1
|
Zeng ML, Xu W. A Narrative Review of the Published Pre-Clinical Evaluations: Multiple Effects of Arachidonic Acid, its Metabolic Enzymes and Metabolites in Epilepsy. Mol Neurobiol 2025; 62:288-303. [PMID: 38842673 DOI: 10.1007/s12035-024-04274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Arachidonic acid (AA), an important polyunsaturated fatty acid in the brain, is hydrolyzed by a direct action of phospholipase A2 (PLA2) or through the combined action of phospholipase C and diacylglycerol lipase, and released into the cytoplasm. Various derivatives of AA can be synthesized mainly through the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (P450) enzyme pathways. AA and its metabolic enzymes and metabolites play important roles in a variety of neurophysiological activities. The abnormal metabolites and their catalytic enzymes in the AA cascade are related to the pathogenesis of various central nervous system (CNS) diseases, including epilepsy. Here, we systematically reviewed literatures in PubMed about the latest randomized controlled trials, animal studies and clinical studies concerning the known features of AA, its metabolic enzymes and metabolites, and their roles in epilepsy. The exclusion criteria include non-original studies and articles not in English.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Wei Xu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Rahimi-Tesiye M, Rajabi-Maham H, Hosseini A, Azizi V. Beneficial effects of fenoprofen on cognitive impairment induced by the kindling model of epilepsy: Interaction of oxidative stress and inflammation. Brain Res Bull 2025; 220:111151. [PMID: 39626803 DOI: 10.1016/j.brainresbull.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Hippocampal-dependent cognitive impairments are consequences of temporal lobe epilepsy. This study aimed to assess the modulatory effects of fenoprofen on Pentylenetetrazol (PTZ)-induced cognitive dysfunction in the rat model of epilepsy. Male Wistar rats were randomly divided into five groups. Except for the control group, the kindling model was induced by intraperitoneal (IP) injection of PTZ (35 mg/kg) every other day for a month. Three groups received fenoprofen (10, 20, and 40 mg/kg) before each PTZ injection. One week after kindling development, rats were challenged with PTZ (70 mg/kg). The Morris Water Maze, Shuttle Box, and Elevated Plus Maze tests were applied to assess cognitive functions. Rats' serum and brain samples were prepared for biochemical, histological, and gene expression studies. Fenoprofen pretreatment effectively reduced the mean seizure score, and treated rats had better cognitive performance than the PTZ group in passive avoidance and spatial memory and learning tests; they also showed less anxiety-like behaviors. Its administration also showed anti-oxidative properties. So the serum level of Nitric oxide was significantly reduced while Glutathione and Catalase increased significantly. It also diminished the expression of inflammatory genes (Tumor Necrosis Factor alpha (TNF-α) and Nuclear Factor Kappa B (NF-kB)) in the hippocampus, these results were confirmed by histological observation from Hematoxylin & Eosin staining. These results show the ability of fenoprofen to reduce cognitive impairments caused by epilepsy induction. These effects seem to be through the modulation of inflammatory mediators and oxidative stress.
