1
|
Li X, Ma W, Xu Z, Zhang N, Sharma S, Ramachandran T, Karthikeyan A, Thatoi DN, Ismail AI. Injectable anticancer biodegradable hydrogel-based nanocomposites: Synergistic pH-responsive paclitaxel/β-cyclodextrin nanocomplex delivery in polyvinyl alcohol hydrogel for targeted pancreatic ductal adenocarcinoma treatment. Int J Pharm 2025:125514. [PMID: 40221063 DOI: 10.1016/j.ijpharm.2025.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer that is highly aggressive and has a challenging tumor microenvironment, which restricts the efficacy of conventional medical treatments. This investigation aims to formulate a localized anticancer hydrogel that incorporates a Paclitaxel/β-cyclodextrin (β-CD) nanocomplex composed of polyvinyl alcohol (PVA). Enhancements in drug delivery, therapeutic efficacy, adverse effects, and the mitigation of multidrug resistance are the objectives of PDAC treatment. In silico analyses were performed to examine the interaction between paclitaxel (PTX) and β-CD, which revealed favorable binding and pH-dependent release characteristics. Via FTIR and XRD analyses, the PTX/β-CD inclusion complex was verified. A hydrogel based on PVA was subsequently formed by incorporating this complex. The hydrogel's physicochemical and structural characteristics were examined using SEM, FTIR, XRD, and rheological methods.. Hydrogel's physical characteristics were evaluated through biodegradation and water absorption experiments. The cytotoxic and anti-metastatic potential of the hydrogel nanocomposite was quantified by conducting MTT assays and invasion and migration assays to assess its anticancer efficacy. The estimated adsorption energy (Eads) of PTX within β-CD to form the PTX/β-CD complex was -1.133 × 10-3 kJ/mol. In the Monte Carlo (MC) method, van der Waals forces and electrostatic interactions were considered based on group-based interactions with a cutoff radius of 12.5 Å. The interaction energy of B and PVA on PTX/β-CD was -319.150 kJ/mol. The binding energy (Ebinding = Einteraction) for B/PVA/PTX/β-CD was found to be -60.977 at pH 3.4 and -69.312 at pH 7.4. In acidic conditions, the Paclitaxel/β-CD nanocomplex exhibited efficient drug release and strong binding interactions. Biodegradation (80 % weight loss within 28 days) and water absorption (up to 500 % of its dried weight) were both exceptional characteristics of the PVA hydrogel. According to anticancer assays, the nanocomposite exhibited substantial cytotoxic effects, which included the inhibition of cancer cell migration and invasion. Paclitaxel's solubility and biological activity were significantly improved by the injectable hydrogel, which confirmed its potential as a sophisticated local drug delivery system. CONCLUSIONS: For the localized treatment of PDAC, the PVA-based injectable hydrogel that has been developed, which includes a Paclitaxel/β-CD nanocomplex, is a promising approach. Its targeted delivery, enhanced solubility, and potent anticancer characteristics offer a valuable method for enhancing therapeutic outcomes while reducing systemic side effects and multidrug resistance.
Collapse
Affiliation(s)
- Xiuxiu Li
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Weiyu Ma
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Zhou Xu
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Ninggang Zhang
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Shubham Sharma
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India; Jadara University Research Center, Jadara University, Jordan.
| | - T Ramachandran
- Department of Mechanical Engineering, School of Engineering and Technology, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - A Karthikeyan
- Department of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Dhirendra Nath Thatoi
- Department of Mechanical Engineering, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India.
| | - A I Ismail
- Mechanical Engineering Department, College of Engineering and Architecture, UMM Alqura University, Saudi Arabia.
| |
Collapse
|
2
|
Cao JF, Zhang X, Xia Q, Hang K, Men J, Tian J, Liao D, Xia Z, Li K. Insights into curcumin's anticancer activity in pancreatic ductal adenocarcinoma: Experimental and computational evidence targeting HRAS, CCND1, EGFR and AKT1. Bioorg Chem 2025; 157:108264. [PMID: 39954354 DOI: 10.1016/j.bioorg.2025.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE Curcumin, as a natural polyphenolic compound, possesses antitumor, antioxidant properties and anti-inflammatory. Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor, and there is a lack of molecular mechanisms and therapeutic options regarding relevant therapeutic agents. Therefore, we investigated the mechanism of curcumin inhibiting pancreatic cancer growth by modulating proliferation of cells and cellular metabolism. METHODS Bioinformatics analysis was involved in analyzing the intersecting targets of curcumin and pancreatic ductal adenocarcinoma. The effect of curcumin on proliferation of PANC-1 cells was tested by CCK-8, and total RNA from PANC-1 was also analysed by transcriptome sequencing. Molecular docking was involved in verifying binding stability of curcumin to protein targets. Molecular dynamics simulated and evaluated binding free energy, hydrogen bonds and root mean square fluctuation of the complex. RESULTS PPI, GO and KEGG were involved in screening and analysing key interacting protein targets. 40 μg/mL curcumin significantly inhibited the growth and proliferation of PANC-1. Transcriptome sequencing results showed gene expression of Cyclin D1 (CCND1), AKT serine/threonine kinase 1 (AKT1), HRas proto-oncogene (HRAS), epidermal growth factor receptor (EGFR) was significantly down-regulated by curcumin treatment. Result of molecular dynamics and molecular docking inhibited the free binding energies of CCND1/Curcumin, HRAS/Curcumin, AKT1/Curcumin and EGFR/Curcumin were -21.13 ± 3.41 kcal/mol, -21.84 ± 4.38 kcal/mol, -20.61 ± 1.82 kcal/mol and -27.37 ± 1.94 kcal/mol, respectively. CONCLUSION We found curcumin may not only regulate cell cycle progression in PDAC and apoptosis by down-regulating HRAS, thereby inhibiting CCND1 and its downstream signaling pathways, but also inhibit energy metabolism reprogramming, Ras-RAF-MEK-ERK and other downstream signalling pathways by down-regulating EGFR and AKT1, thereby affecting tumor cell metastasis, survival and proliferation.
Collapse
Affiliation(s)
- Jun-Feng Cao
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Xiao Zhang
- Chengdu Medical College, Chengdu 610500 Sichuan, China
| | - Qingjie Xia
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Kuan Hang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Jie Men
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Jin Tian
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Dunshui Liao
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Zengliang Xia
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Kezhou Li
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China; Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China.
| |
Collapse
|
3
|
Sun Y, Qiao Y, Niu Y, Madhavan BK, Fang C, Hu J, Schuck K, Traub B, Friess H, Herr I, Michalski CW, Kong B. ARP2/3 complex affects myofibroblast differentiation and migration in pancreatic ductal adenocarcinoma. Int J Cancer 2025; 156:1272-1281. [PMID: 39472297 PMCID: PMC11737003 DOI: 10.1002/ijc.35246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 01/18/2025]
Abstract
The ARP2/3 complex, which orchestrates actin cytoskeleton organization and lamellipodia formation, has been implicated in the initiation of pancreatic ductal adenocarcinoma (PDAC). This study aims to clarify its impact on the activity of cancer-associated fibroblasts (CAFs), key players in PDAC progression, and patient outcomes. Early pancreatic carcinogenesis was modeled in p48Cre; LSL-KrasG12D mice with caerulein-induced pancreatitis, complemented by in vitro studies on human immortalized pancreatic stellate cells (PSCs) and primary PDAC-derived CAFs. Data were gained from microarray analysis, RNA sequencing (RNA-seq), and single-cell RNA sequencing (sc-RNA-seq), with subsequent bioinformatics analysis. We uncovered a specific transcriptional signature associated with fibroblast migration in early pancreatic carcinogenesis and linked it to poor survival in patients with PDAC. A pivotal role of the ARP2/3 complex in CAF migration was identified. Inhibition of the ARP2/3 complex markedly decreased CAF motility and induced significant morphological changes in vitro. Furthermore, its inhibition also hindered TGFβ1-mediated myofibroblastic CAF differentiation but had no effect on IL-1-mediated inflammatory CAF differentiation. Our findings position the ARP2/3 complex as central to the migration and differentiation of myofibroblastic CAF. Targeting this complex presents a promising new therapeutic avenue for PDAC treatment.
Collapse
Affiliation(s)
- Yifeng Sun
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
- Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Yina Qiao
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Yiqi Niu
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | | | - Chao Fang
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Jingxiong Hu
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Kathleen Schuck
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Benno Traub
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, School of Medicine and HealthyTechnical University of Munich (TUM)MunichGermany
| | - Ingrid Herr
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Christoph W. Michalski
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Bo Kong
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
4
|
Yin J, Guo S, Yang J, Xia R, Wang H. Increased PRIM2 Expression Associated With Poor Prognosis in Patients With Pancreatic Ductal Adenocarcinoma. Pancreas 2025; 54:e11-e17. [PMID: 39259847 DOI: 10.1097/mpa.0000000000002387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
OBJECTIVES To explore the association between PRIM2 expression and prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) from multiclinic centers. MATERIALS AND METHODS Samples from PDAC patients were collected and processed to tissue microarray (TMA). PRIM2 expression was detected by immunohistochemistry (IHC) of in 127 enrolled PDAC patients who underwent surgical resection from January 2012 to December 2018, were with complete follow-up, and were enrolled and grouped by PRIM2 stain level into 2 groups. The expression differences, the association to clinicopathologic features, and the survival were evaluated by the groups. Data of RNA/protein expression and clinical features from public databases were used for validation. RESULTS PRIM2 was highly expressed in PDAC patients and associated with poor prognosis in patients with PDAC. Association was found between increased PRIM2 levels and pathology grade ( P = 0.050). Moreover, in multivariate analysis of survival, the highly expression of PRIM2 was identified as an independent risk factor for poor survival (HR, 1.78; P = 0.031). Analysis on public databases validated above results. CONCLUSIONS High expression of PRIM2 was associated with poor prognosis in PDAC patients, and PRIM2 could be used as an independent risk indicator.
Collapse
Affiliation(s)
| | - Shixiang Guo
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Renpei Xia
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | | |
Collapse
|
5
|
Yin J, Qin F, Chen H, Wang X, Xia R, Ni B, Wang H. PRIM2 promotes proliferation and metastasis of pancreatic ductal adenocarcinoma through interactions with FAM111B. Med Oncol 2024; 42:6. [PMID: 39556158 DOI: 10.1007/s12032-024-02554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinomas (PDAC) are huge threat to human for the extreme malignancy. PRIM2 was reported as tumor marker, while the functions and regulatory mechanisms in PDAC are still unclear. The study aimed to investigate the function of PRIM2 in PDAC. METHODS Expression was detected using immunohistochemistry (IHC), Western blot, and real-time quantitative PCR (RT-qPCR) methods. Cell assays and xenograft model confirmed the phenotypes. Co-Immunoprecipitation (Co-IP) and protein stability assays were used for protein interactions. RESULTS Inhibiting PRIM2 resulted in decreased proliferation and migration both in vitro and in vivo. PRIM2 upregulated FAM111B at increased RNA levels and protein stability. CONCLUSION PRIM2/FAM111B axis promoted proliferation and migration by modulating the PI3K/AKT and epithelial-mesenchymal transition (EMT) markers. The axis has the potential to be targeted for PDAC treatment.
