1
|
Almohmadi NH, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Abdelaziz AM, Jabir MS, Alexiou A, Papadakis M, Batiha GES. Glutamatergic dysfunction in neurodegenerative diseases focusing on Parkinson's disease: Role of glutamate modulators. Brain Res Bull 2025; 225:111349. [PMID: 40252703 DOI: 10.1016/j.brainresbull.2025.111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder resulting from the degeneration of dopamenergic neurons in the substantia nigra pars compacta (SNpc). Research has predominantly centered on understanding the dysfunction of dopaminergic neurotransmission in PD. Recently, more studies discussed the potential role of other neurotransmitters in PD neuropathology. One of the most important non-dopaminergic neurotransmitters involved in the pathogenesis of PD is glutamate, which is widely involved in glutamatergic neurotransmission in different brain regions, including SNpc. The development and progression of PD neuropathology and levodopa-induced dyskinesias (LID) are associated with glutamate neurotoxicity. Therefore, this review seeks to explore the possible involvement of glutamatergic signaling in PD development and assess the therapeutic potential of glutamate receptor antagonists in treating the disorder.
Collapse
Affiliation(s)
- Najlaa Hamed Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq; Jabir ibn Hayyan Medical University Al-Ameer Qu, Po. Box (13), Kufa, Najaf, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Arish Branch, Arish 45511, Egypt.
| | - Majid S Jabir
- Department of Applied Science, University of Technology-Iraq, Baghdad, Iraq.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, AlBeheira 22511, Egypt.
| |
Collapse
|
2
|
Beltrá P, Viudes-Sarrión N, Giner MJ, Tomás-Muñoz E, Pérez-Cervera L, Martín-San Agustín R, Ortega FJ, Valdesuso R, Suso-Martí L, Binshtok A, Delicado-Miralles M, Velasco E. Electrical Nerve Stimulation Induces Synaptic Plasticity in the Brain and the Spinal Cord: A Systematic Review. Neuromodulation 2025:S1094-7159(25)00053-4. [PMID: 40196976 DOI: 10.1016/j.neurom.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 02/25/2025] [Indexed: 04/09/2025]
Abstract
OBJECTIVES This review aimed to compile the literature on synaptic plasticity induced by electrical nerve stimulation (ENS) in nociceptive and somatosensory circuits within the central nervous system, with a particular focus on its effects on both the brain and spinal cord. Understanding the mechanisms underlying synaptic changes, enhances our comprehension of how ENS contributes to both pain relief and the development of experimental pain models. MATERIALS AND METHODS We conducted a systematic search of PubMed, Scopus, PEDro, SciELO, and Cochrane databases, adhering to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, and evaluated the quality of evidence using SYRCLE's risk of bias tool. The inclusion criteria were application of ENS to peripheral nerves, reporting of a detailed methodology, providing direct physiological measurements of synaptic activity (eg, field potentials or intracellular recordings), and publication in English or Spanish. From 8094 results, 85 studies met the inclusion criteria. RESULTS ENS was found to induce synaptic potentiation in 70 studies, depression in 7, and both effects in 8. These outcomes were determined by specific stimulation parameters and individual characteristics, with distinct molecular mechanisms involved in each case. Notably, most research focused on long-term potentiation in nociceptive pathways to create experimental pain models, with most studies conducted in the spinal cord. Few studies explored the link between ENS-induced synaptic plasticity and its analgesic effects or the role of plasticity in supraspinal brain regions, suggesting promising areas for future research. CONCLUSIONS ENS-induced synaptic plasticity presents a valuable opportunity for both pain management and the development of experimental pain models. Further research is needed to explore the connections between plasticity, analgesia, and higher brain regions.
Collapse
Affiliation(s)
- Patricia Beltrá
- Neuroscience in Physiotherapy, Independent Research Group, Elche, Spain; Department of Physiotherapy, Valencia University, Valencia, Spain; Department of Nursing and Nutrition, Faculty of Health Sciences, European University of Valencia, Valencia, Spain
| | - Nuria Viudes-Sarrión
- Skeletal Biology and Engineering Research Center, Catholic University of Leuven (KU Leuven), Leuven, Belgium; Human Movement Biomechanics Research Group, Department of Movement Sciences, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - María José Giner
- Neuroscience in Physiotherapy, Independent Research Group, Elche, Spain; Neuroscience Institute of Alicante, Miguel Hernández University-Superior Council for Scientific Research, San Juan de Alicante, Spain; Laboratory of Ion Channel Research, Flemish Institute for Biotechnology-Catholic University of Leuven (VIB-KU Leuven) Center for Brain & Disease Research, Leuven, Belgium
| | | | - Laura Pérez-Cervera
- Neuroscience in Physiotherapy, Independent Research Group, Elche, Spain; Faculty of Health Sciences, European University of Valencia, Valencia, Spain
| | | | - Francisco Javier Ortega
- Physical Therapy and Advanced Rehabilitation Clinic RehAv Elche, Elche, Spain; Department of Physical Therapy, University Studies Center-Cardenal Herrera University, Elche, Spain
| | - Raúl Valdesuso
- Department of Physical Therapy, University Studies Center-Cardenal Herrera University, Elche, Spain
| | - Luis Suso-Martí
- Neuroscience in Physiotherapy, Independent Research Group, Elche, Spain; Department of Physiotherapy, Valencia University, Valencia, Spain
| | - Alexander Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel; Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miguel Delicado-Miralles
- Neuroscience in Physiotherapy, Independent Research Group, Elche, Spain; Department of Pathology and Surgery, Physiotherapy Area, Faculty of Medicine, Miguel Hernández University of Elche, Elche, Spain
| | - Enrique Velasco
- Neuroscience in Physiotherapy, Independent Research Group, Elche, Spain; Laboratory of Ion Channel Research, Flemish Institute for Biotechnology-Catholic University of Leuven (VIB-KU Leuven) Center for Brain & Disease Research, Leuven, Belgium.
| |
Collapse
|
3
|
Zheng X, Zheng Y, Zhai Z, Chen Y, Zhu Y, Qiu G, Wang B, Wang S, Chen Y, Yan J. Electroacupuncture restores maternal separation-induced glutamatergic presynaptic deficits of the medial prefrontal cortex in adulthood. Neuroscience 2025; 570:203-212. [PMID: 39993668 DOI: 10.1016/j.neuroscience.2025.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Maternal separation (MS) serves as a critical model of early life stress (ELS) that can lead to mood disorders, such as depression. Our previous studies suggest that MS may disrupt synaptic transmission in adulthood. While electroacupuncture (EA) has demonstrated antidepressant effects in several animal models of stress-induced depression, it remains unclear whether EA can reverse synaptic transmission deficits caused by ELS. In this study, we examined the effects of EA at Baihui (GV20) and Yintang (GV29) on both behavioural deficits and glutamatergic synaptic transmission in Sprague-Dawley rats subjected to MS. First, we showed that EA effectively alleviated anhedonia and despair-like behaviours. Furthermore, our data indicated that EA restored the decrease in presynaptic glutamate release, as evidenced by changes in the frequency of miniature excitatory postsynaptic currents (mEPSCs) and paired-pulse ratios (PPR). Microdialysis results also suggested that EA elevated extracellular glutamate levels. To explore the underlying mechanisms, we performed Western blot analyses on several proteins involved in glutamatergic synaptic transmission. Notably, we found that EA treatment increased the expression of vesicular glutamate transporters (VGLUT1 and VGLUT2) and vesicle-associated release proteins (SNAP25, Syntaxin-1A, and VAMP2) in the medial prefrontal cortex (mPFC) of MS rats. In contrast, EA did not significantly affect most postsynaptic glutamatergic receptors. These findings underscore the significant impact of EA on glutamatergic synaptic transmission, particularly in restoring presynaptic impairments induced by MS in adulthood.
Collapse
Affiliation(s)
- Xiaorong Zheng
- South China Research Center for Acupuncture and Moxibustion, Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhe Zhai
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwen Chen
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Zhu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guofan Qiu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bokai Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuxin Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China..
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China..
| |
Collapse
|
4
|
Gupta S, Gupta AK, Mehan S, Khan Z, Gupta GD, Narula AS. Disruptions in cellular communication: Molecular interplay between glutamate/NMDA signalling and MAPK pathways in neurological disorders. Neuroscience 2025; 569:331-353. [PMID: 39809360 DOI: 10.1016/j.neuroscience.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK. Activation of these pathways is often correlated with neuronal excitotoxicity, apoptosis, and inflammation, leading to many other pathological conditions such as traumatic brain injury, stroke, and brain tumor. The interplay between glutamate overstimulation and MAPK signalling exacerbates neurodegenerative processes, underscoring the complexity of cellular communication in maintaining neuronal health. Dysfunctional signalling alters synaptic plasticity and neuronal survival, contributing to cognitive impairments in various neurological diseases. The manuscript emphasizes the potential of targeting these signalling pathways for therapeutic interventions, promoting neuroprotection and reducing neuroinflammation. Incorporating insights from precision medicine and innovative drug delivery systems could enhance treatment efficacy. Overall, understanding the intricate mechanisms of these pathways is essential for developing effective strategies to mitigate the impact of neurological disorders and improve patient outcomes. This review highlights the necessity for further exploration into these signalling cascades to facilitate advancements in therapeutic approaches, ensuring better prognoses for individuals affected by neurological conditions.