Collapse
Affiliation(s)
- Maryam Rahimi-Tesiye
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Koo Y, Yun T, Chae Y, Lee D, Kim H, Yang MP, Kang BT. Evaluation of the covariation between leukotriene B4, prostaglandin E2, and hematologic inflammatory parameters in a canine pentylenetetrazole-induced seizure model. Front Neurosci 2024; 18:1451902. [PMID: 39723425 PMCID: PMC11668773 DOI: 10.3389/fnins.2024.1451902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Background Seizures can cause as well as result from neuroinflammation. This study was performed to identify the hematologic inflammatory parameters (HIPs) and inflammatory mediators that change after a single seizure in a canine pentylenetetrazole (PTZ)-induced seizure model. Methods Five healthy Beagle dogs were used in this study. A 3% solution of PTZ was infused until the occurrence of generalized convulsion. Two separate experiments were conducted to observe changes in HIPs over short and long time periods. Blood sampling time points were divided into two periods as follows: short period (baseline, 30, 60, 90, and 120 min after seizure induction) and long period (baseline, 2, 6, 12, 24, and 48 h after seizure induction). The HIPs were calculated, and the serum prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) concentrations were estimated using enzyme-linked immunosorbent assay. Results Significant changes (p < 0.05) in various HIPs were observed at different time point as follows: neutrophil × monocyte (90 min), neutrophil-to-lymphocyte ratio (60, 90, and 120 min), lymphocyte to monocyte ratio (60 min, 90 min, 120 min, 2 h, 12 h, and 24 h), platelet-to-albumin ratio (90 min), lymphocyte percentage × serum albumin concentration (LA; 60 min, 90 min, 120 min, 2 h), and neutrophil × platelet (6 h). LTB4 concentrations were significantly increased (p < 0.05) at 60 and 90 min, and 2, 6, and 48 h after seizure induction. PGE2 was significantly increased only 6 h after seizure induction (p < 0.05). LA was one of the HIPs that demonstrated a correlation with LTB4 concentration and showed significant changes that could be observed for a long-period (p < 0.05, r = -0.4194). Conclusion The LA was the only HIP that reflected seizure-associated neuroinflammation. The 5-lipoxygenase pathway might be related to seizure-associated neuroinflammation.
Collapse
Affiliation(s)
- Yoonhoi Koo
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Taesik Yun
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yeon Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Dohee Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hakhyun Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Mhan-Pyo Yang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Byeong-Teck Kang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
4
|
Davydov E, Hoidyk M, Shtrygol' S, Karkhut A, Polovkovych S, Klyuchivska O, Karpenko O, Lesyk R, Holota S. Evaluation of thiopyrano[2,3-d]thiazole derivatives as potential anticonvulsant agents. Arch Pharm (Weinheim) 2024; 357:e2400357. [PMID: 38943436 DOI: 10.1002/ardp.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
Anticonvulsant drug discovery has achieved significant progress; however, pharmacotherapy of epilepsy continues to be a challenge for modern medicine and pharmacy. To expand the chemical space of heterocycles as potential antiepileptic agents, herein we report on the synthesis and evaluation of anticonvulsant properties of a series of thiopyrano[2,3-d]thiazoles. The studied heterocycles are characterized by satisfactory drug-likeness and pharmacokinetics properties, calculated in silico using SwissADME. The anticonvulsant activity of thiopyrano[2,3-d]thiazole derivatives was evaluated in vivo using the subcutaneous pentylenetetrazole test. Three hits, that is, compounds 12, 14, and 16, that caused a pronounced anticonvulsant effect were identified. Derivatives 12, 14, and 16 positively affected the latent period of onset of clonic seizures, number of seizures, mortality rate, and duration of the seizure period of animals under experimental conditions. The anticonvulsant properties of compound 14 were equivalent to the effect of the reference drug, sodium valproate. All hit compounds are characterized by satisfying toxicity properties in the human lymphocytes and HEK293 cell line. The most active hit 14 possesses a potential affinity with the GABAA receptor in the molecular docking study and forms a stable complex in the molecular dynamics experiments equal to diazepam. Preliminary SAR results were obtained and discussed based on screening data.