Collapse
Affiliation(s)
- Jingyang Yin
- University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400174, P. R. China
- Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing, P. R. China
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, P. R. China
| | - Fanbo Qin
- University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400174, P. R. China
- Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing, P. R. China
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, P. R. China
| | - Hui Chen
- University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400174, P. R. China
- Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing, P. R. China
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, P. R. China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, P. R. China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing, 401147, P. R. China
| | - Renpei Xia
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, P. R. China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing, 401147, P. R. China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, P. R. China.
| | - Huaizhi Wang
- University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, P. R. China.
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400174, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing, P. R. China.
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, P. R. China.
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing, 401147, P. R. China.
| |
Collapse
|
6
|
Cho YS, Cho H, Kim HR, Park SJ, Yeo JH, Ko YG, Lee J, Kim SY, Kim K, Byun Y. Macropinocytosis-targeted peptide-docetaxel conjugate for bystander pancreatic cancer treatment. J Control Release 2024; 376:829-841. [PMID: 39491626 DOI: 10.1016/j.jconrel.2024.10.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Oncogenic Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are highly prevalent in pancreatic ductal adenocarcinoma (PDAC) and have garnered attention as potential targets for targeted therapies, such as KRAS inhibitors. However, the limited therapeutic efficacy of KRAS allele-specific inhibitors necessitate an efficient pan-KRAS cancer cell killing strategy. Here, we have examined enhanced macropinocytosis pathway in KRAS mutant cancer cells and report improved intracellular delivery of albumin-based therapeutics. We further established an albumin-binding peptide-docetaxel conjugate platform (MPD3), which has a caspase-3 cleavable feature, for macropinocytosis-targeted bystander payload delivery and realization of bystander killing of pan-KRAS cancer cells, complemented with caspase-3 mediated activation of MPD3 to bolster tumoral accumulation of cytotoxic payloads. Utilization of in vitro co-culture system of pan-KRAS cancer cells and pharmacodynamic marker staining revealed potent bystander killing effects of MPD3, highlighting MPD3 as an efficient delivery platform against pan-KRAS cancer. Moreover, MPD3 elicited robust anti-tumor activities in both local and liver metastatic PDAC tumor models in mice. Overall, this work establishes a paradigm for developing translational pan-KRAS cancer treatment and broadens the applicability of albumin binding peptide-drug conjugate against albumin-metabolism enriched cancers.
Collapse
Affiliation(s)
- Young Seok Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergent Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hanhee Cho
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ha Rin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; School of Medicine, Stanford University, CA 94305, USA
| | - Seong Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Joo Hye Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Yoon Gun Ko
- Pharosgen Co.Ltd, 2-404 Jangji-dong 892, Seoul 05852, Republic of Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Sang Yoon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Vázquez-Bellón N, Martínez-Bosch N, García de Frutos P, Navarro P. Hallmarks of pancreatic cancer: spotlight on TAM receptors. EBioMedicine 2024; 107:105278. [PMID: 39137571 PMCID: PMC11367522 DOI: 10.1016/j.ebiom.2024.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the most prevalent type of pancreatic cancer and ranks among the most aggressive tumours, with a 5-year survival rate of less than 11%. Projections indicate that by 2030, it will become the second leading cause of cancer-related deaths. PDAC presents distinctive hallmarks contributing to its dismal prognosis: (i) late diagnosis, (ii) heterogenous and complex mutational landscape, (iii) high metastatic potential, (iv) dense fibrotic stroma, (v) immunosuppressive microenvironment, and (vi) high resistance to therapy. Mounting evidence has shown a role for TAM (Tyro3, AXL, MerTK) family of tyrosine kinase receptors in PDAC initiation and progression. This review aims to describe the impact of TAM receptors on the defining hallmarks of PDAC and discuss potential future directions using these proteins as novel biomarkers for early diagnosis and targets for precision therapy in PDAC, an urgent unmet clinical need.
Collapse
Affiliation(s)
- Núria Vázquez-Bellón
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB)-CSIC and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; PhD Program in Biomedicine, Facultat de Medicina (Campus Clínic), Universitat de Barcelona, Barcelona, Spain
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Research Institute (HMRI), Unidad Asociada IIBB-CSIC, Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, Unidad Asociada IMIM/IIBB-CSIC, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), and IDIBAPS, Barcelona, Spain.
| | - Pilar Navarro
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB)-CSIC and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Cancer Research Program, Hospital del Mar Research Institute (HMRI), Unidad Asociada IIBB-CSIC, Barcelona, Spain.
| |
Collapse
|
8
|
Li C, Chen Q, Jiang C. Intelligent micelles for on-demand drug delivery targeting extracellular matrix of pancreatic cancer. J Control Release 2024; 373:879-889. [PMID: 39098554 DOI: 10.1016/j.jconrel.2024.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
As a key pathological feature of pancreatic ductal adenocarcinoma(PDAC), the dense extracellular matrix(ECM) limits the penetration of chemotherapy drugs and is involved in the formation of immunosuppressive microenvironment. Meanwhile, clinical practice has shown that the treatment strategy for ECM should consider its restriction of tumor cell metastasis, and the need for in-depth chemotherapy without destroying ECM is proposed. STAT3 inhibitors have been reported to regulate tumor microenvironment including interrupt the form of ECM. Therefore, we designed and established a micelle system MP@HA with in vivo targeting and responsive drug release function co-loading gemcitabine monophosphate and STAT3 inhibitor silibinin. The hyaluronic acid on the surface of the micelle can bind specifically to the CD44 molecule on the surface of tumor cells and help micelles accumulate at the tumor site. The nitroimidazole used to modify the polymeric skeleton can make the micellar structure collapse in response to hypoxia reduction conditions in the tumor environment, and release silibinin to widely regulate STAT3 molecules in the PDAC microenvironment. The polymer fragment attached with gemcitabine monophosphate can penetrate deep into PDAC tumors due to its small size and positive charge exposed, achieving deep chemotherapy. This research indicates a promising micelle system meeting complicated demands proposed in PDAC treatment to improve antitumor efficacy.
Collapse
Affiliation(s)
- Chufeng Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China.
| |
Collapse
|
9
|
Zhao FY, Chen X, Wang JM, Yuan Y, Li C, Sun J, Wang HQ. O-GlcNAcylation of TRIM29 and OGT translation forms a feedback loop to promote adaptive response of PDAC cells to glucose deficiency. Cell Oncol (Dordr) 2024; 47:1025-1041. [PMID: 38345749 DOI: 10.1007/s13402-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Glucose not only provides energy for tumor cells, but also provides various biomolecules that are essential for their survival, proliferation and invasion. Therefore, it is of great clinical significance to understand the mechanism of how tumor cells adapt to metabolic stress and maintain their survival. The aim of this research was to study the critical role of OGT and TRIM29 O-GlcNAc modification driven adaptability of PDAC cells to low glucose stress, which might have important medical implications for PDAC therapy. METHODS Western blotting, mass spectrometry and WGA-immunoprecipitation were used to examined the levels of OGT and O-GlcNAc glycosylated proteins in BxPC3 and SW1990 cells in normal culture and under glucose deprivation conditions. Crystal violet assay, flow cytometry, RIP, RT-qPCR, protein stability assay, biotin pull down were used to investigate the mechanism of OGT and TRIM29-mediated adaptive response to glucose deficiency in PDAC cells. RESULTS The current study found that under the condition of low glucose culture, the levels of OGT and O-GlcNAc glycosylation in PDAC cells were significantly higher than those in normal culture. Moreover, the high expression of OGT has a protective effect on PDAC cells under low glucose stress. This study confirmed that there was no significant change in mRNA level and protein degradation of OGT under low glucose stress, which was mainly reflected in the increase of protein synthesis. In addition, O-GlcNAc modification at T120 site plays a critical role in the metabolic adaptive responses mediated by TRIM29. CONCLUSIONS Taken together, our study indicated that O-GlcNAcylation of TRIM29 at T120 site and OGT translation forms a loop feedback to facilitate survival of PDAC under glucose deficiency.
Collapse
Affiliation(s)
- Fu-Ying Zhao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Xue Chen
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, The 1st Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Ye Yuan
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Jia Sun
- Department of Biochemistry and Molecular Biology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hua-Qin Wang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
10
|
Curcio C, Mucciolo G, Roux C, Brugiapaglia S, Scagliotti A, Guadagnin G, Conti L, Longo D, Grosso D, Papotti MG, Hirsch E, Cappello P, Varner JA, Novelli F. PI3Kγ inhibition combined with DNA vaccination unleashes a B-cell-dependent antitumor immunity that hampers pancreatic cancer. J Exp Clin Cancer Res 2024; 43:157. [PMID: 38824552 PMCID: PMC11143614 DOI: 10.1186/s13046-024-03080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Phosphoinositide-3-kinase γ (PI3Kγ) plays a critical role in pancreatic ductal adenocarcinoma (PDA) by driving the recruitment of myeloid-derived suppressor cells (MDSC) into tumor tissues, leading to tumor growth and metastasis. MDSC also impair the efficacy of immunotherapy. In this study we verify the hypothesis that MDSC targeting, via PI3Kγ inhibition, synergizes with α-enolase (ENO1) DNA vaccination in counteracting tumor growth.Mice that received ENO1 vaccination followed by PI3Kγ inhibition had significantly smaller tumors compared to those treated with ENO1 alone or the control group, and correlated with i) increased circulating anti-ENO1 specific IgG and IFNγ secretion by T cells, ii) increased tumor infiltration of CD8+ T cells and M1-like macrophages, as well as up-modulation of T cell activation and M1-like related transcripts, iii) decreased infiltration of Treg FoxP3+ T cells, endothelial cells and pericytes, and down-modulation of the stromal compartment and T cell exhaustion gene transcription, iv) reduction of mature and neo-formed vessels, v) increased follicular helper T cell activation and vi) increased "antigen spreading", as many other tumor-associated antigens were recognized by IgG2c "cytotoxic" antibodies. PDA mouse models genetically devoid of PI3Kγ showed an increased survival and a pattern of transcripts in the tumor area similar to that of pharmacologically-inhibited PI3Kγ-proficient mice. Notably, tumor reduction was abrogated in ENO1 + PI3Kγ inhibition-treated mice in which B cells were depleted.These data highlight a novel role of PI3Kγ in B cell-dependent immunity, suggesting that PI3Kγ depletion strengthens the anti-tumor response elicited by the ENO1 DNA vaccine.
Collapse
Affiliation(s)
- Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Gianluca Mucciolo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Cecilia Roux
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Alessandro Scagliotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Giorgia Guadagnin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Dario Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Demis Grosso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Mauro Giulio Papotti
- Pathology Unit, Department of Medical Sciences, University of Torino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Judith A Varner
- Moores Cancer Center, Department of Pathology, University of California, San Diego, CA, USA
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy.