Collapse
Affiliation(s)
- Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Abhishek Kumar Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India. https://mehanneuroscience.org
| | - Zuber Khan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
5
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
6
|
Geoffroy C, Berraud-Pache R, Chéron N, McCort-Tranchepain I, Doria J, Paoletti P, Mony L. Reversible Control of Native GluN2B-Containing NMDA Receptors with Visible Light. ACS Chem Neurosci 2024; 15:3321-3343. [PMID: 39242213 PMCID: PMC11413854 DOI: 10.1021/acschemneuro.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 09/09/2024] Open
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels playing a central role in synaptic transmission and plasticity. NMDAR dysregulation is linked to various neuropsychiatric disorders. This is particularly true for GluN2B-containing NMDARs (GluN2B-NMDARs), which have major pro-cognitive, but also pro-excitotoxic roles, although their exact involvement in these processes remains debated. Traditional GluN2B-selective antagonists suffer from slow and irreversible effects, limiting their use in native tissues. We therefore developed OptoNAM-3, a photoswitchable negative allosteric modulator selective for GluN2B-NMDARs. OptoNAM-3 provided light-induced reversible inhibition of GluN2B-NMDAR activity with precise temporal control both in vitro and in vivo on the behavior of freely moving Xenopus tadpoles. When bound to GluN2B-NMDARs, OptoNAM-3 displayed remarkable red-shifting of its photoswitching properties allowing the use of blue light instead of UV light to turn-off its activity, which we attributed to geometric constraints imposed by the binding site onto the azobenzene moiety of the ligand. This study therefore highlights the importance of the binding site in shaping the photochemical properties of azobenzene-based photoswitches. In addition, by enabling selective, fast, and reversible photocontrol of native GluN2B-NMDARs with in vivo compatible photochemical properties (visible light), OptoNAM-3 should be a useful tool for the investigation of the GluN2B-NMDAR physiology in native tissues.
Collapse
Affiliation(s)
- Chloé Geoffroy
- Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole
Normale Supérieure, CNRS, INSERM, Université PSL, Paris F-75005, France
| | - Romain Berraud-Pache
- Laboratoire
d’Archéologie Moléculaire et Structurale (LAMS),
CNRS UMR 8220, Sorbonne Université, Paris 75005, France
| | - Nicolas Chéron
- PASTEUR,
Département de chimie, École normale supérieure,
CNRS, Université PSL, Sorbonne Université, Paris 75005, France
| | - Isabelle McCort-Tranchepain
- Laboratoire
de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Cité, Paris 75006, France
| | - Julia Doria
- Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole
Normale Supérieure, CNRS, INSERM, Université PSL, Paris F-75005, France
| | - Pierre Paoletti
- Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole
Normale Supérieure, CNRS, INSERM, Université PSL, Paris F-75005, France
| | - Laetitia Mony
- Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole
Normale Supérieure, CNRS, INSERM, Université PSL, Paris F-75005, France
| |
Collapse
|
7
|
Schoellerman J, Lord B, Bhattacharya A, Stenne B, Wall JL, Rech J, Letavic M, Bonaventure P, Balana B. Characterization of tritiated JNJ-GluN2B-5 (3-[ 3H] 1-(azetidin-1-yl)-2-(6-(4-fluoro-3-methyl-phenyl)pyrrolo[3,2-b]pyridin-1-yl)ethanone), a high affinity GluN2B radioligand with selectivity over sigma receptors. J Neurochem 2024; 168:2654-2670. [PMID: 38770633 DOI: 10.1111/jnc.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Here, we describe the characterization of a radioligand selective for GluN2B-containing NMDA receptors, 3-[3H] 1-(azetidin-1-yl)-2-(6-(4-fluoro-3-methyl-phenyl)pyrrolo[3,2-b]pyridin-1-yl)ethanone ([3H]-JNJ- GluN2B-5). In rat cortical membranes, the compound bound to a single site, and the following kinetic parameters were measured; association rate constant Kon = 0.0066 ± 0.0006 min-1 nM-1, dissociation rate constant Koff = 0.0210 ± 0.0001 min-1 indicating calculated KD = Koff/Kon = 3.3 ± 0.4 nM, (mean ± SEM, n = 3). The equilibrium dissociation constant determined from saturation binding experiments in rat cortex was KD of 2.6 ± 0.3 nM (mean ± SEM, n = 3). In contrast to the widely used GluN2B radioligand [3H]-Ro 25-6981, whose affinity Ki for sigma 1 and sigma 2 receptors are 2 and 189 nM, respectively, [3H]-JNJ-GluN2B-5 exhibits no measurable affinity for sigma 1 and sigma 2 receptors (Ki > 10 μM for both) providing distinct selectivity advantages. Anatomical distribution of [3H]-JNJ-GluN2B-5 binding sites in rat, mouse, dog, monkey, and human brain tissue was studied using in vitro autoradiography, which showed high specific binding in the hippocampus and cortex and negligible binding in the cerebellum. Enhanced selectivity for GluN2B-containing receptors translated to a good signal-to-noise ratio in both in vitro radioligand binding and in vitro autoradiography assays. In conclusion, [3H]-JNJ-GluN2B-5 is a high-affinity GluN2B radioligand with excellent signal-to-noise ratio and unprecedented selectivity.
Collapse
Affiliation(s)
- Jeffrey Schoellerman
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Brian Lord
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Anindya Bhattacharya
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Brice Stenne
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Jessica L Wall
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Jason Rech
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Michael Letavic
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Pascal Bonaventure
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Bartosz Balana
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| |
Collapse
|
8
|
Dunot J, Moreno S, Gandin C, Pousinha PA, Amici M, Dupuis J, Anisimova M, Winschel A, Uriot M, Petshow SJ, Mensch M, Bethus I, Giudici C, Hampel H, Wefers B, Wurst W, Naumann R, Ashby MC, Laube B, Zito K, Mellor JR, Groc L, Willem M, Marie H. APP fragment controls both ionotropic and non-ionotropic signaling of NMDA receptors. Neuron 2024; 112:2708-2720.e9. [PMID: 38878768 PMCID: PMC11343662 DOI: 10.1016/j.neuron.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
NMDA receptors (NMDARs) are ionotropic receptors crucial for brain information processing. Yet, evidence also supports an ion-flux-independent signaling mode mediating synaptic long-term depression (LTD) and spine shrinkage. Here, we identify AETA (Aη), an amyloid-β precursor protein (APP) cleavage product, as an NMDAR modulator with the unique dual regulatory capacity to impact both signaling modes. AETA inhibits ionotropic NMDAR activity by competing with the co-agonist and induces an intracellular conformational modification of GluN1 subunits. This favors non-ionotropic NMDAR signaling leading to enhanced LTD and favors spine shrinkage. Endogenously, AETA production is increased by in vivo chemogenetically induced neuronal activity. Genetic deletion of AETA production alters NMDAR transmission and prevents LTD, phenotypes rescued by acute exogenous AETA application. This genetic deletion also impairs contextual fear memory. Our findings demonstrate AETA-dependent NMDAR activation (ADNA), characterizing AETA as a unique type of endogenous NMDAR modulator that exerts bidirectional control over NMDAR signaling and associated information processing.
Collapse
Affiliation(s)
- Jade Dunot
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sebastien Moreno
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Carine Gandin
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Paula A Pousinha
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Mascia Amici
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Julien Dupuis
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, 33076 Bordeaux Cedex, France
| | - Margarita Anisimova
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Alex Winschel
- Department of Biology, Neurophysiology und Neurosensory Systems, TU Darmstadt, 64287 Darmstadt, Germany
| | - Magalie Uriot
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, 33076 Bordeaux Cedex, France
| | - Samuel J Petshow
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Maria Mensch
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Ingrid Bethus
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Camilla Giudici
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Heike Hampel
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Michael C Ashby
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Bodo Laube
- Department of Biology, Neurophysiology und Neurosensory Systems, TU Darmstadt, 64287 Darmstadt, Germany
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Laurent Groc
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, 33076 Bordeaux Cedex, France
| | - Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Hélène Marie
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
| |
Collapse
|
9
|
Ugale V, Deshmukh R, Lokwani D, Narayana Reddy P, Khadse S, Chaudhari P, Kulkarni PP. GluN2B subunit selective N-methyl-D-aspartate receptor ligands: Democratizing recent progress to assist the development of novel neurotherapeutics. Mol Divers 2024; 28:1765-1792. [PMID: 37266849 PMCID: PMC10234801 DOI: 10.1007/s11030-023-10656-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play essential roles in vital aspects of brain functions. NMDARs mediate clinical features of neurological diseases and thus, represent a potential therapeutic target for their treatments. Many findings implicated the GluN2B subunit of NMDARs in various neurological disorders including epilepsy, ischemic brain damage, and neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's chorea, and amyotrophic lateral sclerosis. Although a large amount of information is growing consistently on the importance of GluN2B subunit, however, limited recent data is available on how subunit-selective ligands impact NMDAR functions, which blunts the ability to render the diagnosis or craft novel treatments tailored to patients. To bridge this gap, we have focused on and summarized recently reported GluN2B selective ligands as emerging subunit-selective antagonists and modulators of NMDAR. Herein, we have also presented an overview of the structure-function relationship for potential GluN2B/NMDAR ligands with their binding sites and connection to CNS functionalities. Understanding of design rules and roles of GluN2B selective compounds will provide the link to medicinal chemists and neuroscientists to explore novel neurotherapeutic strategies against dysfunctions of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Vinod Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India.
