Y, Ismail S, Bhatti S, Abbasi SW, Muhammad K. Structure-Based Virtual Screening Identifies Multiple Stable Binding Sites at the RecA Domains of SARS-CoV-2 Helicase Enzyme. Molecules 2021; 26:1446. [PMID: 33800013 PMCID: PMC7962107 DOI: 10.3390/molecules26051446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
With the emergence and global spread of the COVID-19 pandemic, the scientific community worldwide has focused on search for new therapeutic strategies against this disease. One such critical approach is targeting proteins such as helicases that regulate most of the SARS-CoV-2 RNA metabolism. The purpose of the current study was to predict a library of phytochemicals derived from diverse plant families with high binding affinity to SARS-CoV-2 helicase (Nsp13) enzyme. High throughput virtual screening of the Medicinal Plant Database for Drug Design (MPD3) database was performed on SARS-CoV-2 helicase using AutoDock Vina. Nilotinib, with a docking value of -9.6 kcal/mol, was chosen as a reference molecule. A compound (PubChem CID: 110143421, ZINC database ID: ZINC257223845, eMolecules: 43290531) was screened as the best binder (binding energy of -10.2 kcal/mol on average) to the enzyme by using repeated docking runs in the screening process. On inspection, the compound was disclosed to show different binding sites of the triangular pockets collectively formed by Rec1A, Rec2A, and 1B domains and a stalk domain at the base. The molecule is often bound to the ATP binding site (referred to as binding site 2) of the helicase enzyme. The compound was further discovered to fulfill drug-likeness and lead-likeness criteria, have good physicochemical and pharmacokinetics properties, and to be non-toxic. Molecular dynamic simulation analysis of the control/lead compound complexes demonstrated the formation of stable complexes with good intermolecular binding affinity. Lastly, affirmation of the docking simulation studies was accomplished by estimating the binding free energy by MMPB/GBSA technique. Taken together, these findings present further in silco investigation of plant-derived lead compounds to effectively address COVID-19.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Foundation University Medical College, Foundation University Islamabad, DHA-I, Islamabad 44000, Pakistan; (S.A.); (S.I.)
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, DHA-I, Islamabad 44000, Pakistan; (S.A.); (S.I.)
| | - Saba Ismail
- Foundation University Medical College, Foundation University Islamabad, DHA-I, Islamabad 44000, Pakistan; (S.A.); (S.I.)
| | - Saadia Bhatti
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 44000, Pakistan;
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, The Mall, Rawalpindi 46000, Pakistan;
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
34
|
Changes of lymphocyte subsets in patients with COVID-19 and clinical significance: a case-control observational study. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
35
|
Abstract
The current situation, heavily influenced by the ongoing pandemic, puts vaccines back into the spotlight. However, the conventional and traditional vaccines present disadvantages, particularly related to immunogenicity, stability, and storage of the final product. Often, such products require the maintenance of a “cold chain,” impacting the costs, the availability, and the distribution of vaccines. Here, after a recall of the mode of action of vaccines and the types of vaccines currently available, we analyze the past, present, and future of vaccine formulation. The past focuses on conventional formulations, the present discusses the use of nanoparticles for vaccine delivery and as adjuvants, while the future presents microneedle patches as alternative formulation and administration route. Finally, we compare the advantages and disadvantages of injectable solutions, nanovaccines, and microneedles in terms of efficacy, stability, and patient-friendly design. Different approaches to vaccine formulation development, the conventional vaccine formulations from the past, the current development of lipid nanoparticles as vaccines, and the near future microneedles formulations are discussed in this review. ![]()
Collapse
|
36
|
Arba M, Wahyudi ST, Brunt DJ, Paradis N, Wu C. Mechanistic insight on the remdesivir binding to RNA-Dependent RNA polymerase (RdRp) of SARS-cov-2. Comput Biol Med 2021; 129:104156. [PMID: 33260103 PMCID: PMC7691827 DOI: 10.1016/j.compbiomed.2020.104156] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/18/2023]
Abstract
The RNA-dependent RNA polymerase (RdRp) is a key enzyme which regulates the viral replication of SARS-CoV-2. Remdesivir (RDV) is clinically used drug which targets RdRp, however its mechanism of action remains elusive. This study aims to find out the binding dynamics of active Remdesivir-triphosphate (RDV-TP) to RdRp by means of molecular dynamics (MD) simulation. We built a homology model of RdRp along with RNA and manganese ion using RdRp hepatitis C virus and recent SARS-CoV-2 structures. We determined that the model was stable during the 500 ns MD simulations. We then employed the model to study the binding of RDV-TP to RdRp during three independent 500 ns MD simulations. It was revealed that the interactions of protein and template-primer RNA were dominated by salt bridge interactions with phosphate groups of RNA, while interactions with base pairs of template-primer RNA were minimal. The binding of RDV-TP showed that the position of phosphate groups was at the entry of the NTP channel and it was stabilized by the interactions with K551, R553, and K621, while the adenosine group on RDV-TP was pairing with U2 of the template strand. The manganese ion was located close to D618, D760, and D761, and helps in stabilization of the phosphate groups of RDV-TP. Further we identified three hits from the natural product database that pose similar to RDV-TP while having lower binding energies than that of RDV-TP, and that SN00359915 had binding free energy about three times lower than that of RDV-TP.