- Molecular Biotechnology Center, University of Torino, Turin, Italy.
| |
Collapse
|
11
|
Liu X, Ren B, Fang Y, Ren J, Wang X, Gu M, Zhou F, Xiao R, Luo X, You L, Zhao Y. Comprehensive analysis of bulk and single-cell transcriptomic data reveals a novel signature associated with endoplasmic reticulum stress, lipid metabolism, and liver metastasis in pancreatic cancer. J Transl Med 2024; 22:393. [PMID: 38685045 PMCID: PMC11057100 DOI: 10.1186/s12967-024-05158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with high probability of recurrence and distant metastasis. Liver metastasis is the predominant metastatic mode developed in most pancreatic cancer cases, which seriously affects the overall survival rate of patients. Abnormally activated endoplasmic reticulum stress and lipid metabolism reprogramming are closely related to tumor growth and metastasis. This study aims to construct a prognostic model based on endoplasmic reticulum stress and lipid metabolism for pancreatic cancer, and further explore its correlation with tumor immunity and the possibility of immunotherapy. METHODS Transcriptomic and clinical data are acquired from TCGA, ICGC, and GEO databases. Potential prognostic genes were screened by consistent clustering and WGCNA methods, and the whole cohort was randomly divided into training and testing groups. The prognostic model was constructed by machine learning method in the training cohort and verified in the test, TCGA and ICGC cohorts. The clinical application of this model and its relationship with tumor immunity were analyzed, and the relationship between endoplasmic reticulum stress and intercellular communication was further explored. RESULTS A total of 92 characteristic genes related to endoplasmic reticulum stress, lipid metabolism and liver metastasis were identified in pancreatic cancer. We established and validated a prognostic model for pancreatic cancer with 7 signatures, including ADH1C, APOE, RAP1GAP, NPC1L1, P4HB, SOD2, and TNFSF10. This model is considered to be an independent prognosticator and is a more accurate predictor of overall survival than age, gender, and stage. TIDE score was increased in high-risk group, while the infiltration levels of CD8+ T cells and M1 macrophages were decreased. The number and intensity of intercellular communication were increased in the high ER stress group. CONCLUSIONS We constructed and validated a novel prognostic model for pancreatic cancer, which can also be used as an instrumental variable to predict the prognosis and immune microenvironment. In addition, this study revealed the effect of ER stress on cell-cell communication in the tumor microenvironment.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
12
|
Cheng L, Chen L, Shi Y, Gu W, Ding W, Zheng X, Liu Y, Jiang J, Zheng Z. Efficacy and safety of bispecific antibodies vs. immune checkpoint blockade combination therapy in cancer: a real-world comparison. Mol Cancer 2024; 23:77. [PMID: 38627681 PMCID: PMC11020943 DOI: 10.1186/s12943-024-01956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 04/19/2024] Open
Abstract
Emerging tumor immunotherapy methods encompass bispecific antibodies (BSABs), immune checkpoint inhibitors (ICIs), and adoptive cell immunotherapy. BSABs belong to the antibody family that can specifically recognize two different antigens or epitopes on the same antigen. These antibodies demonstrate superior clinical efficacy than monoclonal antibodies, indicating their role as a promising tumor immunotherapy option. Immune checkpoints are also important in tumor immunotherapy. Programmed cell death protein-1 (PD-1) is a widely acknowledged immune checkpoint target with effective anti-tumor activity. PD-1 inhibitors have demonstrated notable therapeutic efficacy in treating hematological and solid tumors; however, more than 50% of patients undergoing this treatment exhibit a poor response. However, ICI-based combination therapies (ICI combination therapies) have been demonstrated to synergistically increase anti-tumor effects and immune response rates. In this review, we compare the clinical efficacy and side effects of BSABs and ICI combination therapies in real-world tumor immunotherapy, aiming to provide evidence-based approaches for clinical research and personalized tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Linyan Cheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute for Cell Therapy of Soochow University, Changzhou, China
| | - Yuan Shi
- Laboratory of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Weidong Ding
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.
- Institute for Cell Therapy of Soochow University, Changzhou, China.
| | - Yan Liu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.
- Institute for Cell Therapy of Soochow University, Changzhou, China.
| | - Zhuojun Zheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
13
|
Liu S, Liu F, Hou X, Zhang Q, Ren Y, Zhu H, Yang Z, Xu X. KRAS Mutation Detection with (2 S,4 R)-4-[ 18F]FGln for Noninvasive PDAC Diagnosis. Mol Pharm 2024; 21:2034-2042. [PMID: 38456403 PMCID: PMC10989612 DOI: 10.1021/acs.molpharmaceut.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which has a poor prognosis and nonspecific symptoms and progresses rapidly, is the most common pancreatic cancer type. Inhibitors targeting KRAS G12D and G12C mutations have been pivotal in PDAC treatment. Cancer cells with different KRAS mutations exhibit various degrees of glutamine dependency; in particular, cells with KRAS G12D mutations exhibit increased glutamine uptake. (2S,4R)-4-[18F]FGln has recently been developed for clinical cancer diagnosis and tumor cell metabolism analysis. Thus, we verified the heterogeneity of glutamine dependency in PDAC models with different KRAS mutations by a visual and noninvasive method with (2S,4R)-4-[18F]FGln. Two tumor-bearing mouse models (bearing the KRAS G12D or G12C mutation) were injected with (2S,4R)-4-[18F]FGln, and positron emission tomography (PET) imaging features and biodistribution were observed and analyzed. The SUVmax in the regions of interest (ROI) was significantly higher in PANC-1 (G12D) tumors than in MIA PaCa-2 (G12C) tumors. Biodistribution analysis revealed higher tumor accumulation of (2S,4R)-4-[18F]FGln and other metrics, such as T/M and T/B, in the PANC-1 mouse models compared to those in the MIAPaCa-2 mouse models. In conclusion, PDAC cells with the KRAS G12D and G12C mutations exhibit various degrees of (2S,4R)-4-[18F]FGln uptake, indicating that (2S,4R)-4-[18F]FGln might be applied to detect KRAS G12C and G12D mutations and provide treatment guidance.
Collapse
Affiliation(s)
| | | | - Xingguo Hou
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Zhang
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ya’nan Ren
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoxia Xu
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
14
|
Ma Z, Zhou Z, Duan W, Yao G, Sheng S, Zong S, Zhang X, Li C, Liu Y, Ou F, Dahar MR, Huang Y, Yu L. DR30318, a novel tri-specific T cell engager for Claudin 18.2 positive cancers immunotherapy. Cancer Immunol Immunother 2024; 73:82. [PMID: 38554200 PMCID: PMC10981630 DOI: 10.1007/s00262-024-03673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Claudin 18.2 (CLDN18.2) is a highly anticipated target for solid tumor therapy, especially in advanced gastric carcinoma and pancreatic carcinoma. The T cell engager targeting CLDN18.2 represents a compelling strategy for enhancing anti-cancer efficacy. METHODS Based on the in-house screened anti-CLDN18.2 VHH, we have developed a novel tri-specific T cell engager targeting CLDN18.2 for gastric and pancreatic cancer immunotherapy. This tri-specific antibody was designed with binding to CLDN18.2, human serum albumin (HSA) and CD3 on T cells. RESULTS The DR30318 demonstrated binding affinity to CLDN18.2, HSA and CD3, and exhibited T cell-dependent cellular cytotoxicity (TDCC) activity in vitro. Pharmacokinetic analysis revealed a half-life of 22.2-28.6 h in rodents and 41.8 h in cynomolgus monkeys, respectively. The administration of DR30318 resulted in a slight increase in the levels of IL-6 and C-reactive protein (CRP) in cynomolgus monkeys. Furthermore, after incubation with human PBMCs and CLDN18.2 expressing cells, DR30318 induced TDCC activity and the production of interleukin-6 (IL-6) and interferon-gamma (IFN-γ). Notably, DR30318 demonstrated significant tumor suppression effects on gastric cancer xenograft models NUGC4/hCLDN18.2 and pancreatic cancer xenograft model BxPC3/hCLDN18.2 without affecting the body weight of mice.
Collapse
Affiliation(s)
- Zhe Ma
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Zhenxing Zhou
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Wenwen Duan
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Gaofeng Yao
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Shimei Sheng
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Sidou Zong
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Xin Zhang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Changkui Li
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Yuanyuan Liu
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Fengting Ou
- Jinhua Institute of Zhejiang University, Jinhua, 321036, China
| | - Maha Raja Dahar
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yanshan Huang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China.
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321036, China.
- Department of Pharmacy, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China.
| |
Collapse
|
15
|
Qu L, Liu SJ, Zhang L, Liu JF, Zhou YJ, Zeng PH, Jing QC, Yin WJ. The Role of m6A-Mediated DNA Damage Repair in Tumor Development and Chemoradiotherapy Resistance. Cancer Control 2024; 31:10732748241247170. [PMID: 38662732 PMCID: PMC11047261 DOI: 10.1177/10732748241247170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Among the post-transcriptional modifications, m6A RNA methylation has gained significant research interest due to its critical role in regulating transcriptional expression. This modification affects RNA metabolism in several ways, including processing, nuclear export, translation, and decay, making it one of the most abundant transcriptional modifications and a crucial regulator of gene expression. The dysregulation of m6A RNA methylation-related proteins in many tumors has been shown to lead to the upregulation of oncoprotein expression, tumor initiation, proliferation, cancer cell progression, and metastasis.Although the impact of m6A RNA methylation on cancer cell growth and proliferation has been extensively studied, its role in DNA repair processes, which are crucial to the pathogenesis of various diseases, including cancer, remains unclear. However, recent studies have shown accumulating evidence that m6A RNA methylation significantly affects DNA repair processes and may play a role in cancer drug resistance. Therefore, a comprehensive literature review is necessary to explore the potential biological role of m6A-modified DNA repair processes in human cancer and cancer drug resistance.In conclusion, m6A RNA methylation is a crucial regulator of gene expression and a potential player in cancer development and drug resistance. Its dysregulation in many tumors leads to the upregulation of oncoprotein expression and tumor progression. Furthermore, the impact of m6A RNA methylation on DNA repair processes, although unclear, may play a crucial role in cancer drug resistance. Therefore, further studies are warranted to better understand the potential biological role of m6A-modified DNA repair processes in human cancer and cancer drug resistance.