- Bioprospecting Group, Agharkar Research Institute, Pune, Maharashtra, India.
| | - Rutuja Deshmukh
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Deepak Lokwani
- Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - P Narayana Reddy
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
| | - Saurabh Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Prashant Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Prasad P Kulkarni
- Bioprospecting Group, Agharkar Research Institute, Pune, Maharashtra, India.
| |
Collapse
|
10
|
Tan Q, Liu X, Xu S, Chen J, Li W, Zhang S, Du Y. Global trends and hotspots in research on acupuncture for neurodegenerative diseases over the last decade: a bibliometric and visualization analysis. Front Aging Neurosci 2024; 16:1390384. [PMID: 38800611 PMCID: PMC11116584 DOI: 10.3389/fnagi.2024.1390384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Objectives This study aimed to explore the current status and trends of acupuncture for neurodegenerative diseases (NDs) in the last decade and provide new insights for researchers in future studies. Methods The publications concerning acupuncture treatment for NDs published between 2014 and 2023 were extracted from the Web of Science Core Collection. We used CiteSpace and VOSviewer to analyze data on numbers of annual publications, countries, institutions, cited journals, cited authors, cited references, keywords, and citation bursts about acupuncture for NDs. Results A total of 635 publications were obtained from 2014 to 2023. We identified the most prolific journals, countries, institutions, authors, patterns of authorship, and the main direction of future research in the field of acupuncture for NDs in the last decade. The country, institution, and journal with the most publications are China (389 articles), Beijing University of Chinese Medicine (56 articles), and Evidence Based Complementary and Alternative Medicine (42 articles), respectively. The high-frequency keywords focused on "Alzheimer's disease," "Parkinson's disease," "acupuncture," "dementia," and "electroacupuncture." The top five keywords in terms of centrality were "cerebral ischemia," "acupuncture stimulation," "fMRI," "apoptosis," and "deep brain stimulation." Conclusion The results from this bibliometric study provide insight into the research trends in acupuncture therapy for NDs, and the current status and trends of the past decade, which may help researchers confirm the current status, hotspots, and frontier trends in this field.
Collapse
Affiliation(s)
- Qian Tan
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyuan Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Shuyu Xu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiangmin Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Weixian Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Shuai Zhang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanjun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| |
Collapse
|
11
|
Jiang L, Liu N, Zhao F, Huang B, Kang D, Zhan P, Liu X. Discovery of GluN2A subtype-selective N-methyl-d-aspartate (NMDA) receptor ligands. Acta Pharm Sin B 2024; 14:1987-2005. [PMID: 38799621 PMCID: PMC11119548 DOI: 10.1016/j.apsb.2024.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
The N-methyl-d-aspartate (NMDA) receptors, which belong to the ionotropic Glutamate receptors, constitute a family of ligand-gated ion channels. Within the various subtypes of NMDA receptors, the GluN1/2A subtype plays a significant role in central nervous system (CNS) disorders. The present article aims to provide a comprehensive review of ligands targeting GluN2A-containing NMDA receptors, encompassing negative allosteric modulators (NAMs), positive allosteric modulators (PAMs) and competitive antagonists. Moreover, the ligands' structure-activity relationships (SARs) and the binding models of representative ligands are also discussed, providing valuable insights for the clinical rational design of effective drugs targeting CNS diseases.
Collapse
Affiliation(s)
| | | | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
12
|
Sharma C, Mazumder A. A Comprehensive Review on Potential Molecular Drug Targets for the Management of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:45-56. [PMID: 38305393 DOI: 10.2174/0118715249263300231116062740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 10/04/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is an onset and incurable neurodegenerative disorder that has been linked to various genetic, environmental, and lifestyle factors. Recent research has revealed several potential targets for drug development, such as the prevention of Aβ production and removal, prevention of tau hyperphosphorylation, and keeping neurons alive. Drugs that target numerous ADrelated variables have been developed, and early results are encouraging. This review provides a concise map of the different receptor signaling pathways associated with Alzheimer's Disease, as well as insight into drug design based on these pathways. It discusses the molecular mechanisms of AD pathogenesis, such as oxidative stress, aging, Aβ turnover, thiol groups, and mitochondrial activities, and their role in the disease. It also reviews the potential drug targets, in vivo active agents, and docking studies done in AD and provides prospects for future drug development. This review intends to provide more clarity on the molecular processes that occur in Alzheimer's patient's brains, which can be of use in diagnosing and preventing the condition.
Collapse
Affiliation(s)
- Chanchal Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| |
Collapse
|
13
|
Ahmed H, Wallimann R, Gisler L, Elghazawy NH, Gruber S, Keller C, Liang SH, Sippl W, Haider A, Ametamey SM. Characterization of ( R)- and ( S)-[ 18F]OF-NB1 in Rodents as Positron Emission Tomography Probes for Imaging GluN2B Subunit-Containing N-Methyl-d-Aspartate Receptors. ACS Chem Neurosci 2023; 14:4323-4334. [PMID: 38060344 DOI: 10.1021/acschemneuro.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) subtype 2B (GluN1/2B) is implicated in various neuropathologies. Given the lack of a validated radiofluorinated positron emission tomography (PET) probe for the imaging of GluN1/2B receptors, we comprehensively investigated the enantiomers of [18F]OF-NB1 in rodents. Particularly, the (R)- and (S)- enantiomers were evaluated using in silico docking, in vitro autoradiography, in vivo PET imaging, and ex vivo biodistribution studies. A select panel of GluN1/2B antagonists (CP-101,606, CERC-301, and eliprodil) and the off-target sigma-1 receptor ligands (fluspidine and SA4503) were used to determine the specificity and selectivity of the tested enantiomers. Additionally, a nonmetal-mediated radiofluorination strategy was devised that harnesses the potential of diaryliodoniums in the nucleophilic radiofluorination of nonactivated aromatic compounds. Both enantiomers exhibited known GluN1/2B binding patterns; however, the R-enantiomer showed higher GluN1/2B-specific accumulation in rodent autoradiography and higher brain uptake in PET imaging experiments compared to the S-enantiomer. Molecular simulation studies provided further insights with respect to the difference in binding, whereby a reduced ligand-receptor interaction was observed for the S-enantiomer. Nonetheless, both enantiomers showed dose dependency when two different doses (1 and 5 mg/kg) of the GluN1/2B antagonist, CP-101,606, were used in the PET imaging study. Taken together, (R)-[18F]OF-NB1 appears to exhibit the characteristics of a suitable PET probe for imaging of GluN2B-containing NMDARs in clinical studies.
Collapse
Affiliation(s)
- Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Rahel Wallimann
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Livio Gisler
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Stefan Gruber
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
14
|
Liu W, Li Y, Zhao T, Gong M, Wang X, Zhang Y, Xu L, Li W, Li Y, Jia J. The role of N-methyl-D-aspartate glutamate receptors in Alzheimer's disease: From pathophysiology to therapeutic approaches. Prog Neurobiol 2023; 231:102534. [PMID: 37783430 DOI: 10.1016/j.pneurobio.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
N-Methyl-D-aspartate glutamate receptors (NMDARs) are involved in multiple physiopathological processes, including synaptic plasticity, neuronal network activities, excitotoxic events, and cognitive impairment. Abnormalities in NMDARs can initiate a cascade of pathological events, notably in Alzheimer's disease (AD) and even other neuropsychiatric disorders. The subunit composition of NMDARs is plastic, giving rise to a diverse array of receptor subtypes. While they are primarily found in neurons, NMDAR complexes, comprising both traditional and atypical subunits, are also present in non-neuronal cells, influencing the functions of various peripheral tissues. Furthermore, protein-protein interactions within NMDAR complexes has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation, and mitochondrial dysfunction, all of which potentially served as an obligatory relay of cognitive impairment. Nonetheless, the precise mechanistic link remains to be fully elucidated. In this review, we provided an in-depth analysis of the structure and function of NMDAR, investigated their interactions with various pathogenic proteins, discussed the current landscape of NMDAR-based therapeutics, and highlighted the remaining challenges during drug development.
Collapse
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yue Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China.
| |
Collapse
|
15
|
Mousavi SL, Rezayof A, Alijanpour S, Delphi L, Hosseinzadeh Sahafi O. Activation of mediodorsal thalamic dopamine receptors inhibited nicotine-induced anxiety in rats: A possible role of corticolimbic NMDA neurotransmission and BDNF expression. Pharmacol Biochem Behav 2023; 232:173650. [PMID: 37778541 DOI: 10.1016/j.pbb.2023.173650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The present study aimed to evaluate the functional interaction between the dopaminergic and glutamatergic systems of the mediodorsal thalamus (MD), the ventral hippocampus (VH), and the prefrontal cortex (PFC) in nicotine-induced anxiogenic-like behaviors. Brain-derived neurotrophic factor (BDNF) level changes were measured in the targeted brain areas following the drug treatments. The percentage of time spent in the open arm (% OAT) and open arm entry (% OAE) were calculated in the elevated plus maze (EPM) to measure anxiety-related behaviors in adult male Wistar rats. Systemic administration of nicotine at a dose of 0.5 mg/kg induced an anxiogenic-like response associated with decreased BDNF levels in the hippocampus and the PFC. Intra-MD microinjection of apomorphine (0.1-0.3 μg/rat) induced an anxiogenic-like response, while apomorphine inhibited nicotine-induced anxiogenic-like behaviors associated with increased hippocampal and PFC BDNF expression levels. Interestingly, the blockade of the VH or the PFC NMDA receptors via the microinjection of D-AP5 (0.3-0.5 μg/rat) into the targeted sites reversed the inhibitory effect of apomorphine (0.5 μg/rat, intra-MD) on the nicotine response and led to the decrease of BDNF levels in the hippocampus and the PFC. Also, the microinjection of a higher dose of D-AP5 (0.5 μg/rat, intra-PFC) alone produced an anxiogenic effect. These findings suggest that the functional interaction between the MD dopaminergic D1/D2-like and the VH/PFC glutamatergic NMDA receptors may be partially involved in the anxiogenic-like effects of nicotine, likely via the alteration of BDNF levels in the hippocampus and the PFC.