Collapse
Affiliation(s)
- Eduard Davydov
- Department of Pharmacology and Pharmacotherapy, National Pharmaceutical University, Kharkiv, Ukraine
| | - Mykhailo Hoidyk
- Department of Pharmaceutical, Organic, and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Sergiy Shtrygol'
- Department of Pharmacology and Pharmacotherapy, National Pharmaceutical University, Kharkiv, Ukraine
| | - Andriy Karkhut
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Ukraine
| | - Svyatoslav Polovkovych
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Ukraine
| | - Olga Klyuchivska
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Olexandr Karpenko
- Department of Chemistry, Taras Shevchenko National University, Kyiv, Ukraine
- Enamine Ltd., Kyiv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic, and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Serhii Holota
- Department of Pharmaceutical, Organic, and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Department of Organic and Pharmaceutical Chemistry, Lesya Ukrainka Volyn National University, Lutsk, Ukraine
| |
Collapse
|
5
|
Li W, Wu J, Zeng Y, Zheng W. Neuroinflammation in epileptogenesis: from pathophysiology to therapeutic strategies. Front Immunol 2023; 14:1269241. [PMID: 38187384 PMCID: PMC10771847 DOI: 10.3389/fimmu.2023.1269241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Epilepsy is a group of enduring neurological disorder characterized by spontaneous and recurrent seizures with heterogeneous etiology, clinical expression, severity, and prognosis. Growing body of research investigates that epileptic seizures are originated from neuronal synchronized and excessive electrical activity. However, the underlying molecular mechanisms of epileptogenesis have not yet been fully elucidated and 30% of epileptic patients still are resistant to the currently available pharmacological treatments with recurrent seizures throughout life. Over the past two decades years accumulated evidences provide strong support to the hypothesis that neuroinflammation, including microglia and astrocytes activation, a cascade of inflammatory mediator releasing, and peripheral immune cells infiltration from blood into brain, is associated with epileptogenesis. Meanwhile, an increasing body of preclinical researches reveal that the anti-inflammatory therapeutics targeting crucial inflammatory components are effective and promising in the treatment of epilepsy. The aim of the present study is to highlight the current understanding of the potential neuroinflammatory mechanisms in epileptogenesis and the potential therapeutic targets against epileptic seizures.
Collapse
|
6
|
Tang Y, Qian C, Zhou Y, Yu C, Song M, Zhang T, Min X, Wang A, Zhao Y, Lu Y. Activated platelets facilitate hematogenous metastasis of breast cancer by modulating the PDGFR-β/COX-2 axis. iScience 2023; 26:107704. [PMID: 37680480 PMCID: PMC10480622 DOI: 10.1016/j.isci.2023.107704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Platelets have been widely recognized as a bona fide mediator of malignant diseases, and they play significant roles in influencing various aspects of tumor progression. Paracrine interactions between platelets and tumor cells have been implicated in promoting the dissemination of malignant cells to distant sites. However, the underlying mechanisms of the platelet-tumor cell interactions for promoting hematogenous metastasis are not yet fully understood. We found that activated platelets with high expression of CD36 were prone to release a plethora of growth factors and cytokines, including high levels of PDGF-B, compared to resting platelets. PDGF-B activated the PDGFR-β/COX-2 signaling cascade, which elevated an array of pro-inflammatory factors levels, thereby aggravating tumor metastasis. The collective administration of CD36 inhibitor and COX-2 inhibitor resolved the interactions between platelets and tumor cells. Collectively, our findings demonstrated that targeting the crosstalk between platelets and tumor cells offers potential therapeutic strategies for inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chang Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Teng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuewen Min
- Department of Outpatient, Jurong People’s Hospital, Zhenjiang 212400, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
7
|
Sluter MN, Li Q, Yasmen N, Chen Y, Li L, Hou R, Yu Y, Yang CY, Meibohm B, Jiang J. The inducible prostaglandin E synthase (mPGES-1) in neuroinflammatory disorders. Exp Biol Med (Maywood) 2023; 248:811-819. [PMID: 37515545 PMCID: PMC10468642 DOI: 10.1177/15353702231179926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023] Open
Abstract