Collapse
Affiliation(s)
- Li Qu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Si jian Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Ling Zhang
- Department of Clinical Laboratory Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical school, University of South China, Changsha, China
| | - Jia Feng Liu
- Department of Clinical Laboratory Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical school, University of South China, Changsha, China
| | - Ying Jie Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Peng Hui Zeng
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Qian Cheng Jing
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, China
| | - Wen Jun Yin
- Department of Clinical Laboratory Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical school, University of South China, Changsha, China
| |
Collapse
|
16
|
Hong P, Wu M, Wei X, Xu X, Wu P, Gan L, Wu R, Jin J, Zhang K, Li D, Chen M, Wong W, Liu W, Zheng X. Inhibitory effect of liriopesides B in combination with gemcitabine on human pancreatic cancer cells. Bioorg Chem 2024; 142:106937. [PMID: 37913583 DOI: 10.1016/j.bioorg.2023.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Gemcitabine (GEM) is a standard chemotherapeutic agent for patients with pancreatic cancer; however, GEM-based chemotherapy has a high rate of toxicity. A combination of GEM and active constituents from natural products may enhance its therapeutic efficacy and reduce its toxicity. This study investigated the synergistic effects of the combination of liriopesides B (LirB) from Liriope spicata var. prolifera and GEM on human pancreatic cancer cells. The results of our study showed that the combination of LirB and GEM synergistically decreased the viability of pancreatic cancer cells. The combination also caused a strong increase in apoptosis and a strong decrease in cell migration and invasion. Furthermore, LirB combined with GEM had potent inhibitory effects on pancreatic cancer stem cells (CSCs). Studies on the mechanisms of action showed that the combination more potently inhibited protein kinase B (Akt) and nuclear factor kappa B (NF-κB), as well as the downstream antiapoptotic molecules B-cell lymphoma 2 (Bcl-2) and survivin than either agent used alone. The results of this study suggest that the combination of LirB with GEM may improve the efficacy of GEM for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Mengshuo Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xingchuan Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Rihui Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Min Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Wingleung Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
17
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
18
|
Masuo H, Kubota K, Shimizu A, Notake T, Miyazaki S, Yoshizawa T, Sakai H, Hayashi H, Soejima Y. Increased mitochondria are responsible for the acquisition of gemcitabine resistance in pancreatic cancer cell lines. Cancer Sci 2023; 114:4388-4400. [PMID: 37700464 PMCID: PMC10637055 DOI: 10.1111/cas.15962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma has a particularly poor prognosis as it is often detected at an advanced stage and acquires resistance to chemotherapy early during its course. Stress adaptations by mitochondria, such as metabolic plasticity and regulation of apoptosis, promote cancer cell survival; however, the relationship between mitochondrial dynamics and chemoresistance in pancreatic ductal adenocarcinoma remains unclear. We here established human pancreatic cancer cell lines resistant to gemcitabine from MIA PaCa-2 and Panc1 cells. We compared the cells before and after the acquisition of gemcitabine resistance to investigate the mitochondrial dynamics and protein expression that contribute to this resistance. The mitochondrial number increased in gemcitabine-resistant cells after resistance acquisition, accompanied by a decrease in mitochondrial fission 1 protein, which induces peripheral mitosis, leading to mitophagy. An increase in the number of mitochondria promoted oxidative phosphorylation and increased anti-apoptotic protein expression. Additionally, enhanced oxidative phosphorylation decreased the AMP/ATP ratio and suppressed AMPK activity, resulting in the activation of the HSF1-heat shock protein pathway, which is required for environmental stress tolerance. Synergistic effects observed with BCL2 family or HSF1 inhibition in combination with gemcitabine suggested that the upregulated expression of apoptosis-related proteins caused by the mitochondrial increase may contribute to gemcitabine resistance. The combination of gemcitabine with BCL2 or HSF1 inhibitors may represent a new therapeutic strategy for the treatment of acquired gemcitabine resistance in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Hitoshi Masuo
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Koji Kubota
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Akira Shimizu
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Tsuyoshi Notake
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Satoru Miyazaki
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Takahiro Yoshizawa
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Hiroki Sakai
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Hikaru Hayashi
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Yuji Soejima
- Division of Gastroenterological, Hepato‐Biliary‐Pancreatic, Transplantation and Pediatric Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
| |
Collapse
|
19
|
Hedegger K, Blutke A, Hommel T, Auer KE, Nataraj NB, Lindzen M, Yarden Y, Dahlhoff M. Trapping all ERBB ligands decreases pancreatic lesions in a murine model of pancreatic ductal adenocarcinoma. Mol Oncol 2023; 17:2415-2431. [PMID: 37341059 PMCID: PMC10620123 DOI: 10.1002/1878-0261.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/11/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest of cancers. Attempts to develop targeted therapies still need to be established. Some oncogenic mechanisms in PDAC carcinogenesis harness the EGFR/ERBB receptor family. To explore the effects on pancreatic lesions, we attempted simultaneous blockade of all ERBB ligands in a PDAC mouse model. To this end, we engineered a molecular decoy, TRAP-FC , comprising the ligand-binding domains of both EGFR and ERBB4 and able to trap all ERBB ligands. Next, we generated a transgenic mouse model (CBATRAP/0 ) expressing TRAP-FC ubiquitously under the control of the chicken-beta-actin promoter and crossed these mice with KRASG12D/+ mice (Kras) to generate Trap/Kras mice. The resulting mice displayed decreased emergence of spontaneous pancreatic lesion areas and exhibited reduced RAS activity and decreased activities of ERBBs, with the exception of ERBB4, which showed increased activity. To identify the involved receptor(s), we employed CRISPR/Cas9 DNA editing to singly delete each ERBB receptor in the human pancreatic carcinoma cell line Panc-1. Ablation of each ERBB family member, especially the loss of EGFR or ERBB2/HER2, altered signaling downstream of the other three ERBB receptors and decreased cell proliferation, migration, and tumor growth. We conclude that simultaneously blocking the entire ERBB receptor family is therapeutically more effective than individually inhibiting only one receptor or ligand in terms of reducing pancreatic tumor burden. In summary, trapping all ERBB ligands can reduce pancreatic lesion area and RAS activity in a murine model of pancreatic adenocarcinoma; hence, it might represent a promising approach to treat PDAC in patients.
Collapse
Affiliation(s)
- Kathrin Hedegger
- Institute of Molecular Animal Breeding and Biotechnology, Gene CenterLMU MünchenGermany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary MedicineLMU MünchenGermany
| | - Theresa Hommel
- Institute of in vivo and in vitro ModelsUniversity of Veterinary MedicineViennaAustria
| | - Kerstin E. Auer
- Institute of in vivo and in vitro ModelsUniversity of Veterinary MedicineViennaAustria
| | - Nishanth B. Nataraj
- Department of Immunology and Regenerative BiologyWeizmann Institute of ScienceRehovotIsrael
- Bugworks Research Inc, CCAMPBengaluruIndia
| | - Moshit Lindzen
- Department of Immunology and Regenerative BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Yosef Yarden
- Department of Immunology and Regenerative BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Maik Dahlhoff
- Institute of in vivo and in vitro ModelsUniversity of Veterinary MedicineViennaAustria
| |
Collapse
|
20
|
Yang T, Han Y, Chen J, Liang X, Sun L. MiR-506 Promotes Antitumor Immune Response in Pancreatic Cancer by Reprogramming Tumor-Associated Macrophages toward an M1 Phenotype. Biomedicines 2023; 11:2874. [PMID: 38001876 PMCID: PMC10669181 DOI: 10.3390/biomedicines11112874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 11/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant cancer with a poor prognosis, and effective treatments for PDAC are lacking. In this study, we hypothesized that miR-506 promotes antitumor immune response in PDAC by reprogramming tumor-associated macrophages toward an M1 phenotype to reverse its immunosuppressive tumor microenvironment (TME). First, the relationship between TME and the expression of miR-506 was assessed using clinical samples. Our results provided evidence that lower expression of miR-506 was associated with poor prognosis and immunosuppressive TME in PDAC patients. In addition, miR-506 inhibit the PDAC progression and reversed its immunosuppressive microenvironment in a macrophage-dependent manner. Next, we established a PDAC mouse model by orthotopic injection to further explore the role of miR-506 in vivo. Mechanistic investigations demonstrated that miR-506 could reprogram the polarization of M2-like macrophages toward an M1-like phenotype through targeting STAT3. Meanwhile, miR-506 could also sensitize PDAC to anti-PD-1 immunotherapy, because the tumor microenvironment remodeling effects of miR-506 could reprogram macrophage polarization and subsequently promote cytotoxic T lymphocyte (CTL) infiltration. These findings suggest a relationship between miR-506 and TME, especially M2-like macrophages, thus providing novel insights into mechanisms of tumor progression and potential immunotherapeutic targets for further clinical treatment.
Collapse
Affiliation(s)
| | | | | | | | - Longhao Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China (X.L.)
| |
Collapse
|
21
|
Chen Z, Qiao S, Yang L, Sun M, Li B, Lu A, Li F. Mechanistic Insights into the Roles of the IL-17/IL-17R Families in Pancreatic Cancer. Int J Mol Sci 2023; 24:13539. [PMID: 37686343 PMCID: PMC10487659 DOI: 10.3390/ijms241713539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The members of the cytokine interleukin 17 (IL-17) family, along with their receptors (IL-17R), are vital players in a range of inflammatory diseases and cancer. Although generally regarded as proinflammatory, the effects they exhibit on cancer progression are a double-edged sword, with both antitumor and protumor activities being discovered. There is growing evidence that the IL-17 signaling pathways have significant impacts on the tumor microenvironment (TME), immune response, and inflammation in various types of cancer, including pancreatic cancer. However, the detailed mechanistic functions of the IL-17/IL-17R families in pancreatic cancer were rarely systematically elucidated. This review considers the role of the IL-17/IL-17R families in inflammation and tumor immunity and elaborates on the mechanistic functions and correlations of these members with pathogenesis, progression, and chemoresistance in pancreatic cancer. By summarizing the advanced findings on the role of IL-17/IL17R family members and IL-17 signaling pathways at the molecular level, cellular level, and disease level in pancreatic cancer, this review provides an in-depth discussion on the potential of IL-17/IL-17R as prognostic markers and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Zheng Chen
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuangying Qiao
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liu Yang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiheng Sun
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Boyue Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
22
|
Zhang S, Fang W, Zhou S, Zhu D, Chen R, Gao X, Li Z, Fu Y, Zhang Y, Yang F, Zhao J, Wu H, Wang P, Shen Y, Shen S, Xu G, Wang L, Yan C, Zou X, Chen D, Lv Y. Single cell transcriptomic analyses implicate an immunosuppressive tumor microenvironment in pancreatic cancer liver metastasis. Nat Commun 2023; 14:5123. [PMID: 37612267 PMCID: PMC10447466 DOI: 10.1038/s41467-023-40727-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease refractory to all targeted and immune therapies. However, our understanding of PDAC microenvironment especially the metastatic microenvironment is very limited partly due to the inaccessibility to metastatic tumor tissues. Here, we present the single-cell transcriptomic landscape of synchronously resected PDAC primary tumors and matched liver metastases. We perform comparative analysis on both cellular composition and functional phenotype between primary and metastatic tumors. Tumor cells exhibit distinct transcriptomic profile in liver metastasis with clearly defined evolutionary routes from cancer cells in primary tumor. We also identify specific subtypes of stromal and immune cells critical to the formation of the pro-tumor microenvironment in metastatic lesions, including RGS5+ cancer-associated fibroblasts, CCL18+ lipid-associated macrophages, S100A8+ neutrophils and FOXP3+ regulatory T cells. Cellular interactome analysis further reveals that the lack of tumor-immune cell interaction in metastatic tissues contributes to the formation of the immunosuppressive microenvironment. Our study provides a comprehensive characterization of the transcriptional landscape of PDAC liver metastasis.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Dongming Zhu
- Department of General Surgery and Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ruidong Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xin Gao
- Department of General Surgery and Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hao Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yonghua Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
| | - Chao Yan
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
| | - Dijun Chen
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
| |
Collapse
|
23
|
Weng H, Feng W, Li F, Huang D, Lin L, Wang Z. Transcription factor ETV1-induced lncRNA MAFG-AS1 promotes migration, invasion, and epithelial-mesenchymal transition of pancreatic cancer cells by recruiting IGF2BP2 to stabilize ETV1 expression. Growth Factors 2023:1-13. [PMID: 37428861 DOI: 10.1080/08977194.2023.2227272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2023] [Indexed: 07/12/2023]
Abstract
We investigated the mechanism of ETS-translocation variant 1 (ETV1)/lncRNA-MAFG-AS1 in pancreatic cancer (PC). MAFG-AS1 and ETV1 levels in PC cell lines and HPNE cells were determined using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB). After transfection with sh-MAFG-AS1, PC cell invasion, migration, proliferation, and epithelial-mesenchymal transition (EMT)-related proteins were measured by 5-ethynyl-2'-deoxyuridine (EdU), Transwell assay, and WB. The binding between ETV1 and MAFG-AS1 was studied using dual-luciferase assay and chromatin immunoprecipitation. The interactions between MAFG-AS1, IGF2BP2, and ETV1 were tested. Combined experiments were further performed using sh-MAFG-AS1 and pcDNA-ETV1 simultaneously. ETV1/MAFG-AS1 was highly expressed in PC cells. Blocking MAFG-AS1 inhibited the malignant behaviors of PC cells. ETV1 induced MAFG-AS1 transcription in PC cells. MAFG-AS1 stabilized ETV1 mRNA by recruiting IGF2BP2. ETV1 overexpression partially antagonized the suppression of silencing MAFG-AS1 on PC cells. ETV1-induced MAFG-AS1 stabilized the ETV1 expression by recruiting IGF2BP2 and promoted PC cell migration, invasion, proliferation, and EMT.