Collapse
Affiliation(s)
- Seyedeh Leila Mousavi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Grigoriev VV, Shevtsova EF, Aksinenko AY, Veselov IM, Goreva TV, Gabrelyan AV, Bachurin SO. New Hybrid Structures Based on Memanthine and Edaravone Molecules. DOKL BIOCHEM BIOPHYS 2023; 512:284-287. [PMID: 38093132 DOI: 10.1134/s1607672923700461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 12/18/2023]
Abstract
New hybrid structures based on memantine and edaravone molecules, in which the pyrazolone ring and adamantane fragments are linked by an alkyl linker, were synthesized. It was found that, in addition to the ability to block the intrachannel site of NMDA receptors, the new hybrid compounds exhibit the property of blockers of the allosteric site of NMDA receptors, which is not inherent in memantine and edaravone preparations. The most active hit compound was determined, which, along with the properties of a two-site blocker of the NMDA receptor, exhibits a pronounced activity as an inhibitor of lipid peroxidation, similarly to the drug edaravone.
Collapse
Affiliation(s)
- V V Grigoriev
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia.
| | - E F Shevtsova
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | - A Yu Aksinenko
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | - I M Veselov
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | - T V Goreva
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | - A V Gabrelyan
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | - S O Bachurin
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| |
Collapse
|
17
|
Zhang Z, Le GNT, Ge Y, Tang X, Chen X, Ejim L, Bordeleau E, Wright GD, Burns DC, Tran S, Axerio-Cilies P, Wang YT, Dong M, Woolley GA. Isomerization of bioactive acylhydrazones triggered by light or thiols. Nat Chem 2023; 15:1285-1295. [PMID: 37308709 DOI: 10.1038/s41557-023-01239-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2023] [Indexed: 06/14/2023]
Abstract
The acylhydrazone unit is well represented in screening databases used to find ligands for biological targets, and numerous bioactive acylhydrazones have been reported. However, potential E/Z isomerization of the C=N bond in these compounds is rarely examined when bioactivity is assayed. Here we analysed two ortho-hydroxylated acylhydrazones discovered in a virtual drug screen for modulators of N-methyl-D-aspartate receptors and other bioactive hydroxylated acylhydrazones with structurally defined targets reported in the Protein Data Bank. We found that ionized forms of these compounds, which are populated under laboratory conditions, photoisomerize readily and the isomeric forms have markedly different bioactivity. Furthermore, we show that glutathione, a tripeptide involved with cellular redox balance, catalyses dynamic E⇄Z isomerization of acylhydrazones. The ratio of E to Z isomers in cells is determined by the relative stabilities of the isomers regardless of which isomer was applied. We conclude that E/Z isomerization may be a common feature of the bioactivity observed with acylhydrazones and should be routinely analysed.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Giang N T Le
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yang Ge
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Linda Ejim
- David Braley Centre for Antibiotics Discovery M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Emily Bordeleau
- David Braley Centre for Antibiotics Discovery M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Darcy C Burns
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Susannah Tran
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Peter Axerio-Cilies
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Yu Tian Wang
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Li MW, Chao TC, Lim LY, Chang HH, Yang SSD. The Acute Effects and Mechanism of Ketamine on Nicotine-Induced Neurogenic Relaxation of the Corpus Cavernosum in Mice. Int J Mol Sci 2023; 24:ijms24086976. [PMID: 37108139 PMCID: PMC10138932 DOI: 10.3390/ijms24086976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The present study aimed to investigate the acute effects and the mechanism of ketamine on nicotine-induced relaxation of the corpus cavernosum (CC) in mice. This study measured the intra-cavernosal pressure (ICP) of male C57BL/6 mice and the CC muscle activities using an organ bath wire myograph. Various drugs were used to investigate the mechanism of ketamine on nicotine-induced relaxation. Direct ketamine injection into the major pelvic ganglion (MPG) inhibited MPG-induced increases in ICP. D-serine/L-glutamate-induced relaxation of the CC was inhibited by MK-801 (N-methyl-D-aspartate (NMDA) receptor inhibitor), and nicotine-induced relaxation was enhanced by D-serine/L-glutamate. NMDA had no effect on CC relaxation. Nicotine-induced relaxation of the CC was suppressed by mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist), lidocaine, guanethidine (an adrenergic neuronal blocker), Nw-nitro-L-arginine (a non-selective nitric oxide synthase inhibitor), MK-801, and ketamine. This relaxation was almost completely inhibited in CC strips pretreated with 6-hydroxydopamine (a neurotoxic synthetic organic compound). Ketamine inhibited cavernosal nerve neurotransmission via direct action on the ganglion and impaired nicotine-induced CC relaxation. The relaxation of the CC was dependent on the interaction of the sympathetic and parasympathetic nerves, which may be mediated by the NMDA receptor.
Collapse
Affiliation(s)
- Ming-Wei Li
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| | - Tze-Chen Chao
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| | - Li-Yi Lim
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| | - Hsi-Hsien Chang
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| | - Stephen Shei-Dei Yang
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
19
|
Qin Y, Guo X, Song W, Liang Z, Wang Y, Feng D, Yang Y, Li M, Gao M. Antidepressant-like effect of CP-101,606: Evidence of mTOR pathway activation. Mol Cell Neurosci 2023; 124:103821. [PMID: 36775184 DOI: 10.1016/j.mcn.2023.103821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND As a non-competitive N-methyl d-aspartate receptor antagonist, ketamine exerts rapid-onset and long-lasting antidepressant effects on depression, but some side effects limit its use. To identify a safer compound that may provide similar antidepressant effects, here we investigated whether CP-101,606, a selective NR2B receptor inhibitor, provides similar antidepressant effects and explored its underlying mechanisms. METHODS To mimic depressive-like behavior, mice were subjected to chronic unpredictable mild stress (CUMS) for 21 days. Mice were treated with CP-101,606 at 10, 20, and 40 mg/kg doses for 7, 14, and 21 days, respectively, followed by a sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). Western blot analysis was performed on several targets (mTOR, p-mTOR, p70S6K, p-p70S6K, PSD-95, and GluA1), along with immunohistochemistry (GluA1) and immunofluorescence (p-mTOR) assays, using hippocampal tissue. RESULTS CP-101,606 at 20 and 40 mg/kg doses for 7 and 14 days and fluoxetine 10 mg/kg and CP-101606 20 mg/kg for 21 days ameliorated depression-like behaviors in the SPT, TST, and FST. The effects of CP-101,606 were associated with a reversal of the CUMS-induced decrease in mTOR (Ser2448) and p70S6K (Thr389) phosphorylation and increasing PSD95 and GluA1 synthesis in the hippocampus. CONCLUSIONS Our results demonstrate that CP-101,606 produces antidepressant effects in CUMS mice, which may be mediated by mTOR signaling cascade upregulation. Our findings suggest the possible utility of CP-101,606 as a treatment for depression.
Collapse
Affiliation(s)
- Yu Qin
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xinlei Guo
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wenyue Song
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zehuai Liang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yahui Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Dan Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yiru Yang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingxing Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingqi Gao
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
20
|
Huang TH, Lai MC, Chen YS, Huang CW. The Roles of Glutamate Receptors and Their Antagonists in Status Epilepticus, Refractory Status Epilepticus, and Super-Refractory Status Epilepticus. Biomedicines 2023; 11:biomedicines11030686. [PMID: 36979664 PMCID: PMC10045490 DOI: 10.3390/biomedicines11030686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Status epilepticus (SE) is a neurological emergency with a high mortality rate. When compared to chronic epilepsy, it is distinguished by the durability of seizures and frequent resistance to benzodiazepine (BZD). The Receptor Trafficking Hypothesis, which suggests that the downregulation of γ-Aminobutyric acid type A (GABAA) receptors, and upregulation of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors play major roles in the establishment of SE is the most widely accepted hypothesis underlying BZD resistance. NMDA and AMPA are ionotropic glutamate receptor families that have important excitatory roles in the central nervous system (CNS). They are both essential in maintaining the normal function of the brain and are involved in a variety of neuropsychiatric diseases, including epilepsy. Based on animal and human studies, antagonists of NMDA and AMPA receptors have a significant impact in ending SE; albeit most of them are not yet approved to be in clinically therapeutic guidelines, due to their psychomimetic adverse effects. Although there is still a dearth of randomized, prospective research, NMDA antagonists such as ketamine, magnesium sulfate, and the AMPA antagonist, perampanel, are regarded to be reasonable optional adjuvant therapies in controlling SE, refractory SE (RSE) or super-refractory SE (SRSE), though there are still a lack of randomized, prospective studies. This review seeks to summarize and update knowledge on the SE development hypothesis, as well as clinical trials using NMDA and AMPA antagonists in animal and human studies of SE investigations.
Collapse
Affiliation(s)
- Tzu-Hsin Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70142, Taiwan
- Zhengxin Neurology & Rehabilitation Center, Tainan 70459, Taiwan
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Yu-Shiue Chen
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70142, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70142, Taiwan
| |
Collapse
|
21
|
Ertas A, Yigitkan S, Orhan IE. A Focused Review on Cognitive Improvement by the Genus Salvia L. (Sage)-From Ethnopharmacology to Clinical Evidence. Pharmaceuticals (Basel) 2023; 16:171. [PMID: 37259321 PMCID: PMC9966473 DOI: 10.3390/ph16020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 08/31/2023] Open
Abstract
Ethnopharmacology has been an important starting point in medical and pharmaceutical sciences for discovering drug candidates from natural sources. In this regard, the genus Salvia L., commonly known as sage, is one of the best-known medicinal and aromatic plants of the Lamiaceae family; it has been recorded as being used for memory enhancement in European folk medicine. Despite the various uses of sage in folk medicines, the records that have pointed out sage's memory-enhancing properties have paved the way for the aforementioned effect to be proven on scientific grounds. There are many preclinical studies and excellent reviews referring to the favorable effect of different species of sage against the cognitive dysfunction that is related to Alzheimer's disease (AD). Hence, the current review discusses clinical studies that provide evidence for the effect of Salvia species on cognitive dysfunction. Clinical studies have shown that some Salvia species, i.e., hydroalcoholic extracts and essential oils of S. officinalis L. and S. lavandulaefolia leaves in particular, have been the most prominently effective species in patients with mild to moderate AD, and these species have shown positive effects on the memory of young and healthy people. However, the numbers of subjects in the studies were small, and standardized extracts were not used for the most part. Our review points out to the need for longer-term clinical studies with higher numbers of subjects being administered standardized sage preparations.