Collapse
Affiliation(s)
- Muhammad Arba
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari, 93232, Indonesia.
| | | | - Dylan J Brunt
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, United States
| | - Nicholas Paradis
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, United States
| | - Chun Wu
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, United States.
| |
Collapse
|
37
|
Groaz E, De Clercq E, Herdewijn P. Anno 2021: Which antivirals for the coming decade? ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2021; 57:49-107. [PMID: 34744210 PMCID: PMC8563371 DOI: 10.1016/bs.armc.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite considerable progress in the development of antiviral drugs, among which anti-immunodeficiency virus (HIV) and anti-hepatitis C virus (HCV) medications can be considered real success stories, many viral infections remain without an effective treatment. This not only applies to infectious outbreaks caused by zoonotic viruses that have recently spilled over into humans such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), but also ancient viral diseases that have been brought under control by vaccination such as variola (smallpox), poliomyelitis, measles, and rabies. A largely unsolved problem are endemic respiratory infections due to influenza, respiratory syncytial virus (RSV), and rhinoviruses, whose associated morbidity will likely worsen with increasing air pollution. Furthermore, climate changes will expose industrialized countries to a dangerous resurgence of viral hemorrhagic fevers, which might also become global infections. Herein, we summarize the recent progress that has been made in the search for new antivirals against these different threats that the world population will need to confront with increasing frequency in the next decade.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,Corresponding author:
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Barbalho CRS, Queiroz LDDS, Simonetti PADC, Pereira SA, Freitas SSD. Coronavírus: exame preliminar da trajetória científica e tecnológica dos surtos. LIINC EM REVISTA 2020. [DOI: 10.18617/liinc.v16i2.5357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Traça um exame preliminar de como se constituiu a relação entre manifestações da doença, descobertas científicas e produção tecnológica para os principais surtos de coronavírus, entre 2000 a 2020, de modo a adensar conhecimentos que possam corroborar para a compreensão ampliada da pandemia. Adota como assuntos basilares para a revisão bibliográfica a interlocução entre ciência, tecnologia e inovação bem como os aspectos relevantes para compreensão da trajetória da família coronavírus: principais surtos (2002, 2012 e 2019) e descobertas científicas. Apresenta uma linha do tempo dos surtos provocados pelo vírus visando compor um quadro com a trajetória das principais descobertas realizadas pela comunidade científica que estuda a temática, apoiada nos estudos de Weiss (2020). Por meio de um estudo de anterioridade realizado no Questel Orbit, dimensiona os pedidos de patentes por família existentes destacando o período temporal da publicação, principais países de depósito, clusters e domínios tecnológicos e série histórica pela Classificação Internacional de Patentes (CIP). Avalia as trajetórias expostas e conclui que é necessário um maior alinhamento entre a ciência, a tecnologia e a inovação para promover respostas rápidas e contundentes para as doenças geradas pelo Coronavírus
Collapse
|
39
|
Cusinato J, Cau Y, Calvani AM, Mori M. Repurposing drugs for the management of COVID-19. Expert Opin Ther Pat 2020; 31:295-307. [PMID: 33283567 DOI: 10.1080/13543776.2021.1861248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 represents a serious health issue worldwide, with more than 61 million cases and more than 1.4 million deaths since the beginning of the epidemic near the end of 2019. The scientific community strongly responded to this emergency situation with massive research efforts, mostly focused on diagnosis and clinical investigation of therapeutic solutions. In this scenario, drug repurposing played a crucial role in accelerating advanced clinical testing and shortening the time to access the regulatory review.Areas covered: This review covers the main and most successful drug repurposing approaches from a design, clinical, and regulatory standpoint. Available patents on repurposed drugs are also discussed.Expert opinion: Drug repurposing proved highly successful in response to the current pandemic, with remdesivir becoming the first specific antiviral drug approved for the treatment of COVID-19. In parallel, a number of drugs such as corticosteroids and low molecular weight heparin (LMWH) are used to treat hospitalized COVID-19 patients, while clinical testing of additional therapeutic options is ongoing. It is reasonably expected that these research efforts will deliver optimized and specific therapeutic tools that will increase the preparedness of health systems to possible future epidemics.