Collapse
Affiliation(s)
- Hanqin Weng
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Weijian Feng
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Fengling Li
- Department of Anesthesiology, Dongguan People's Hospital, Dongguan, China
| | - Dong Huang
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Liangyi Lin
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Zaiguo Wang
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| |
Collapse
|
24
|
Zhirong Z, Li H, Yi L, Lichen Z, Ruiwu D. Ferroptosis in pancreatic diseases: potential opportunities and challenges that require attention. Hum Cell 2023; 36:1233-1243. [PMID: 36929283 DOI: 10.1007/s13577-023-00894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
The pancreas is an abdominal organ with both endocrine and exocrine functions, and patients with pancreatic diseases suffer tremendously. The regulated cell death of various cells in the pancreas is thought to play a key role in disease development. As one of the newly discovered regulated cell death modalities, ferroptosis has the potential for therapeutic applications in the study of multiple diseases. Ferroptosis has been observed in several pancreatic diseases, but its role in pancreatic diseases has not been systematically elucidated or reviewed. Understanding the occurrence of ferroptosis in various pancreatic diseases after damage to the different cell types is crucial in determining disease progression, evaluating targeted therapies, and predicting disease prognosis. Herein, we summarize the research progress associated with ferroptosis in four common pancreatic diseases, namely acute pancreatitis, chronic pancreatitis, pancreatic ductal adenocarcinoma, and diabetes mellitus. Furthermore, the elucidation of ferroptosis in rare pancreatic diseases may provide sociological benefits in the future.
Collapse
Affiliation(s)
- Zhao Zhirong
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Han Li
- Ultrasound Medical Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liu Yi
- School of Medicine, Jianghan University, Wuhan, 430056, Hubei, China
| | - Zhou Lichen
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Dai Ruiwu
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China.
- College of Medicine, Southwest Jiaotong University, Chengdu, China.
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
AmeliMojarad M, AmeliMojarad M. A comprehensive review of the role of LINC00462 in human disorders. Pathol Res Pract 2023; 243:154370. [PMID: 36812739 DOI: 10.1016/j.prp.2023.154370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
LINC00462; a long intergenic non-coding RNA located on chromosome chr13:48,576,973-48,590,587 is a member of long non-coding RNA (lncRNA) that is participated in different human disorders such as pancreatic cancer and hepatocellular carcinoma. LINC00462 can act as competing endogenous RNAs (ceRNAs), to sponge different MicroRNAs (miRNAs) such as miR-665. Dysregulation of LINC00462 can promote cancer development, progression, and metastasis. LINC00462 can also bind directly with genes and proteins to regulate different pathways, including STAT2/3 and PI3K/AKT pathways to affected tumor progression. In addition, aberrant LINC00462 levels can be important cancer-specific prognostic and diagnostic markers. In this review, we summarize the most recent studies on the role of LINC00462 in different disorders and demonstrated the role of LINC00462 in tumorigenesis.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China.
| | - Mandana AmeliMojarad
- National Institute of Genetic Engineering and Biotechnology, Tehran, Islamic Republic of Iran; Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| |
Collapse
|
26
|
Leveraging Tumor Microenvironment Infiltration in Pancreatic Cancer to Identify Gene Signatures Related to Prognosis and Immunotherapy Response. Cancers (Basel) 2023; 15:cancers15051442. [PMID: 36900234 PMCID: PMC10000708 DOI: 10.3390/cancers15051442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
The hallmark of pancreatic ductal adenocarcinoma (PDAC) is an exuberant tumor microenvironment (TME) comprised of diverse cell types that play key roles in carcinogenesis, chemo-resistance, and immune evasion. Here, we propose a gene signature score through the characterization of cell components in TME for promoting personalized treatments and further identifying effective therapeutic targets. We identified three TME subtypes based on cell components quantified by single sample gene set enrichment analysis. A prognostic risk score model (TMEscore) was established based on TME-associated genes using a random forest algorithm and unsupervised clustering, followed by validation in immunotherapy cohorts from the GEO dataset for its performance in predicting prognosis. Importantly, TMEscore positively correlated with the expression of immunosuppressive checkpoints and negatively with the gene signature of T cells' responses to IL2, IL15, and IL21. Subsequently, we further screened and verified F2R-like Trypsin Receptor1 (F2RL1) among the core genes related to TME, which promoted the malignant progression of PDAC and has been confirmed as a good biomarker with therapeutic potential in vitro and in vivo experiments. Taken together, we proposed a novel TMEscore for risk stratification and selection of PDAC patients in immunotherapy trials and validated effective pharmacological targets.
Collapse
|
27
|
Draguet F, Bouland C, Dubois N, Bron D, Meuleman N, Stamatopoulos B, Lagneaux L. Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles as Natural Nanocarriers: Concise Review. Pharmaceutics 2023; 15:pharmaceutics15020558. [PMID: 36839879 PMCID: PMC9964668 DOI: 10.3390/pharmaceutics15020558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Intercellular communication, through direct and indirect cell contact, is mandatory in multicellular organisms. These last years, the microenvironment, and in particular, transfer by extracellular vesicles (EVs), has emerged as a new communication mechanism. Different biological fluids and cell types are common sources of EVs. EVs play different roles, acting as signalosomes, biomarkers, and therapeutic agents. As therapeutic agents, MSC-derived EVs display numerous advantages: they are biocompatible, non-immunogenic, and stable in circulation, and they are able to cross biological barriers. Furthermore, EVs have a great potential for drug delivery. Different EV isolation protocols and loading methods have been tested and compared. Published and ongoing clinical trials, and numerous preclinical studies indicate that EVs are safe and well tolerated. Moreover, the latest studies suggest their applications as nanocarriers. The current review will describe the potential for MSC-derived EVs as drug delivery systems (DDS) in disease treatment, and their advantages. Thereafter, we will outline the different EV isolation methods and loading techniques, and analyze relevant preclinical studies. Finally, we will describe ongoing and published clinical studies. These elements will outline the benefits of MSC-derived EV DDS over several aspects.
Collapse
Affiliation(s)
- Florian Draguet
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Correspondence:
| | - Cyril Bouland
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, 322 Rue Haute, 1000 Brussels, Belgium
- Department of Maxillofacial and Reconstructive Surgery, Grand Hôpital de Charleroi, 3 Grand’Rue, 6000 Charleroi, Belgium
| | - Nathan Dubois
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
| | - Dominique Bron
- Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Medicine Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Medicine Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
| |
Collapse
|
28
|
The Emerging Role of m6A Modification in Endocrine Cancer. Cancers (Basel) 2023; 15:cancers15041033. [PMID: 36831377 PMCID: PMC9954123 DOI: 10.3390/cancers15041033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
With the development of RNA modification research, N6-methyladenosine (m6A) is regarded as one of the most important internal epigenetic modifications of eukaryotic mRNA. It is also regulated by methylase, demethylase, and protein preferentially recognizing the m6A modification. This dynamic and reversible post-transcriptional RNA alteration has steadily become the focus of cancer research. It can increase tumor stem cell self-renewal and cell proliferation. The m6A-modified genes may be the primary focus for cancer breakthroughs. Although some endocrine cancers are rare, they may have a high mortality rate. As a result, it is critical to recognize the significance of endocrine cancers and identify new therapeutic targets that will aid in improving disease treatment and prognosis. We summarized the latest experimental progress in the m6A modification in endocrine cancers and proposed the m6A alteration as a potential diagnostic marker for endocrine malignancies.
Collapse
|
29
|
Troumpoukis D, Papadimitropoulou A, Charalampous C, Kogionou P, Palamaris K, Sarantis P, Serafimidis I. Targeting autophagy in pancreatic cancer: The cancer stem cell perspective. Front Oncol 2022; 12:1049436. [PMID: 36505808 PMCID: PMC9730023 DOI: 10.3389/fonc.2022.1049436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is currently the seventh leading cause of cancer-related deaths worldwide, with the estimated death toll approaching half a million annually. Pancreatic ductal adenocarcinoma (PDAC) is the most common (>90% of cases) and most aggressive form of pancreatic cancer, with extremely poor prognosis and very low survival rates. PDAC is initiated by genetic alterations, usually in the oncogene KRAS and tumor suppressors CDKN2A, TP53 and SMAD4, which in turn affect a number of downstream signaling pathways that regulate important cellular processes. One of the processes critically altered is autophagy, the mechanism by which cells clear away and recycle impaired or dysfunctional organelles, protein aggregates and other unwanted components, in order to achieve homeostasis. Autophagy plays conflicting roles in PDAC and has been shown to act both as a positive effector, promoting the survival of pancreatic tumor-initiating cells, and as a negative effector, increasing cytotoxicity in uncontrollably expanding cells. Recent findings have highlighted the importance of cancer stem cells in PDAC initiation, progression and metastasis. Pancreatic cancer stem cells (PaCSCs) comprise a small subpopulation of the pancreatic tumor, characterized by cellular plasticity and the ability to self-renew, and autophagy has been recognised as a key process in PaCSC maintenance and function, simultaneously suggesting new strategies to achieve their selective elimination. In this review we evaluate recent literature that links autophagy with PaCSCs and PDAC, focusing our discussion on the therapeutic implications of pharmacologically targeting autophagy in PaCSCs, as a means to treat PDAC.