Collapse
Affiliation(s)
- Abdulselam Ertas
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir 21200, Türkiye
| | - Serkan Yigitkan
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, Diyarbakir 21200, Türkiye
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| |
Collapse
|
22
|
Carnosic Acid Attenuates AβOs-Induced Apoptosis and Synaptic Impairment via Regulating NMDAR2B and Its Downstream Cascades in SH-SY5Y Cells. Mol Neurobiol 2023; 60:133-144. [PMID: 36224322 DOI: 10.1007/s12035-022-03032-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/09/2022] [Indexed: 12/30/2022]
Abstract
Neuronal death and synaptic loss are principal pathological features of Alzheimer's disease (AD). Amyloid beta oligomers (AβOs) constitute the main neurotoxin underscoring AD pathology. AβOs interact with N-methyl-D-aspartate receptors (NMDARs), resulting in neurotoxic events, including activation of apoptosis and synaptic impairment. Carnosic acid (CA), extracted from Salvia rosmarinus, has been verified its neuroprotective effects in AD. However, the precise mechanisms by which CA induces synaptic protection remain unclear. In this study, we established an in vitro AD model using SH-SY5Y human neuroblastoma cells. We observed that CA improved neuronal survival by suppressing apoptosis. Moreover, CA restored synaptic impairments by increasing expression levels of brain-derived neurotrophic factor (BDNF), postsynaptic density protein-95 (PSD-95), and synaptophysin (Syn). Furthermore, we found these protective effects were dependent on inhibiting the phosphorylation of NMDAR subtype 2B (NMDAR2B), which further suppressed calcium overload and promoted activation of the extracellular signal-regulated kinase (ERK)-cAMP response element-binding protein (CREB) pathway. Administration of N-methyl-D-aspartic acid (NMDA), an agonist of NMDARs, abolished these effects of CA. Our findings demonstrate that CA exerts neuroprotective effects in an in vitro model of AD by regulating NMDAR2B and its downstream cascades, highlighting the therapeutic potential of CA as a NMDARs-targeted candidate in the treatment of AD.
Collapse
|
23
|
Alan E, Kerry Z, Sevin G. Molecular mechanisms of Alzheimer's disease: From therapeutic targets to promising drugs. Fundam Clin Pharmacol 2022; 37:397-427. [PMID: 36576325 DOI: 10.1111/fcp.12861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment so widespread that it interferes with a person's ability to complete daily activities. AD is becoming increasingly common, and it is estimated that the number of patients will reach 152 million by 2050. Current treatment options for AD are symptomatic and have modest benefits. Therefore, considering the human, social, and economic burden of the disease, the development of drugs with the potential to alter disease progression has become a global priority. In this review, the molecular mechanisms involved in the pathology of AD were evaluated as therapeutic targets. The main aim of the review is to focus on new knowledge about mitochondrial dysfunction, oxidative stress, and neuronal transmission in AD, as well as a range of cellular signaling mechanisms and associated treatments. Important molecular interactions leading to AD were described in amyloid cascade and in tau protein function, oxidative stress, mitochondrial dysfunction, cholinergic and glutamatergic neurotransmission, cAMP-regulatory element-binding protein (CREB), the silent mating type information regulation 2 homolog 1 (SIRT-1), neuroinflammation (glial cells), and synaptic alterations. This review summarizes recent experimental and clinical research in AD pathology and analyzes the potential of therapeutic applications based on molecular disease mechanisms.
Collapse
Affiliation(s)
- Elif Alan
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Zeliha Kerry
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gulnur Sevin
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
24
|
Ahmed H, Zheng MQ, Smart K, Fang H, Zhang L, Emery PR, Gao H, Ropchan J, Haider A, Tamagnan G, Carson RE, Ametamey SM, Huang Y. Evaluation of ( rac)-, ( R)-, and ( S)- 18F-OF-NB1 for Imaging GluN2B Subunit-Containing N-Methyl-d-Aspartate Receptors in Nonhuman Primates. J Nucl Med 2022; 63:1912-1918. [PMID: 35710735 PMCID: PMC9730915 DOI: 10.2967/jnumed.122.263977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Despite 2 decades of research, no N-methyl-d-aspartate (NMDA) glutamate receptor (GluN) subtype 2B (GluN1/2B) radioligand is yet clinically validated. Previously, we reported on (rac)-18F-OF-NB1 as a promising GluN1/2B PET probe in rodents and its successful application for the visualization of GluN2B-containing NMDA receptors in postmortem brain tissues of patients with amyotrophic lateral sclerosis. In the current work, we report on the in vivo characterization of (rac)-, (R)-, and (S)-18F-OF-NB1 in nonhuman primates. Methods: PET scans were performed on rhesus monkeys. Plasma profiling was used to obtain the arterial input function. Regional brain time-activity curves were generated and fitted with the 1- and 2-tissue-compartment models and the multilinear analysis 1 method, and the corresponding regional volumes of distribution were calculated. Blocking studies with the GluN1/2B ligand Co 101244 (0.25 mg/kg) were performed for the enantiopure radiotracers. Receptor occupancy, nonspecific volume of distribution, and regional binding potential (BP ND) were obtained. Potential off-target binding toward σ1 receptors was assessed for (S)-18F-OF-NB1 using the σ1 receptor ligand FTC-146. Results: Free plasma fraction was moderate, ranging from 12% to 16%. All radiotracers showed high and heterogeneous brain uptake, with the highest levels in the cortex. (R)-18F-OF-NB1 showed the highest uptake and slowest washout kinetics of all tracers. The 1-tissue-compartment model and multilinear analysis 1 method fitted the regional time-activity curves well for all tracers and produced reliable regional volumes of distribution, which were higher for (R)- than (S)-18F-OF-NB1. Receptor occupancy by Co 101244 was 85% and 96% for (S)-18F-OF-NB1 and (R)-18F-OF-NB1, respectively. Pretreatment with FTC-146 at both a low (0.027 mg/kg) and high (0.125 mg/kg) dose led to a similar reduction (48% and 49%, respectively) in specific binding of (S)-18F-OF-NB1. Further, pretreatment with both Co 101244 and FTC-146 did not result in a further reduction in specific binding compared with Co 101244 alone in the same monkey (82% vs. 81%, respectively). Regional BP ND values ranged from 1.3 in the semiovale to 3.4 in the cingulate cortex for (S)-18F-OF-NB1. Conclusion: Both (R)- and (S)-18F-OF-NB1 exhibited high binding specificity to GluN2B subunit-containing NMDA receptors. The fast washout kinetics, good regional BP ND values, and high plasma free fraction render (S)-18F-OF-NB1 an attractive radiotracer for clinical translation.
Collapse
Affiliation(s)
- Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- PET Center, Yale University, New Haven, Connecticut; and
| | | | - Kelly Smart
- PET Center, Yale University, New Haven, Connecticut; and
| | - Hanyi Fang
- PET Center, Yale University, New Haven, Connecticut; and
- Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- PET Center, Yale University, New Haven, Connecticut; and
| | - Paul R Emery
- PET Center, Yale University, New Haven, Connecticut; and
| | - Hong Gao
- PET Center, Yale University, New Haven, Connecticut; and
| | - Jim Ropchan
- PET Center, Yale University, New Haven, Connecticut; and
| | - Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland;
| | - Yiyun Huang
- PET Center, Yale University, New Haven, Connecticut; and
| |
Collapse
|
25
|
Zhu M, Perkins MG, Lennertz R, Abdulzahir A, Pearce RA. Dose-dependent suppression of hippocampal contextual memory formation, place cells, and spatial engrams by the NMDAR antagonist (R)-CPP. Neuropharmacology 2022; 218:109215. [PMID: 35977628 PMCID: PMC9673467 DOI: 10.1016/j.neuropharm.2022.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
We recently reported that the competitive NMDAR antagonist (R,S)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) does not suppress NMDAR-mediated field EPSPs (fEPSPNMDA) or long-term potentiation (LTP) in vitro at concentrations that block contextual conditioning in vivo. Here we tested one possible explanation for the mismatch - that the hippocampus is relatively resistant to CPP compared to other brain structures engaged in contextual fear conditioning. Using the context pre-exposure facilitation effect (CPFE) paradigm to separate the hippocampal and extra-hippocampal components of contextual learning, we found that the active enantiomer (R)-CPP suppressed the hippocampal component with an IC50 of 3.1 mg/kg, a dose that produces brain concentrations below those required to block fEPSPNMDA or LTP. Moreover, using in-vivo calcium imaging of place cells and spatial engrams to directly assess hippocampal spatial coding, we found that (R)-CPP dose-dependently reduced the development of place cells and interfered with the formation of stable spatial engrams when it was administered prior to exposing mice to a novel context. Both effects occurred at doses that interfered with freezing to context in CPFE experiments. We conclude that (R)-CPP blocks memory formation by interfering with hippocampal function, but that it does so by modulating NMDARs at sites that are not engaged in vitro in the same manner that they are in vivo - perhaps through interneuron circuits that do not contribute to fEPSPs and are not required to elicit LTP using standard induction protocols in vitro, but are essential for successful mnemonic function in vivo.