The cyclooxygenase (COX)/prostaglandin E2 (PGE2) signaling pathway has emerged as a critical target for anti-inflammatory therapeutic development in neurological diseases. However, medical use of COX inhibitors in the treatment of various neurological disorders has been limited due to well-documented cardiovascular and cerebrovascular complications. It has been widely proposed that modulation of downstream microsomal prostaglandin E synthase-1 (mPGES-1) enzyme may provide more specificity for inhibiting PGE2-elicited neuroinflammation. Heightened levels of mPGES-1 have been detected in a variety of brain diseases such as epilepsy, stroke, glioma, and neurodegenerative diseases. Subsequently, elevated levels of PGE2, the enzymatic product of mPGES-1, have been demonstrated to modulate a multitude of deleterious effects. In epilepsy, PGE2 participates in retrograde signaling to augment glutamate release at the synapse leading to neuronal death. The excitotoxic demise of neurons incites the activation of microglia, which can become overactive upon further stimulation by PGE2. A selective mPGES-1 inhibitor was able to reduce gliosis and the expression of proinflammatory cytokines in the hippocampus following status epilepticus. A similar mechanism has also been observed in stroke, where the overactivation of microglia by PGE2 upregulated the expression and secretion of proinflammatory cytokines. This intense activation of neuroinflammatory processes triggered the secondary injury commonly observed in stroke, and blockade of mPGES-1 reduced infarction size and edema, suppressed induction of proinflammatory cytokines, and improved post-stroke well-being and cognition. Furthermore, elevated levels of PGE2 have been shown to intensify the proliferation of glioma cells, mediate P-glycoprotein expression at the blood-brain barrier (BBB) and facilitate breakdown of the BBB. For these reasons, targeting mPGES-1, the central and inducible enzyme of the COX cascade, may provide a more specific therapeutic strategy for treating neuroinflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Phoswa WN, Mokgalaboni K. Immunological Imbalances Associated with Epileptic Seizures in Type 2 Diabetes Mellitus. Brain Sci 2023; 13:brainsci13050732. [PMID: 37239204 DOI: 10.3390/brainsci13050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE OF THE REVIEW Type 2 diabetes mellitus (T2DM) is a global health burden that leads to an increased morbidity and mortality rate arising from microvascular and macrovascular complications. Epilepsy leads to complications that cause psychological and physical distress to patients and carers. Although these conditions are characterized by inflammation, there seems to be a lack of studies that have evaluated inflammatory markers in the presence of both conditions (T2DM and epilepsy), especially in low-middle-income countries where T2DM is epidemic. Summary findings: In this review, we describe the role of immunity in the seizure generation of T2DM. Current evidence shows an increase in the levels of biomarkers such as interleukin (IL-1β, IL-6, and IL-8), tumour necrosis factor-α (TNF-α), high mobility group box-1 (HMGB1), and toll-like receptors (TLRs) in epileptic seizures and T2DM. However, there is limited evidence to show a correlation between inflammatory markers in the central and peripheral levels of epilepsy. CONCLUSIONS Understanding the pathophysiological mechanism behind epileptic seizures in T2DM through an investigation of immunological imbalances might improve diagnosis and further counter the risks of developing complications. This might also assist in delivering safe and effective therapies to T2DM patients affected, thus reducing morbidity and mortality by preventing or reducing associated complications. Moreover, this review also provides an overview approach on inflammatory cytokines that can be targeted when developing alternative therapies, in case these conditions coexist.
Collapse
Affiliation(s)
- Wendy N Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| | - Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| |
Collapse
|
9
|
Chen Y, Nagib MM, Yasmen N, Sluter MN, Littlejohn TL, Yu Y, Jiang J. Neuroinflammatory mediators in acquired epilepsy: an update. Inflamm Res 2023; 72:683-701. [PMID: 36745211 DOI: 10.1007/s00011-023-01700-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a group of chronic neurological disorders that have diverse etiologies but are commonly characterized by spontaneous seizures and behavioral comorbidities. Although the mechanisms underlying the epileptic seizures mostly remain poorly understood and the causes often can be idiopathic, a considerable portion of cases are known as acquired epilepsy. This form of epilepsy is typically associated with prior neurological insults, which lead to the initiation and progression of epileptogenesis, eventually resulting in unprovoked seizures. A convergence of evidence in the past two decades suggests that inflammation within the brain may be a major contributing factor to acquired epileptogenesis. As evidenced in mounting preclinical and human studies, neuroinflammatory processes, such as activation and proliferation of microglia and astrocytes, elevated production of pro-inflammatory cytokines and chemokines, blood-brain barrier breakdown, and upregulation of inflammatory signaling pathways, are commonly observed after seizure-precipitating events. An increased knowledge of these neuroinflammatory processes in the epileptic brain has led to a growing list of inflammatory mediators that can be leveraged as potential targets for new therapies of epilepsy and/or biomarkers that may provide valued information for the diagnosis and prognosis of the otherwise unpredictable seizures. In this review, we mainly focus on the most recent progress in understanding the roles of these inflammatory molecules in acquired epilepsy and highlight the emerging evidence supporting their candidacy as novel molecular targets for new pharmacotherapies of acquired epilepsy and the associated behavioral deficits.