Collapse
Affiliation(s)
- Dimitrios Troumpoukis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Chrysanthi Charalampous
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Paraskevi Kogionou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kostas Palamaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Serafimidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,*Correspondence: Ioannis Serafimidis,
| |
Collapse
|
30
|
Molecular Classification of Genes Associated with Hypoxic Lipid Metabolism in Pancreatic Cancer. Biomolecules 2022; 12:biom12101533. [PMID: 36291742 PMCID: PMC9599075 DOI: 10.3390/biom12101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Abnormal lipid metabolism often occurs under hypoxic microenvironment, which is an important energy supplement for cancer cell proliferation and metastasis. We aimed to explore the lipid metabolism characteristics and gene expression features of pancreatic ductal adenocarcinoma (PDAC) related to hypoxia and identify biomarkers for molecular classification based on hypoxic lipid metabolism that are evaluable for PDAC prognosis and therapy. The multiple datasets were analyzed integratively, including corresponding clinical information of samples. PDAC possesses a distinct metabolic profile and oxygen level compared with normal pancreatic tissues, according to the bioinformatics methods. In addition, a study on untargeted metabolomics using Ultra Performance Liquid Chromatography Tandem Mass Spectrometry(UPLC-MS) revealed lipid metabolites differences affected by oxygen. Analysis of PDAC gene expression profiling in The Cancer Genome Atlas (TCGA) revealed that the sphingolipid process correlates closely with HIF1α. According to the characters of HIF-1 and sphingolipid, samples can be clustered into three subgroups using non-negative matrix factorization clustering. In cluster2, patients had an increased survival time. Relatively high MUC16 mutation arises in cluster2 and may positively influence the cancer survival rates. This study explored the expression pattern of lipid metabolism under hypoxia microenvironment in PDAC. On the basis of metabolic signatures, we identified the prognosis subtypes linking lipid metabolism to hypoxia. The classifications may be conducive to developing personalized treatment programs targeting metabolic profiles.
Collapse
|
31
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
32
|
Bao ZH, Hou XB, Li HL, Mao YF, Wang WR. The mechanism and progress of ferroptosis in pancreatic cancer. Acta Histochem 2022; 124:151919. [PMID: 35772355 DOI: 10.1016/j.acthis.2022.151919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Abstract
Pancreatic cancer is one of the deadliest cancers in the world, causing hundreds of thousands of deaths worldwide annually. Because of late diagnosis, rapid metastasis and drug resistance to chemotherapy, pancreatic cancer has a poor prognosis. Although the treatment of pancreatic cancer has made tremendous progress, the options for effective treatment are still limited, and new treatment methods are in crying needs to improve prognosis in clinic. Ferroptosis is an iron-dependent non-apoptotic cell death mode, which is mediated by lipid peroxidation and iron accumulation. Ferroptosis plays a momentous role in regulating different cancers in recent years, such as breast cancer, hepatocellular carcinoma, lung cancer and pancreatic cancer. In this present review, we elaborate on the regulatory mechanisms and signaling pathways of ferroptosis in pancreatic cancer, with the intention of delivering directions and new ideas for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhi-Hang Bao
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China; Department of Clinical Medicine, Bengbu Medical College, Anhui 233030, China
| | - Xiang-Bin Hou
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China; Department of Clinical Medicine, Bengbu Medical College, Anhui 233030, China
| | - Hao-Ling Li
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China; Department of Clinical Medicine, Bengbu Medical College, Anhui 233030, China
| | - Yi-Feng Mao
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China; Department of Clinical Medicine, Bengbu Medical College, Anhui 233030, China
| | - Wen-Rui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China; Department of Life Sciences, Bengbu Medical College, Anhui 233030, China.
| |
Collapse
|
33
|
Choi YS, Kim MJ, Choi EA, Kim S, Lee EJ, Park MJ, Kim MJ, Kim YW, Ahn HS, Jung JY, Jang G, Kim Y, Kim H, Kim K, Kim JY, Hong SM, Kim SC, Chang S. Antibody-mediated blockade for galectin-3 binding protein in tumor secretome abrogates PDAC metastasis. Proc Natl Acad Sci U S A 2022; 119:e2119048119. [PMID: 35858411 PMCID: PMC9335190 DOI: 10.1073/pnas.2119048119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/27/2022] [Indexed: 01/21/2023] Open
Abstract
The major challenges in pancreatic ductal adenocarcinoma (PDAC) management are local or distant metastasis and limited targeted therapeutics to prevent it. To identify a druggable target in tumor secretome and to explore its therapeutic intervention, we performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of tumors obtained from a patient-derived xenograft model of PDAC. Galectin-3 binding protein (Gal-3BP) is identified as a highly secreted protein, and its overexpression is further validated in multiple PDAC tumors and primary cells. Knockdown and exogenous treatment of Gal-3BP showed that it is required for PDAC cell proliferation, migration, and invasion. Mechanistically, we revealed that Gal-3BP enhances galectin-3-mediated epidermal growth factor receptor signaling, leading to increased cMyc and epithelial-mesenchymal transition. To explore the clinical impact of these findings, two antibody clones were developed, and they profoundly abrogated the metastasis of PDAC cells in vivo. Altogether, our data demonstrate that Gal-3BP is an important therapeutic target in PDAC, and we propose its blockade by antibody as a therapeutic option for suppressing PDAC metastasis.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/secondary
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chromatography, Liquid
- Epithelial-Mesenchymal Transition
- Gene Knockdown Techniques
- Humans
- Mice
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Proteomics
- Secretome
- Tandem Mass Spectrometry
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeon-Sook Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Myung Ji Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun A. Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Min Ji Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Mi-Ju Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Yeon Wook Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Hee-Sung Ahn
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Gayoung Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Yongsub Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Hyori Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, South Korea
| | - Seung-Mo Hong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| |
Collapse
|
34
|
Sun Y, Zhang XX, Huang S, Pan H, Gai YZ, Zhou YQ, Zhu L, Nie HZ, Li DX. Diet-Induced Obesity Promotes Liver Metastasis of Pancreatic Ductal Adenocarcinoma via CX3CL1/CX3CR1 Axis. J Immunol Res 2022; 2022:5665964. [PMID: 35478937 PMCID: PMC9038430 DOI: 10.1155/2022/5665964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, and the patients are generally diagnosed with distant metastasis. Liver is one of the preferred organs of distant metastasis, and liver metastasis is the leading cause of death in PDAC. Diet-induced obesity (DIO) is a risk factor for PDAC, and it remains unclear whether and how DIO contributes to liver metastasis of PDAC. In our study, we found that DIO significantly promoted PDAC liver metastasis compared with normal diet (ND) in intrasplenic injection mouse model. RNA-seq analysis for liver metastasis nodules showed that the various chemokines and several chemokine receptors were altered between ND and DIO samples. The expression levels of CX3CL1 and CX3CR1 were significantly upregulated in DIO-induced liver metastasis of PDAC compared to ND. Increased CX3CL1 promoted the recruitment of CX3CR1-expressing pancreatic tumor cells. Taken together, our data demonstrated that DIO promoted PDAC liver metastasis via CX3CL1/CX3CR1 axis.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Xiao-Xin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - Shan Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Hong Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Yan-Zhi Gai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Yao-Qi Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Hui-Zhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| | - Dong-Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200240, China
| |
Collapse
|
35
|
Gulla A, Andriusaityte U, Zdanys GT, Babonaite E, Strupas K, Kelly H. The Impact of Epithelial-Mesenchymal Transition and Metformin on Pancreatic Cancer Chemoresistance: A Pathway towards Individualized Therapy. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:467. [PMID: 35454306 PMCID: PMC9032206 DOI: 10.3390/medicina58040467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022]
Abstract
Globally, pancreatic ductal adenocarcinoma remains among the most aggressive forms of neoplastic diseases, having a dismal prognostic outcome. Recent findings elucidated that epithelial-mesenchymal transition (EMT) can play an important role in pancreatic tumorigenic processes, as it contributes to the manifestation of malignant proliferative masses, which impede adequate drug delivery. An organized literature search with PubMed, Scopus, Microsoft Academic and the Cochrane library was performed for articles published in English from 2011 to 2021 to review and summarize the latest updates and knowledge on the current understanding of EMT and its implications for tumorigenesis and chemoresistance. Furthermore, in the present paper, we investigate the recent findings on metformin as a possible neoadjuvant chemotherapy agent, which affects EMT progression and potentially provides superior oncological outcomes for PDAC patients. Our main conclusions indicate that selectively suppressing EMT in pancreatic cancer cells has a promising therapeutic utility by selectively targeting the chemotherapy-resistant sub-population of cancer stem cells, inhibiting tumor growth via EMT pathways and thereby improving remission in PDAC patients. Moreover, given that TGF-β1-driven EMT generates the migration of tumor-initiating cells by directly linking the acquisition of abnormal cellular motility with the maintenance of tumor initiating potency, the chemoprevention of TGF-β1-induced EMT may have promising clinical applications in the therapeutic management of PDAC outcomes.
Collapse
Affiliation(s)
- Aiste Gulla
- Institute of Clinical Medicine, Clinic of Gastroenterology, Surgery, Nephrology, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
- Center of Visceral Medicine and Translational Research, Department of Surgery, Georgetown University Hospital, 3800 Reservoir Road Northwest BLES Building 1st. Floor, Washington, DC 20007, USA
| | - Urte Andriusaityte
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Gabrielius Tomas Zdanys
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Elena Babonaite
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Kestutis Strupas
- Institute of Clinical Medicine, Clinic of Gastroenterology, Surgery, Nephrology, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
| | - Helena Kelly
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| |
Collapse
|
36
|
Ay S, Atcı MM, Arıkan R, Dülgar Ö, Özyükseler DT, Paksoy N, Doğan İ, Öztosun B, Taştekin D, Öven BB, Gümüş M. FOLFIRINOX versus gemcitabine plus nab-paclitaxel as the first-line chemotherapy in metastatic pancreatic cancer. J Chemother 2022; 34:465-471. [PMID: 35037592 DOI: 10.1080/1120009x.2022.2026125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreas cancer (PCa) is one of the mortal cancer types with ranking as fourth leading cancer death in both sexes together. FOLFIRINOX (FFX) and Gemcitabine plus nab-paclitaxel (GNP) are approved as first-line metastatic treatment in PCa. The aim of this study was to compare the clinical outcomes, treated with FFX and GNP as first-line metastatic PCa. Medical records of patients diagnosed with metastatic PCa, from January 2010 to December 2020 were analyzed. This study was a retrospective cohort, multi-institution analysis. The focus of the present study was to compare the efficiency of FFX and GNP chemotherapy combinations in the first-line treatment of PCa. Efficacy had been measured by progression-free survival (PFS) and overall survival (OS). 182 patients diagnosed with PCa receiving metastatic first-line treatment were retrospectively analyzed. Patients were divided into two groups one hundred and three (56.6%) patients treated with FFX and seventy-nine (43.4%) patients treated with GNP. Patients in the FFX group were younger and had a better ECOG performance status. Overall response rate (ORR) was 69.9% in FFX and 37.9% in GNP group (p: 0.000). Disease control rate (DCR) was 73.7% in patients treated with FFX and 39.2% in GNP group (p: 0.000). The median PFS was 8.3 months (FFX 9.1 vs. GNP 6.7, HR = 0.25, 95% CI: 0.16-0.38) the median OS was 12.2 months (FFX 14.1 vs. GNP 9.6, HR = 0.48, 95% CI: 0.31-0.72). Guidelines recommend both FFX and GNP regimens as a first-line treatment of metastatic PCa. In clinical routine, it is still unclear which regiment is more effective. The present study showed increased survival parameters with FFX versus GNP with similar toxicity profiles.