Collapse
Affiliation(s)
- Mengwen Zhu
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Mark G Perkins
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Richard Lennertz
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Alifayaz Abdulzahir
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
26
|
Development and Validation of [3H]OF-NB1 for Preclinical Assessment of GluN1/2B Candidate Drugs. Pharmaceuticals (Basel) 2022; 15:ph15080960. [PMID: 36015108 PMCID: PMC9416150 DOI: 10.3390/ph15080960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
GluN2B-enriched N-methyl-D-aspartate receptors (NMDARs) are implicated in several neurodegenerative and psychiatric diseases, such as Alzheimer’s disease. No clinically valid GluN1/2B therapeutic exists due to a lack of selective GluN2B imaging tools, and the state-of-the-art [3H]ifenprodil shows poor selectivity in drug screening. To this end, we developed a tritium-labeled form of OF-NB1, a recently reported selective GluN1/2B positron emission tomography imaging (PET) agent, with a molar activity of 1.79 GBq/µmol. The performance of [3H]OF-NB1 and [3H]ifenprodil was compared through head-to-head competitive binding experiments, using the GluN1/2B ligand CP-101,606 and the sigma-1 receptor (σ1R) ligand SA-4503. Contrary to [3H]ifenprodil, the usage of [3H]OF-NB1 differentiated between GluN1/2B and σ1R binding components. These results were corroborated by observations from PET imaging experiments in Wistar rats using the σ1R radioligand [18F]fluspidine. To unravel the binding modes of OF-NB1 and ifenprodil in GluN1/2B and σ1Rs, we performed a retrospective in silico study using a molecular operating environment. OF-NB1 maintained similar interactions to GluN1/2B as ifenprodil, but only ifenprodil successfully fitted in the σ1R pocket, thereby explaining the high GluN1/2B selectivity of OF-NB1 compared to ifenprodil. We successfully showed in a proof-of-concept study the superiority of [3H]OF-NB1 over the gold standard [3H]ifenprodil in the screening of potential GluN1/2B drug candidates.
Collapse
|
27
|
Smart K, Zheng MQ, Ahmed H, Fang H, Xu Y, Cai L, Holden D, Kapinos M, Haider A, Felchner Z, Ropchan JR, Tamagnan G, Innis RB, Pike VW, Ametamey SM, Huang Y, Carson RE. Comparison of three novel radiotracers for GluN2B-containing NMDA receptors in non-human primates: (R)-[ 11C]NR2B-Me, (R)-[ 18F]of-Me-NB1, and (S)-[ 18F]of-NB1. J Cereb Blood Flow Metab 2022; 42:1398-1409. [PMID: 35209743 PMCID: PMC9274863 DOI: 10.1177/0271678x221084416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
The NMDA receptor GluN2B subunit is a target of interest in neuropsychiatric disorders but to date there is no selective radiotracer available to quantify its availability in vivo. Here we report direct comparisons in non-human primates of three GluN2B-targeting radioligands: (R)-[11C]NR2B-Me, (R)-[18F]OF-Me-NB1, and (S)-[18F]OF-NB1. Plasma free fraction, metabolism, tissue distribution and kinetics, and quantitative kinetic modeling methods and parameters were evaluated in two adult rhesus macaques. Free fraction in plasma was <2% for (R)-[11C]NR2B-Me and (R)-[18F]OF-Me-NB1 and higher for (S)-[18F]OF-NB1 (15%). All radiotracers showed good brain uptake and distribution throughout grey matter, with substantial (>68%) blockade across the brain by the GluN2B-targeting drug Co-101,244 (0.25 mg/kg), including in the cerebellum. Time-activity curves were well-fitted by the one-tissue compartment model, with volume of distribution values of 20-40 mL/cm3 for (R)-[11C]NR2B-Me, 8-16 mL/cm3 for (R)-[18F]OF-Me-NB1, and 15-35 mL/cm3 for (S)-[18F]OF-NB1. Estimates of regional non-displaceable binding potential were in the range of 2-3 for (R)-[11C]NR2B-Me and (S)-[18F]-OF-NB1, and 0.5-1 for (R)-[18F]OF-Me-NB1. Altogether, each radiotracer showed an acceptable profile for quantitative imaging of GluN2B. (S)-[18F]OF-NB1 has particularly promising imaging characteristics for potential translation into humans. However, the source of unexpected displaceable binding in the cerebellum for each of these compounds requires further investigation.
Collapse
Affiliation(s)
- Kelly Smart
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Ming-Qiang Zheng
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Hazem Ahmed
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Hanyi Fang
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Xu
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Jiangsu Institute of Nuclear Medicine, Jiangsu, China
| | - Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Daniel Holden
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Michael Kapinos
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Ahmed Haider
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Zachary Felchner
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Jim R Ropchan
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Gilles Tamagnan
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Simon M Ametamey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Yiyun Huang
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Richard E Carson
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| |
Collapse
|
28
|
Hill MD, Blanco MJ, Salituro FG, Bai Z, Beckley JT, Ackley MA, Dai J, Doherty JJ, Harrison BL, Hoffmann EC, Kazdoba TM, Lanzetta D, Lewis M, Quirk MC, Robichaud AJ. SAGE-718: A First-in-Class N-Methyl-d-Aspartate Receptor Positive Allosteric Modulator for the Potential Treatment of Cognitive Impairment. J Med Chem 2022; 65:9063-9075. [PMID: 35785990 DOI: 10.1021/acs.jmedchem.2c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Methyl-d-aspartate receptor (NMDAR) positive allosteric modulators (PAMs) have received increased interest as a powerful mechanism of action to provide relief as therapies for CNS disorders. Sage Therapeutics has previously published the discovery of endogenous neuroactive steroid 24(S)-hydroxycholesterol as an NMDAR PAM. In this article, we detail the discovery of development candidate SAGE-718 (5), a potent and high intrinsic activity NMDAR PAM with an optimized pharmacokinetic profile for oral dosing. Compound 5 has completed phase 1 single ascending dose and multiple ascending dose clinical trials and is currently undergoing phase 2 clinical trials for treatment of cognitive impairment in Huntington's disease.
Collapse
Affiliation(s)
- Matthew D Hill
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Maria-Jesus Blanco
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Francesco G Salituro
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Zhu Bai
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Jacob T Beckley
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Michael A Ackley
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Jing Dai
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - James J Doherty
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Boyd L Harrison
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Ethan C Hoffmann
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Tatiana M Kazdoba
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - David Lanzetta
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Michael Lewis
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Michael C Quirk
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Albert J Robichaud
- Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
29
|
Zhang W, Ross PJ, Ellis J, Salter MW. Targeting NMDA receptors in neuropsychiatric disorders by drug screening on human neurons derived from pluripotent stem cells. Transl Psychiatry 2022; 12:243. [PMID: 35680847 PMCID: PMC9184461 DOI: 10.1038/s41398-022-02010-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
NMDA receptors (NMDARs), a prominent subtype of glutamatergic receptors, are implicated in the pathogenesis and development of neuropsychiatric disorders such as epilepsy, intellectual disability, autism spectrum disorder, and schizophrenia, and are therefore a potential therapeutic target in treating these disorders. Neurons derived from induced pluripotent stem cells (iPSCs) have provided the opportunity to investigate human NMDARs in their native environment. In this review, we describe the expression, function, and regulation of NMDARs in human iPSC-derived neurons and discuss approaches for utilizing human neurons for identifying potential drugs that target NMDARs in the treatment of neuropsychiatric disorders. A challenge in studying NMDARs in human iPSC-derived neurons is a predominance of those receptors containing the GluN2B subunit and low synaptic expression, suggesting a relatively immature phenotype of these neurons and delayed development of functional NMDARs. We outline potential approaches for improving neuronal maturation of human iPSC-derived neurons and accelerating the functional expression of NMDARs. Acceleration of functional expression of NMDARs in human iPSC-derived neurons will improve the modeling of neuropsychiatric disorders and facilitate the discovery and development of novel therapeutics targeting NMDARs for the treatment of these disorders.
Collapse
Affiliation(s)
- Wenbo Zhang
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - P Joel Ross
- Biology Department, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
30
|
Lee N, Kim D. Toxic Metabolites and Inborn Errors of Amino Acid Metabolism: What One Informs about the Other. Metabolites 2022; 12:metabo12060527. [PMID: 35736461 PMCID: PMC9231173 DOI: 10.3390/metabo12060527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
In inborn errors of metabolism, such as amino acid breakdown disorders, loss of function mutations in metabolic enzymes within the catabolism pathway lead to an accumulation of the catabolic intermediate that is the substrate of the mutated enzyme. In patients of such disorders, dietarily restricting the amino acid(s) to prevent the formation of these catabolic intermediates has a therapeutic or even entirely preventative effect. This demonstrates that the pathology is due to a toxic accumulation of enzyme substrates rather than the loss of downstream products. Here, we provide an overview of amino acid metabolic disorders from the perspective of the ‘toxic metabolites’ themselves, including their mechanism of toxicity and whether they are involved in the pathology of other disease contexts as well. In the research literature, there is often evidence that such metabolites play a contributing role in multiple other nonhereditary (and more common) disease conditions, and these studies can provide important mechanistic insights into understanding the metabolite-induced pathology of the inborn disorder. Furthermore, therapeutic strategies developed for the inborn disorder may be applicable to these nonhereditary disease conditions, as they involve the same toxic metabolite. We provide an in-depth illustration of this cross-informing concept in two metabolic disorders, methylmalonic acidemia and hyperammonemia, where the pathological metabolites methylmalonic acid and ammonia are implicated in other disease contexts, such as aging, neurodegeneration, and cancer, and thus there are opportunities to apply mechanistic or therapeutic insights from one disease context towards the other. Additionally, we expand our scope to other metabolic disorders, such as homocystinuria and nonketotic hyperglycinemia, to propose how these concepts can be applied broadly across different inborn errors of metabolism and various nonhereditary disease conditions.