Collapse
Affiliation(s)
- Jacopo Cusinato
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Ylenia Cau
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Hospital Pharmacy School, Florence, Italy
| | - Anna Maria Calvani
- AOU Anna Meyer Children's University Hospital, Hospital Pharmacy, AOU Anna Meyer Children's University Hospital, Florence, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
40
|
Chowdhury KH, Chowdhury MR, Mahmud S, Tareq AM, Hanif NB, Banu N, Reza ASMA, Emran TB, Simal-Gandara J. Drug Repurposing Approach against Novel Coronavirus Disease (COVID-19) through Virtual Screening Targeting SARS-CoV-2 Main Protease. BIOLOGY 2020; 10:2. [PMID: 33374717 PMCID: PMC7822464 DOI: 10.3390/biology10010002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Novel coronavirus disease (COVID-19) was identified from China in December 2019 and spread rapidly through human-to-human transmission, affecting so many people worldwide. Until now, there has been no specific treatment against the disease and repurposing of the drug. Our investigation aimed to screen potential inhibitors against coronavirus for the repurposing of drugs. Our study analyzed sequence comparison among SARS-CoV, SARS-CoV-2, and MERS-CoV to determine the identity matrix using discovery studio. SARS-CoV-2 Mpro was targeted to generate an E-pharmacophore hypothesis to screen drugs from the DrugBank database having similar features. Promising drugs were used for docking-based virtual screening at several precisions. Best hits from virtual screening were subjected to MM/GBSA analysis to evaluate binding free energy, followed by the analysis of binding interactions. Furthermore, the molecular dynamics simulation approaches were carried out to assess the docked complex's conformational stability. A total of 33 drug classes were found from virtual screening based on their docking scores. Among them, seven potential drugs with several anticancer, antibiotic, and immunometabolic categories were screened and showed promising MM/GBSA scores. During interaction analysis, these drugs exhibited different types of hydrogen and hydrophobic interactions with amino acid residue. Besides, 17 experimental drugs selected from virtual screening might be crucial for drug discovery against COVID-19. The RMSD, RMSF, SASA, Rg, and MM/PBSA descriptors from molecular dynamics simulation confirmed the complex's firm nature. Seven promising drugs for repurposing against SARS-CoV-2 main protease (Mpro), namely sapanisertib, ornidazole, napabucasin, lenalidomide, daniquidone, indoximod, and salicylamide, could be vital for the treatment of COVID-19. However, extensive in vivo and in vitro studies are required to evaluate the mentioned drug's activity.