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marwa M Nagib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Taylor L Littlejohn
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
10
|
Yasmen N, Sluter MN, Li L, Yu Y, Jiang J. Transient inhibition of microsomal prostaglandin E synthase-1 after status epilepticus blunts brain inflammation and is neuroprotective. Mol Brain 2023; 16:14. [PMID: 36694204 PMCID: PMC9875432 DOI: 10.1186/s13041-023-01008-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Status epilepticus (SE) in humans is characterized by prolonged convulsive seizures that are generalized and often difficult to control. The current antiseizure drugs (ASDs) aim to stop seizures quickly enough to prevent the SE-induced brain inflammation, injury, and long-term sequelae. However, sole reliance on acute therapies is imprudent because prompt treatment may not always be possible under certain circumstances. The pathophysiological mechanisms underlying the devastating consequences of SE are presumably associated with neuroinflammatory reactions, where prostaglandin E2 (PGE2) plays a pivotal role. As the terminal synthase for pathogenic PGE2, the microsomal prostaglandin E synthase-1 (mPGES-1) is rapidly and robustly induced by prolonged seizures. Congenital deletion of mPGES-1 in mice is neuroprotective and blunts gliosis following chemoconvulsant seizures, suggesting the feasibility of mPGES-1 as a potential antiepileptic target. Herein, we investigated the effects of a dual species mPGES-1 inhibitor in a mouse pilocarpine model of SE. Treatment with the mPGES-1 inhibitor in mice after SE that was terminated by diazepam, a fast-acting benzodiazepine, time-dependently abolished the SE-induced PGE2 within the brain. Its negligible effects on cyclooxygenases, the enzymes responsible for the initial step of PGE2 biosynthesis, validated its specificity to mPGES-1. Post-SE inhibition of mPGES-1 also blunted proinflammatory cytokines and reactive gliosis in the hippocampus and broadly prevented neuronal damage in a number of brain areas. Thus, pharmacological inhibition of mPGES-1 by small-molecule inhibitors might provide an adjunctive strategy that can be implemented hours after SE, together with first-line ASDs, to reduce SE-provoked brain inflammation and injury.
Collapse
Affiliation(s)
- Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
11
|
Research progress on oxidative stress regulating different types of neuronal death caused by epileptic seizures. Neurol Sci 2022; 43:6279-6298. [DOI: 10.1007/s10072-022-06302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022]
|
12
|
Aguilar-Castillo MJ, Cabezudo-García P, Ciano-Petersen NL, García-Martin G, Marín-Gracia M, Estivill-Torrús G, Serrano-Castro PJ. Immune Mechanism of Epileptogenesis and Related Therapeutic Strategies. Biomedicines 2022; 10:716. [PMID: 35327518 PMCID: PMC8945207 DOI: 10.3390/biomedicines10030716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Immunologic and neuroinflammatory pathways have been found to play a major role in the pathogenesis of many neurological disorders such as epilepsy, proposing the use of novel therapeutic strategies. In the era of personalized medicine and in the face of the exhaustion of anti-seizure therapeutic resources, it is worth looking at the current or future possibilities that neuroimmunomodulator or anti-inflammatory therapy can offer us in the management of patients with epilepsy. For this reason, we performed a narrative review on the recent advances on the basic epileptogenic mechanisms related to the activation of immunity or neuroinflammation with special attention to current and future opportunities for novel treatments in epilepsy. Neuroinflammation can be considered a universal phenomenon and occurs in structural, infectious, post-traumatic, autoimmune, or even genetically based epilepsies. The emerging research developed in recent years has allowed us to identify the main molecular pathways involved in these processes. These molecular pathways could constitute future therapeutic targets for epilepsy. Different drugs current or in development have demonstrated their capacity to inhibit or modulate molecular pathways involved in the immunologic or neuroinflammatory mechanisms described in epilepsy. Some of them should be tested in the future as possible antiepileptic drugs.