Collapse
|
31
|
Rischka L, Vraka C, Pichler V, Rasul S, Nics L, Gryglewski G, Handschuh P, Murgaš M, Godbersen GM, Silberbauer LR, Unterholzner J, Wotawa C, Haider A, Ahmed H, Schibli R, Mindt T, Mitterhauser M, Wadsak W, Hahn A, Lanzenberger R, Hacker M, Ametamey SM. First-in-Humans Brain PET Imaging of the GluN2B-Containing N-methyl-d-aspartate Receptor with ( R)- 11C-Me-NB1. J Nucl Med 2022; 63:936-941. [PMID: 34620732 PMCID: PMC9157734 DOI: 10.2967/jnumed.121.262427] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) plays a crucial role in neurodegenerative diseases such as Alzheimer disease and in the treatment of major depression by fast-acting antidepressants such as ketamine. Given their broad implications, GluN2B-containing NMDARs have been of interest as diagnostic and therapeutic targets. Recently, (R)-11C-Me-NB1 was investigated preclinically and shown to be a promising radioligand for imaging GluN2B subunits. Here, we report on the performance characteristics of this radioligand in a first-in-humans PET study. Methods: Six healthy male subjects were scanned twice on a fully integrated PET/MR scanner with (R)-11C-Me-NB1 for 120 min. Brain uptake and tracer distribution over time were investigated by SUVs. Test-retest reliability was assessed with the absolute percentage difference and the coefficient of variation. Exploratory total volumes of distribution (VT) were computed using an arterial input function and the Logan plot as well as a constrained 2-tissue-compartment model with the ratio of rate constants between plasma and tissue compartments (K1/k2) coupled (2TCM). SUV was correlated with VT to investigate its potential as a surrogate marker of GluN2B expression. Results: High and heterogeneous radioligand uptake was observed across the entire gray matter with reversible kinetics within the scan time. SUV absolute percentage difference ranged from 6.9% to 8.5% and coefficient of variation from 4.9% to 6.0%, indicating a high test-retest reliability. A moderate correlation was found between SUV averaged from 70 to 90 min and VT using Logan plot (Spearman ρ = 0.44). Correlation between VT Logan and 2TCM was r = 0.76. Conclusion: The radioligand (R)-11C-Me-NB1 was highly effective in mapping GluN2B-enriched NMDARs in the human brain. With a heterogeneous uptake and a high test-retest reliability, this radioligand offers promise to deepen our understanding of the GluN2B-containing NMDAR in the pathophysiology and treatment of neuropsychiatric disease such as Alzheimer disease and major depression. Additionally, it could help in the selection of appropriate doses of GluN2B-targeting drugs.
Collapse
Affiliation(s)
- Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Verena Pichler
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Sazan Rasul
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Patricia Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Leo R Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christoph Wotawa
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Achi Haider
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Zurich, Switzerland
| | - Hazem Ahmed
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Zurich, Switzerland
| | - Roger Schibli
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Zurich, Switzerland
| | - Thomas Mindt
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria; and
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria;
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria;
| | - Simon M Ametamey
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Zurich, Switzerland;
| |
Collapse
|
32
|
Zheng M, Ahmed H, Smart K, Xu Y, Holden D, Kapinos M, Felchner Z, Haider A, Tamagnan G, Carson RE, Huang Y, Ametamey SM. Characterization in nonhuman primates of (R)-[ 18F]OF-Me-NB1 and (S)-[ 18F]OF-Me-NB1 for imaging the GluN2B subunits of the NMDA receptor. Eur J Nucl Med Mol Imaging 2022; 49:2153-2162. [PMID: 35107627 PMCID: PMC9165293 DOI: 10.1007/s00259-022-05698-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/19/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE GluN2B containing N-methyl-D-aspartate receptors (NMDARs) play an essential role in neurotransmission and are a potential treatment target for multiple neurological and neurodegenerative diseases, including stroke, Alzheimer's disease, and Parkinson's disease. (R)-[18F]OF-Me-NB1 was reported to be more specific and selective than (S)-[18F]OF-Me-NB1 for the GluN2B subunits of the NMDAR based on their binding affinity to GluN2B and sigma-1 receptors. Here we report a comprehensive evaluation of (R)-[18F]OF-Me-NB1 and (S)-[18F]OF-Me-NB1 in nonhuman primates. METHODS The radiosynthesis of (R)-[18F]OF-Me-NB1 and (S)-[18F]OF-Me-NB1 started from 18F-fluorination of the boronic ester precursor, followed by removal of the acetyl protecting group. PET scans in two rhesus monkeys were conducted on the Focus 220 scanner. Blocking studies were performed after treatment of the animals with the GluN2B antagonist Co101,244 or the sigma-1 receptor antagonist FTC-146. One-tissue compartment (1TC) model and multilinear analysis-1 (MA1) method with arterial input function were used to obtain the regional volume of distribution (VT, mL/cm3). Occupancy values by the two blockers were obtained by the Lassen plot. Regional non-displaceable binding potential (BPND) was calculated from the corresponding baseline VT and the VND derived from the occupancy plot of the Co101,244 blocking scans. RESULTS (R)- and (S)-[18F]OF-Me-NB1 were produced in > 99% radiochemical and enantiomeric purity, with molar activity of 224.22 ± 161.69 MBq/nmol at the end of synthesis (n = 10). Metabolism was moderate, with ~ 30% parent compound remaining for (R)-[18F]OF-Me-NB1 and 20% for (S)-[18F]OF-Me-NB1 at 30 min postinjection. Plasma free fraction was 1-2%. In brain regions, both (R)- and (S)-[18F]OF-Me-NB1 displayed fast uptake with slower clearance for the (R)- than (S)-enantiomer. For (R)-[18F]OF-Me-NB1, both the 1TC model and MA1 method gave reliable estimates of regional VT values, with MA1 VT (mL/cm3) values ranging from 8.9 in the cerebellum to 12.8 in the cingulate cortex. Blocking with 0.25 mg/kg of Co101,244 greatly reduced the uptake of (R)-[18F]OF-Me-NB1 across all brain regions, resulting in occupancy of 77% and VND of 6.36, while 0.027 mg/kg of FTC-146 reduced specific binding by 30%. Regional BPND, as a measure of specific binding signals, ranged from 0.40 in the cerebellum to 1.01 in the cingulate cortex. CONCLUSIONS In rhesus monkeys, (R)-[18F]OF-Me-NB1 exhibited fast kinetics and heterogeneous uptake across brain regions, while the (S)-enantiomer displayed a narrower dynamic range of uptake across regions. A Blocking study with a GluN2B antagonist indicated binding specificity. The value of BPND was > 0.5 in most brain regions, suggesting good in vivo specific binding signals. Taken together, results from the current study demonstrated the potential of (R)-[18F]OF-Me-NB1 as a useful radiotracer for imaging the GluN2B receptors.
Collapse
Affiliation(s)
| | - Hazem Ahmed
- PET Center, Yale University, New Haven, CT, USA
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Kelly Smart
- PET Center, Yale University, New Haven, CT, USA
| | - Yuping Xu
- PET Center, Yale University, New Haven, CT, USA
- Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | | | | | | | - Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | - Yiyun Huang
- PET Center, Yale University, New Haven, CT, USA.
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
Gao YN, Zhang YQ, Wang H, Deng YL, Li NM. A New Player in Depression: MiRNAs as Modulators of Altered Synaptic Plasticity. Int J Mol Sci 2022; 23:ijms23094555. [PMID: 35562946 PMCID: PMC9101307 DOI: 10.3390/ijms23094555] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 01/04/2023] Open
Abstract
Depression is a psychiatric disorder that presents with a persistent depressed mood as the main clinical feature and is accompanied by cognitive impairment. Changes in neuroplasticity and neurogenesis greatly affect depression. Without genetic changes, epigenetic mechanisms have been shown to function by regulating gene expression during the body’s adaptation to stress. Studies in recent years have shown that as important regulatory factors in epigenetic mechanisms, microRNAs (miRNAs) play important roles in the development and progression of depression through the regulation of protein expression. Herein, we review the mechanisms of miRNA-mediated neuroplasticity in depression and discus synaptic structural plasticity, synaptic functional plasticity, and neurogenesis. Furthermore, we found that miRNAs regulate neuroplasticity through several signalling pathways to affect cognitive functions. However, these pathways do not work independently. Therefore, we try to identify synergistic correlations between miRNAs and multiple signalling pathways to broaden the potential pathogenesis of depression. In addition, in the future, dual-function miRNAs (protection/injury) are promising candidate biomarkers for the diagnosis of depression, and their regulated genes can potentially be used as target genes for the treatment of depression.
Collapse
Affiliation(s)
- Ya-Nan Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.-N.G.); (H.W.)
| | - Yong-Qian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.-Q.Z.); (Y.-L.D.)
| | - Hao Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.-N.G.); (H.W.)
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.-Q.Z.); (Y.-L.D.)
| | - Nuo-Min Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.-N.G.); (H.W.)