Collapse
Affiliation(s)
- Kamrul Hasan Chowdhury
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (K.H.C.); (M.R.C.); (A.M.T.); (N.B.H.); (N.B.)
| | - Md. Riad Chowdhury
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (K.H.C.); (M.R.C.); (A.M.T.); (N.B.H.); (N.B.)
| | - Shafi Mahmud
- Microbiology Laboratory, Bioinformatics Division, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (K.H.C.); (M.R.C.); (A.M.T.); (N.B.H.); (N.B.)
| | - Nujhat Binte Hanif
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (K.H.C.); (M.R.C.); (A.M.T.); (N.B.H.); (N.B.)
| | - Naureen Banu
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (K.H.C.); (M.R.C.); (A.M.T.); (N.B.H.); (N.B.)
| | - A. S. M. Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (K.H.C.); (M.R.C.); (A.M.T.); (N.B.H.); (N.B.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
41
|
Nascimento Junior JAC, Santos AM, Oliveira AMS, Guimarães AG, Quintans-Júnior LJ, Coutinho HDM, Martins N, Borges LP, Serafini MR. Trends in MERS-CoV, SARS-CoV, and SARS-CoV-2 (COVID-19) Diagnosis Strategies: A Patent Review. Front Public Health 2020; 8:563095. [PMID: 33194964 PMCID: PMC7653175 DOI: 10.3389/fpubh.2020.563095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of a new coronavirus (SARS-CoV-2) outbreak represents a challenge for the diagnostic laboratories responsible for developing test kits to identify those infected with SARS-CoV-2. Methods with rapid and accurate detection are essential to control the sources of infection, to prevent the spread of the disease and to assist decision-making by public health managers. Currently, there is a wide variety of tests available with different detection methodologies, levels of specificity and sensitivity, detection time, and with an extensive range of prices. This review therefore aimed to conduct a patent search in relation to tests for the detection of SARS-CoV, MERS-CoV, and SARS-CoV-2. The greatest number of patents identified in the search were registered between 2003 and 2011, being mainly deposited by China, the Republic of Korea, and the United States. Most of the patents used the existing RT-PCR, ELISA, and isothermal amplification methods to develop simple, sensitive, precise, easy to use, low-cost tests that reduced false-negative or false-positive results. The findings of this patent search show that an increasing number of materials and diagnostic tests for the coronavirus are being produced to identify infected individuals and combat the growth of the current pandemic; however, there is still a question in relation to the reliability of the results of these tests.
Collapse
Affiliation(s)
- José Adão Carvalho Nascimento Junior
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Brazil.,Posgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristovão, Brazil
| | | | | | - Adriana Gibara Guimarães
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Brazil.,Posgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristovão, Brazil
| | - Lucindo José Quintans-Júnior
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Brazil.,Posgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristovão, Brazil
| | | | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | | | - Mairim Russo Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Brazil.,Posgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristovão, Brazil
| |
Collapse
|
42
|
Discovery of small molecule PLpro inhibitor against COVID-19 using structure-based virtual screening, molecular dynamics simulation, and molecular mechanics/Generalized Born surface area (MM/GBSA) calculation. Struct Chem 2020; 32:879-886. [PMID: 33106741 PMCID: PMC7578240 DOI: 10.1007/s11224-020-01665-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/15/2020] [Indexed: 10/29/2022]
Abstract
COVID-19 is spreading in a global pandemic that is endangering human life and health. Therefore, there is an urgent need to target COVID-19 to find effective treatments for this emerging acute respiratory infection. Viral Papain-Like cysteine protease (PLpro), similar to papain and the cysteine deubiquitinase enzyme, has been a popular target for coronavirus inhibitors, as an indispensable enzyme in the process of coronavirus replication and infection of the host. Combined structure-based virtual screening, molecular dynamics (MD) simulation, and molecular mechanics/Generalized Born surface area (MM/GBSA) free energy calculation approaches were utilized for identification of PLpro inhibitors. Four compounds (F403_0159, F112_0109, G805_0497, D754_0006) with diverse chemical scaffolds were retrieved as hits based on docking score and clustering analysis. Molecular dynamics simulations indicated that the contribution of van der Waals interaction dominated the binding free energies of these compounds, which may be attributed to the hydrophobicity of active site of PLpro from COVID-19. Moreover, all four compounds formed conservative hydrogen bonds with the residues Asp164, Gln269, and Tyr273. We hoped that these four compounds might represent the promising chemical scaffolds for further development of novel PLpro inhibitors against COVID-19.
Collapse
|