Collapse
Affiliation(s)
- Seval Ay
- School of Medicine, Department of Medical Oncology, Medeniyet University, Istanbul, Turkey
| | | | - Rukiye Arıkan
- School of Medicine, Department of Medical Oncology, Marmara University
| | - Özgecan Dülgar
- School of Medicine, Department of Medical Oncology, Medeniyet University, Istanbul, Turkey
| | | | - Nail Paksoy
- School of Medicine, Department of Medical Oncology, Istanbul University
| | - İzzet Doğan
- School of Medicine, Department of Medical Oncology, Istanbul University
| | - Buğra Öztosun
- School of Medicine, Department of Medical Oncology, Medeniyet University, Istanbul, Turkey
| | - Didem Taştekin
- School of Medicine, Department of Medical Oncology, Bahçeşehir University
| | - Başak Bala Öven
- School of Medicine, Department of Medical Oncology, Bahçeşehir University
| | - Mahmut Gümüş
- School of Medicine, Department of Medical Oncology, Medeniyet University, Istanbul, Turkey
| |
Collapse
|
37
|
Piro G, Agostini A, Larghi A, Quero G, Carbone C, Esposito A, Rizzatti G, Attili F, Alfieri S, Costamagna G, Tortora G. Pancreatic Cancer Patient-Derived Organoid Platforms: A Clinical Tool to Study Cell- and Non-Cell-Autonomous Mechanisms of Treatment Response. Front Med (Lausanne) 2021; 8:793144. [PMID: 35004765 PMCID: PMC8733292 DOI: 10.3389/fmed.2021.793144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
For many years, cell lines and animal models have been essential to improve our understanding of the basis of cell metabolism, signaling, and genetics. They also provided an essential boost to cancer drug discovery. Nevertheless, these model systems failed to reproduce the tumor heterogeneity and the complex biological interactions between cancer cells and human hosts, making a high priority search for alternative methods that are able to export results from model systems to humans, which has become a major bottleneck in the drug development. The emergent human in vitro 3D cell culture technologies have attracted widespread attention because they seem to have the potential to overcome these limitations. Organoids are unique 3D culture models with the ability to self-organize in contained structures. Their versatility has offered an exceptional window of opportunity to approach human cancers. Pancreatic cancers (PCs) patient-derived-organoids (PDOs) preserve histological, genomic, and molecular features of neoplasms they originate from and therefore retain their heterogeneity. Patient-derived organoids can be established with a high success rate from minimal tissue core specimens acquired with endoscopic-ultrasound-guided techniques and assembled into platforms, representing tens to hundreds of cancers each conserving specific features, expanding the types of patient samples that can be propagated and analyzed in the laboratory. Because of their nature, PDO platforms are multipurpose systems that can be easily adapted in co-culture settings to perform a wide spectrum of studies, ranging from drug discovery to immune response evaluation to tumor-stroma interaction. This possibility to increase the complexity of organoids creating a hybrid culture with non-epithelial cells increases the interest in organoid-based platforms giving a pragmatic way to deeply study biological interactions in vitro. In this view, implementing organoid models in co-clinical trials to compare drug responses may represent the next step toward even more personalized medicine. In the present review, we discuss how PDO platforms are shaping modern-day oncology aiding to unravel the most complex aspects of PC.
Collapse
Affiliation(s)
- Geny Piro
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonio Agostini
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Alberto Larghi
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- CERTT, Center for Endoscopic Research Therapeutics and Training, Catholic University, Rome, Italy
| | - Giuseppe Quero
- Department of Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Carmine Carbone
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Annachiara Esposito
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Gianenrico Rizzatti
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- CERTT, Center for Endoscopic Research Therapeutics and Training, Catholic University, Rome, Italy
| | - Fabia Attili
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- CERTT, Center for Endoscopic Research Therapeutics and Training, Catholic University, Rome, Italy
| | - Sergio Alfieri
- Department of Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Guido Costamagna
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- CERTT, Center for Endoscopic Research Therapeutics and Training, Catholic University, Rome, Italy
| | - Giampaolo Tortora
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Department of Translational Medicine, Medical Oncology, Catholic University of the Sacred Heart, Rome, Italy
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- *Correspondence: Giampaolo Tortora
| |
Collapse
|
38
|
Iacobazzi RM, Arduino I, Di Fonte R, Lopedota AA, Serratì S, Racaniello G, Bruno V, Laquintana V, Lee BC, Silvestris N, Leonetti F, Denora N, Porcelli L, Azzariti A. Microfluidic-Assisted Preparation of Targeted pH-Responsive Polymeric Micelles Improves Gemcitabine Effectiveness in PDAC: In Vitro Insights. Cancers (Basel) 2021; 14:cancers14010005. [PMID: 35008170 PMCID: PMC8750671 DOI: 10.3390/cancers14010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary This research suggests a new potential therapeutic approach to pancreatic ductal adenocarcinoma to improve drug effectiveness and overcome drug resistance. A double actively targeted gemcitabine delivery system, consisting of polymeric micelles, was developed by microfluidic technique to ensure a narrow size distribution, a good colloidal stability, and drug-encapsulation efficiency for the selective and controlled release of the loaded drug, in response to the pH variations and uPAR expression in tumors. In vitro studies assessed that the release of the drug in the acidic environment was higher than in the neutral one, and that the pH-responsive and uPAR-targeted polymeric micelles enhanced the antitumor properties of gemcitabine in models resembling the pancreatic tumor microenvironment. Abstract Pancreatic ductal adenocarcinoma (PDAC) represents a great challenge to the successful delivery of the anticancer drugs. The intrinsic characteristics of the PDAC microenvironment and drugs resistance make it suitable for therapeutic approaches with stimulus-responsive drug delivery systems (DDSs), such as pH, within the tumor microenvironment (TME). Moreover, the high expression of uPAR in PDAC can be exploited for a drug receptor-mediated active targeting strategy. Here, a pH-responsive and uPAR-targeted Gemcitabine (Gem) DDS, consisting of polymeric micelles (Gem@TpHResMic), was formulated by microfluidic technique to obtain a preparation characterized by a narrow size distribution, good colloidal stability, and high drug-encapsulation efficiency (EE%). The Gem@TpHResMic was able to perform a controlled Gem release in an acidic environment and to selectively target uPAR-expressing tumor cells. The Gem@TpHResMic displayed relevant cellular internalization and greater antitumor properties than free Gem in 2D and 3D models of pancreatic cancer, by generating massive damage to DNA, in terms of H2AX phosphorylation and apoptosis induction. Further investigation into the physiological model of PDAC, obtained by a co-culture of tumor spheroids and cancer-associated fibroblast (CAF), highlighted that the micellar system enhanced the antitumor potential of Gem, and was demonstrated to overcome the TME-dependent drug resistance. In vivo investigation is warranted to consider this new DDS as a new approach to overcome drug resistance in PDAC.
Collapse
Affiliation(s)
- Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
| | - Ilaria Arduino
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
| | - Angela Assunta Lopedota
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Simona Serratì
- Laboratory of Nanotechnology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Giuseppe Racaniello
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Viviana Bruno
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
| | - Valentino Laquintana
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Byung-Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea;
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesco Leonetti
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Nunzio Denora
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
- Correspondence: (N.D.); (L.P.); Tel.: +39-0805442767 (N.D.); +39-0805555986 (L.P.)
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
- Correspondence: (N.D.); (L.P.); Tel.: +39-0805442767 (N.D.); +39-0805555986 (L.P.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
- Laboratory of Nanotechnology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| |
Collapse
|
39
|
van Roey R, Brabletz T, Stemmler MP, Armstark I. Deregulation of Transcription Factor Networks Driving Cell Plasticity and Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:753456. [PMID: 34888306 PMCID: PMC8650502 DOI: 10.3389/fcell.2021.753456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%. The constantly increasing incidence and stagnant patient outcomes despite changes in treatment regimens emphasize the requirement of a better understanding of the disease mechanisms. Challenges in treating pancreatic cancer include diagnosis at already progressed disease states due to the lack of early detection methods, rapid acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic mutations, deregulated transcription factor activities strongly contribute to disease progression. Specifically, transcriptional regulatory networks essential for proper lineage specification and differentiation during pancreas development are reactivated or become deregulated in the context of cancer and exacerbate progression towards an aggressive phenotype. This review summarizes the recent literature on transcription factor networks and epigenetic gene regulation that play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
40
|
Estaras M, Gonzalez A. Modulation of cell physiology under hypoxia in pancreatic cancer. World J Gastroenterol 2021; 27:4582-4602. [PMID: 34366624 PMCID: PMC8326256 DOI: 10.3748/wjg.v27.i28.4582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
In solid tumors, the development of vasculature is, to some extent, slower than the proliferation of the different types of cells that form the tissue, both cancer and stroma cells. As a consequence, the oxygen availability is compromised and the tissue evolves toward a condition of hypoxia. The presence of hypoxia is variable depending on where the cells are localized, being less extreme at the periphery of the tumor and more severe in areas located deep within the tumor mass. Surprisingly, the cells do not die. Intracellular pathways that are critical for cell fate such as endoplasmic reticulum stress, apoptosis, autophagy, and others are all involved in cellular responses to the low oxygen availability and are orchestrated by hypoxia-inducible factor. Oxidative stress and inflammation are critical conditions that develop under hypoxia. Together with changes in cellular bioenergetics, all contribute to cell survival. Moreover, cell-to-cell interaction is established within the tumor such that cancer cells and the microenvironment maintain a bidirectional communication. Additionally, the release of extracellular vesicles, or exosomes, represents short and long loops that can convey important information regarding invasion and metastasis. As a result, the tumor grows and its malignancy increases. Currently, one of the most lethal tumors is pancreatic cancer. This paper reviews the most recent advances in the knowledge of how cells grow in a pancreatic tumor by adapting to hypoxia. Unmasking the physiological processes that help the tumor increase its size and their regulation will be of major relevance for the treatment of this deadly tumor.
Collapse
Affiliation(s)
- Matias Estaras
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres 10003, Spain
| | - Antonio Gonzalez
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres 10003, Spain
| |
Collapse
|
41
|
Yao J, Yang M, Atteh L, Liu P, Mao Y, Meng W, Li X. A pancreas tumor derived organoid study: from drug screen to precision medicine. Cancer Cell Int 2021; 21:398. [PMID: 34315500 PMCID: PMC8314636 DOI: 10.1186/s12935-021-02044-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) one of the deadliest malignant tumor. Despite considerable progress in pancreatic cancer treatment in the past 10 years, PDAC mortality has shown no appreciable change, and systemic therapies for PDAC generally lack efficacy. Thus, developing biomarkers for treatment guidance is urgently required. This review focuses on pancreatic tumor organoids (PTOs), which can mimic the characteristics of the original tumor in vitro. As a powerful tool with several applications, PTOs represent a new strategy for targeted therapy in pancreatic cancer and contribute to the advancement of the field of personalized medicine.