- Correspondence:
| |
Collapse
|
34
|
Deletion of Grin1 in mouse megakaryocytes reveals NMDA receptor role in platelet function and proplatelet formation. Blood 2022; 139:2673-2690. [PMID: 35245376 DOI: 10.1182/blood.2021014000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
The process of proplatelet formation (PPF) requires coordinated interaction between megakaryocytes (MKs) and the extracellular matrix (ECM), followed by a dynamic reorganization of the actin and microtubule cytoskeleton. Localized fluxes of intracellular calcium ions (Ca2+) facilitate MK-ECM interaction and PPF. Glutamate-gated N-methyl-D--aspartate receptor (NMDAR) is highly permeable to Ca2+. NMDAR antagonists inhibit MK maturation ex vivo, however there is no in vivo data. Using the Cre-loxP system, we generated a platelet lineage-specific knockout mouse model of reduced NMDAR function in MKs and platelets (Pf4-Grin1-/- mice). Effects of NMDAR deletion were examined using well-established assays of platelet function and production in vivo and ex vivo. We found that Pf4-Grin1-/- mice had defects in megakaryopoiesis, thrombopoiesis and platelet function, which manifested as reduced platelet counts, lower rates of platelet production in the immune model of thrombocytopenia, and a prolonged tail bleeding time. Platelet activation was impaired to a range of agonists associated with reduced Ca2+ responses, including metabotropic-like, and defective platelet spreading. MKs showed reduced colony and proplatelet formation. Impaired reorganization of intracellular F-actin and α-tubulin was identified as the main cause of reduced platelet function and production. Pf4-Grin1-/- MKs also had lower levels of transcripts encoding crucial ECM elements and enzymes, suggesting NMDAR signaling is involved in ECM remodeling. In summary, we provide the first genetic evidence that NMDAR plays an active role in platelet function and production. NMDARs regulate PPF through the mechanism that involves MK-ECM interaction and cytoskeletal reorganization. Our results suggest that NMDAR helps guide PPF in vivo.
Collapse
|
35
|
Chen YY, Liu QP, An P, Jia M, Luan X, Tang JY, Zhang H. Ginsenoside Rd: A promising natural neuroprotective agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153883. [PMID: 34952508 DOI: 10.1016/j.phymed.2021.153883] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/05/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Neurological diseases seriously affect human health, which are arousing wider attention, and it is a great challenge to discover neuroprotective drugs with minimal side-effects and better efficacies. Natural agents derived from herbs or plants have become unparalleled resources for the discovery of novel drug candidates. Panax ginseng C. A. Meyer, a well-known herbal medicine in China, occupies a very important position in traditional Chinese medicines (TCMs) with a long history of clinical application. Ginsenoside Rd is the active compound in P. ginseng known to have broad-spectrum pharmacological effects to reduce neurological damage that can lead to neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, depression, cognitive impairment, and cerebral ischemia. PURPOSE To review and discuss the effects and mechanisms of ginsenoside Rd in the treatment of neurological diseases. STUDY DESIGN & METHODS The related information was compiled by the major scientific databases, such as Chinese National Knowledge Infrastructure (CNKI), Elsevier, ScienceDirect, PubMed, SpringerLink, Web of Science, and GeenMedical. Using 'Ginsenoside Rd', 'Ginsenosides', 'Anti-inflammation', 'Antioxidant', 'Apoptosis' and 'Neuroprotection' as keywords, the correlated literature was extracted and conducted from the databases mentioned above. RESULTS Through summarizing the existing research progress, we found that the general effects of ginsenoside Rd are anti-inflammatory, antioxidant, anti-apoptosis, inhibition of Ca2+ influx and protection of mitochondria, and through these pathways, the compound can inhibit excitatory toxicity, regulate nerve growth factor, and promote nerve regeneration. CONCLUSION Ginsenoside Rd is a promising natural neuroprotective agent. This review would contribute to the future development of ginsenoside Rd as a novel clinical candidate drug for treating neurological diseases.
Collapse
Affiliation(s)
- Yu-Ying Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiu-Ping Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Pei An
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Min Jia
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jian-Yuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Hong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
36
|
Conjugation of Aminoadamantane and γ-Carboline Pharmacophores Gives Rise to Unexpected Properties of Multifunctional Ligands. Molecules 2021; 26:molecules26185527. [PMID: 34576998 PMCID: PMC8471380 DOI: 10.3390/molecules26185527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
A new series of conjugates of aminoadamantane and γ-carboline, which are basic scaffolds of the known neuroactive agents, memantine and dimebon (Latrepirdine) was synthesized and characterized. Conjugates act simultaneously on several biological structures and processes involved in the pathogenesis of Alzheimer’s disease and some other neurodegenerative disorders. In particular, these compounds inhibit enzymes of the cholinesterase family, exhibiting higher inhibitory activity against butyrylcholinesterase (BChE), but having almost no effect on the activity of carboxylesterase (anti-target). The compounds serve as NMDA-subtype glutamate receptor ligands, show mitoprotective properties by preventing opening of the mitochondrial permeability transition (MPT) pore, and act as microtubule stabilizers, stimulating the polymerization of tubulin and microtubule-associated proteins. Structure–activity relationships were studied, with particular attention to the effect of the spacer on biological activity. The synthesized conjugates showed new properties compared to their prototypes (memantine and dimebon), including the ability to bind to the ifenprodil-binding site of the NMDA receptor and to occupy the peripheral anionic site of acetylcholinesterase (AChE), which indicates that these compounds can act as blockers of AChE-induced β-amyloid aggregation. These new attributes of the conjugates represent improvements to the pharmacological profiles of the separate components by conferring the potential to act as neuroprotectants and cognition enhancers with a multifunctional mode of action.
Collapse
|
37
|
Tian M, Stroebel D, Piot L, David M, Ye S, Paoletti P. GluN2A and GluN2B NMDA receptors use distinct allosteric routes. Nat Commun 2021; 12:4709. [PMID: 34354080 PMCID: PMC8342458 DOI: 10.1038/s41467-021-25058-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Allostery represents a fundamental mechanism of biological regulation that involves long-range communication between distant protein sites. It also provides a powerful framework for novel therapeutics. NMDA receptors (NMDARs), glutamate-gated ionotropic receptors that play central roles in synapse maturation and plasticity, are prototypical allosteric machines harboring large extracellular N-terminal domains (NTDs) that provide allosteric control of key receptor properties with impact on cognition and behavior. It is commonly thought that GluN2A and GluN2B receptors, the two predominant NMDAR subtypes in the adult brain, share similar allosteric transitions. Here, combining functional and structural interrogation, we reveal that GluN2A and GluN2B receptors utilize different long-distance allosteric mechanisms involving distinct subunit-subunit interfaces and molecular rearrangements. NMDARs have thus evolved multiple levels of subunit-specific allosteric control over their transmembrane ion channel pore. Our results uncover an unsuspected diversity in NMDAR molecular mechanisms with important implications for receptor physiology and precision drug development. NMDA receptors are glutamate-gated ion channels essential for synapse maturation and plasticity. Here the authors show that GluN2A and GluN2B NMDA receptors — the two principal subtypes NMDARs in the adult CNS — operate through distinct long range allosteric mechanisms.
Collapse
Affiliation(s)
- Meilin Tian
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Laura Piot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Mélissa David
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Shixin Ye
- Unité INSERM U1195, Hôpital de Bicêtre, Université Paris-Saclay, Paris, Le Kremlin-Bicêtre, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France.
| |
Collapse
|
38
|
Franco R, Rivas-Santisteban R, Lillo J, Camps J, Navarro G, Reyes-Resina I. 5-Hydroxytryptamine, Glutamate, and ATP: Much More Than Neurotransmitters. Front Cell Dev Biol 2021; 9:667815. [PMID: 33937270 PMCID: PMC8083958 DOI: 10.3389/fcell.2021.667815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
5-hydroxytryptamine (5-HT) is derived from the essential amino acid L-tryptophan. Although the compound has been studied extensively for its neuronal handling and synaptic actions, serotonin 5-HT receptors can be found extra-synaptically and not only in neurons but in many types of mammalian cells, inside and outside the central nervous system (CNS). In sharp contrast, glutamate (Glu) and ATP are better known as metabolism-related molecules, but they also are neurotransmitters, and their receptors are expressed on almost any type of cell inside and outside the nervous system. Whereas 5-hydroxytryptamine and Glu are key regulators of the immune system, ATP actions are more general. 5-hydroxytryptamine, ATP and Glu act through both G protein-coupled receptors (GPCRs), and ionotropic receptors, i.e., ligand gated ion channels. These are the three examples of neurotransmitters whose actions as holistic regulatory molecules are briefly put into perspective here.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,*Correspondence: Rafael Franco, ;
| | - Rafael Rivas-Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Camps
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Irene Reyes-Resina,
| |
Collapse
|
39
|
Ugale V, Dhote A, Narwade R, Khadse S, Reddy PN, Shirkhedkar A. GluN2B/N-methyl-D-aspartate Receptor Antagonists: Advances in Design, Synthesis, and Pharmacological Evaluation Studies. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:822-862. [PMID: 33687902 DOI: 10.2174/1871527320666210309141627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
Selective GluN2B/N-methyl-D-aspartate receptor (NMDAR) antagonists have exposed their clinical effectiveness in a cluster of neurodegenerative diseases, such as epilepsy, Alzheimer's disease, Parkinson's disease, pain, and depression. Hence, GluN2B/NMDARs are considered to be a prospective target for the management of neurodegenerative diseases. Here, we have discussed the current results and significance of subunit selective GluN2B/NMDAR antagonists to pave the way for the establishment of new, safe, and economical drug candidates in the near future. By using summarized data of selective GluN2B/NMDAR antagonists, medicinal chemists are certainly a step closer to the goal of improving the therapeutic and side effect profile of selective antagonists. Outlined summary of designing strategies, synthetic schemes, and pharmacological evaluation studies reinvigorate efforts to identify, modify, and synthesize novel GluN2B/NMDAR antagonists for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Vinod Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Ashish Dhote
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Rushikesh Narwade
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Saurabh Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - P Narayana Reddy
- Department of Chemistry, Gitam School of Technology, Gitam University, Hyderabad (T.S), India
| | - Atul Shirkhedkar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| |
Collapse
|