Collapse
Affiliation(s)
- Jia Yao
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Man Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Lawrence Atteh
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Pinyan Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongcui Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
42
|
Ren D, Sun Y, Zhang D, Li D, Liu Z, Jin X, Wu H. SGLT2 promotes pancreatic cancer progression by activating the Hippo signaling pathway via the hnRNPK-YAP1 axis. Cancer Lett 2021; 519:277-288. [PMID: 34314754 DOI: 10.1016/j.canlet.2021.07.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/03/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022]
Abstract
SGLT2 is overexpressed in various cancers, including pancreatic cancer. However, the mechanisms underlying the tumorigenic effects of SGLT2 in pancreatic cancer remain unclear. In this study, we demonstrated that SGLT2 inhibition significantly suppressed the growth of pancreatic cancer cells in vitro and in vivo. RNA sequencing, real-time PCR, and Western blot analyses revealed that SGLT2 silencing or inhibition suppressed Hippo signaling activation by downregulating YAP1 expression. Liquid chromatography-mass spectrometry and immunoprecipitation analyses showed that SGLT2 interacted with hnRNPK, promoting its nuclear translocation and thereby enhancing hnRNPK-induced YAP1 transcription. Importantly, YAP1 inhibitor enhanced the anti-pancreatic cancer effect of SGLT2 inhibitor in mice bearing pancreatic tumors. These findings suggest that SGLT2 promotes pancreatic cancer progression by activating the Hippo signaling pathway through the hnRNPK-YAP1 axis. Hence, SGLT2 inhibition alone or combined with YAP1 inhibition may represent a promising therapeutic approach for pancreatic cancer.
Collapse
Affiliation(s)
- Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Dan Li
- Cardiovascular Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhiqiang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha,Hunan, 410011, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
43
|
Edwards P, Kang BW, Chau I. Targeting the Stroma in the Management of Pancreatic Cancer. Front Oncol 2021; 11:691185. [PMID: 34336679 PMCID: PMC8316993 DOI: 10.3389/fonc.2021.691185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) presents extremely aggressive tumours and is associated with poor survival. This is attributed to the unique features of the tumour microenvironment (TME), which is known to create a dense stromal formation and poorly immunogenic condition. In particular, the TME of PC, including the stromal cells and extracellular matrix, plays an essential role in the progression and chemoresistance of PC. Consequently, several promising agents that target key components of the stroma have already been developed and are currently in multiple stages of clinical trials. Therefore, the authors review the latest available evidence on novel stroma-targeting approaches, highlighting the potential impact of the stroma as a key component of the TME in PC.
Collapse
Affiliation(s)
- Penelope Edwards
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| | - Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
44
|
Ju X, Tang Y, Qu R, Hao S. The Emerging Role of Circ-SHPRH in Cancer. Onco Targets Ther 2021; 14:4177-4188. [PMID: 34285509 PMCID: PMC8286153 DOI: 10.2147/ott.s317403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Circ-SHPRH is a circular RNA that can regulate the expression of target genes by sponging microRNAs (miRNAs) or translating tumor suppressor proteins. Recent studies have suggested that circ-SHPRH may play a role in the development of tumors and cancers. Hence, this paper aimed to review the biological characteristics, molecular mechanisms, and potential clinical significance of circ-SHPRH in a variety of tumors and to evaluate its potential as a new diagnostic and prognostic biomarker. METHODS Numerous experiments were performed regarding the abnormal expression of circ-SHPRH in a variety of tumors, including hepatocellular carcinoma, gastric carcinoma, non-small cell lung cancer, osteosarcoma, colorectal cancer, cholangiocarcinoma, pancreatic ductal adenocarcinoma, retinoblastoma, and glioblastoma. RESULTS Upregulation of circ-SHPRH reportedly inhibits tumor cell proliferation, migration, and invasion, leading to the inhibition of tumor development. The clinicopathological parameters and the functional characteristics of circ-SHPRH in multiple human tumors and cancers were summarized. Circ-SHPRH functions as a tumor suppressor gene and has great potential as a diagnostic and prognostic biomarker for different types of cancer.
Collapse
Affiliation(s)
- Xinyue Ju
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
45
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
46
|
Trunk A, Miotke L, Nevala-Plagemann C, Verdaguer H, Macarulla T, Garrido-Laguna I. Emerging Treatment Strategies in Pancreatic Cancer. Pancreas 2021; 50:773-787. [PMID: 34398070 DOI: 10.1097/mpa.0000000000001845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) is one of the main causes of cancer death in well-developed countries. Therapeutic advances in PDAC to date have been modest. Recent progress to understand the molecular landscape of the disease has opened new treatment opportunities for a small subset of patients, frequently those with KRAS wild-type disease. Novel treatment strategies in PDAC include, among others, the use of nanotechnology and metabolic reprogramming. In addition, new strategies are being investigated, which are designed to overcome the resistance to checkpoint inhibitors, targeting DNA repair pathways including mismatch repair, increasing antigen presentation through the use of vaccines, targeting various signaling pathways, and reprogramming the tumor microenvironment. Here, we review the landscape of PDAC treatment strategies and some of these new agents.
Collapse
Affiliation(s)
- Andrew Trunk
- From the Department of Internal Medicine, University of Utah
| | - Laura Miotke
- From the Department of Internal Medicine, University of Utah
| | | | - Helena Verdaguer
- Division of Medical Oncology, Vall d'Hebrón University Hospital, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | - Teresa Macarulla
- Division of Medical Oncology, Vall d'Hebrón University Hospital, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | - Ignacio Garrido-Laguna
- Division of Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
47
|
Guan H, Luo W, Liu Y, Li M. Novel circular RNA circSLIT2 facilitates the aerobic glycolysis of pancreatic ductal adenocarcinoma via miR-510-5p/c-Myc/LDHA axis. Cell Death Dis 2021; 12:645. [PMID: 34168116 PMCID: PMC8225611 DOI: 10.1038/s41419-021-03918-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/17/2023]
Abstract
Increasing evidence has indicated the great diagnostic and therapeutic potentials of circular RNAs (circRNAs) in human cancers. Although the biological roles of circRNAs in pancreatic ductal adenocarcinoma (PDAC) have been partially annotated, the potential regulatory mechanism of circRNAs in PDAC tumorigenesis remains poorly understood. Here, our study found that the novel circRNA circSLIT2 was significantly upregulated in PDAC tissues and cells. Clinically, ectopic high-expression of circSLIT2 was correlated with unfavorable prognosis of PDAC patients. Functional experiments demonstrated that circSLIT2 promoted the aerobic glycolysis and proliferation of PDAC cells in vitro, and circSLIT2 knockdown inhibited tumor growth in vivo. Mechanistically, circSLIT2 acted as miRNA sponge to target miR-510-5p/c-Myc axis. Furthermore, c-Myc bound with the promoter region of lactate dehydrogenase A (LDHA) to activate the transcription. Collectively, present findings reveal that circSLIT2/miR-510-5p/c-Myc/LDHA axis participates in the aerobic glycolysis and carcinogenesis of PDAC, and may act as a promising therapeutic target.
Collapse
MESH Headings
- Aged
- Animals
- Apoptosis
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Glycolysis
- Humans
- L-Lactate Dehydrogenase/genetics
- L-Lactate Dehydrogenase/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Signal Transduction
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
- Hua Guan
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wei Luo
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuping Liu
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Mingfei Li
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
48
|
Chen ZG, Wang Y, Fong WP, Hu MT, Liang JY, Wang L, Li YH. A quantitative score of immune cell infiltration predicts the prognosis in pancreatic ductal adenocarcinoma. Int Immunopharmacol 2021; 98:107890. [PMID: 34174701 DOI: 10.1016/j.intimp.2021.107890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is characterized by an extensive and dense fibrous stroma, which plays an active role in tumor growth and metastasis. Despite the growing importance of the tumor microenvironment in PDAC prognosis, the immune cell infiltration landscape of PDAC has not been elucidated. In this study, we applied a credible computational algorithm to comprehensively estimate the immune cell infiltration (ICI) patterns of 876 PDAC patients. Two ICI phenotypes were identified, and a ICIscore was constructed using ssGSEA algorithm. The ICIscore could significantly predict the prognosis and chemotherapy benefit of PDAC patients in both the discovery and the five validation cohorts. Multivariate cox analysis also identified the independent predictive role of the ICIscore in PDAC prognosis. A high ICIscore subtype was characterized by immune-active signaling pathways and anti-tumor immunity while a low ICIscore subtype was associated with tumor progressive signaling pathways. Four immunotherapy cohorts further supported the use of the ICIscore as a prognostic biomarker for patients receiving immune checkpoint inhibitors in other cancer types. The ICIscore reveals a close relationship between the ICI environment and prognosis and may provide new treatment strategies for PDAC patients.
Collapse
Affiliation(s)
- Zhi-Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yun Wang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - William Pat Fong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ming-Tao Hu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jie-Ying Liang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Lingyun Wang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China.
| | - Yu-Hong Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| |
Collapse
|
49
|
Guo F, Zhou Y, Guo H, Ren D, Jin X, Wu H. NR5A2 transcriptional activation by BRD4 promotes pancreatic cancer progression by upregulating GDF15. Cell Death Discov 2021; 7:78. [PMID: 33850096 PMCID: PMC8044179 DOI: 10.1038/s41420-021-00462-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022] Open
Abstract
NR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Guo
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
50
|
Genetic characteristics and prognostic implications of m1A regulators in pancreatic cancer. Biosci Rep 2021; 41:228171. [PMID: 33779693 PMCID: PMC8035622 DOI: 10.1042/bsr20210337] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Studies have identified the methylation of N1 adenosine (m1A), an RNA modification, playing an important role in the progression of the tumorigenesis. The present study aimed to analyze the genetic characteristics and prognostic value of m1A regulators in pancreatic cancer. In the present study, data on gene mutations, single-nucleotide variants (SNVs), and copy number variation (CNV) were obtained from 363 patients with pancreatic cancer in the Cancer Genome Atlas (TCGA) database, and survival analysis was performed using the logarithmic rank test and Cox regression model. The chi-squared test was used to examine the relationship between the changes in m1A regulatory factors and clinicopathological characteristics. And we used ICGC database to verify the reliability of prognostic markers. The results show that changes in m1A-regulating genes are related to clinical stage and that the expression of some m1A-regulating genes is positively correlated with CNV. In addition, the low expression of the 'eraser' gene ALKBH1 is related to the poor prognosis of patients with pancreatic cancer, and its expression level has important clinical significance for patients with pancreatic adenocarcinoma (PAAD). Mechanistically, ALKBH1 may participate in the occurrence and development of pancreatic cancer through mTOR and ErbB signaling pathway. The expression of m1A-regulating genes can be used as a prognostic marker for pancreatic cancer. These findings provide valuable clues for us to understand the epigenetics of m1A in pancreatic cancer.
Collapse
|