Collapse
Affiliation(s)
- María José Aguilar-Castillo
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Biotechnology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
| | - Pablo Cabezudo-García
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Nicolas Lundahl Ciano-Petersen
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Guillermina García-Martin
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Marta Marín-Gracia
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Guillermo Estivill-Torrús
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Pedro Jesús Serrano-Castro
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
- Department of Medicine, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
13
|
Demirsoy MS, Erdil A, Çolak S, Duman E, Sümbül O, Aygun H. Acute treatment with dexketoprofen reduces penicillin induced epileptiform activity in wistar albino rats (dexketoprofen in penicillin induced seizure model). Epilepsy Res 2021; 178:106827. [PMID: 34847424 DOI: 10.1016/j.eplepsyres.2021.106827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/15/2022]
Abstract
AIM Dexketoprofen trometamol is one of the most commonly used anti-inflammatory analgesic agents for pain control. This study aims to investigate the effect of dexketoprofen on penicillin-induced epileptiform activity in rats. METHOD In this study, 28 male Wistar rats weighing 220-240 g were used. Tripolar electrodes were implanted under urethane anesthesia. Epileptiform activity was induced by micro-injection of 500 units (IU) penicillin into the rats' left somatomotor cortex. Dexketoprofen (5, 25, and 50 mg/kg) was administrated intraperitoneally after 30 min of penicillin injection. Epileptiform activity was evaluated by electrocorticography (ECoG). RESULTS The low dose of dexketoprofen administration (5 mg/kg) reduced the mean spike frequency of epileptiform activity 60 min after its injection. However, 25 and 50 mg/kg dexketoprofen significantly reduced the mean spike frequency 30 min after the dexketoprofen injection compared to the control group (p < 0.05). The amplitudes of epileptiform discharges in all groups were unaffected (p > 0.05). CONCLUSION This study revealed that dexketoprofen had a significant anti-seizure effect when applied at 5 mg/kg, 25 mg/kg, and 50 mg/kg (especially at 25 and 50 mg/kg), in the penicillin-induced seizure model. The obtained data revealed that dexketoprofen might play an essential role against epileptic seizures.
Collapse
Affiliation(s)
- Mustafa Sami Demirsoy
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Sakarya University, Sakarya, Turkey
| | - Aras Erdil
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Usak University, Usak, Turkey.
| | | | - Esra Duman
- Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Artova Vocational School, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Orhan Sümbül
- Department of Neurology Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
14
|
Emon NU, Rudra S, Alam S, Haidar IKA, Paul S, Richi FT, Shahriar S, Sayeed MA, Tumpa NI, Ganguly A. Chemical, biological and protein-receptor binding profiling of Bauhinia scandens L. stems provide new insights into the management of pain, inflammation, pyrexia and thrombosis. Biomed Pharmacother 2021; 143:112185. [PMID: 34543985 DOI: 10.1016/j.biopha.2021.112185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023] Open
Abstract
Bauhinia scandens L. (Family, Fabaceae) is a medicinal plant used for conventional and societal medication in Ayurveda. The present study has been conducted to screen the chemical, pharmacological and biochemical potentiality of the methanol extracts of B. scandens stems (MEBS) along with its related fractions including carbon tetrachloride (CTBS), di-chloromethane (DMBS) and n-butanol (BTBS). UPLC-QTOF-MS has been implemented to analyze the chemical compounds of the methanol extracts of Bauhinia scandens stems. Additionally, antinociceptive and anti-inflammatory effects were performed by following the acetic acid-induced writhing test and formalin-mediated paw licking test in the mice model. The antipyretic investigation was performed by Brewer Yeast induced pyrexia method. The clot lysis method was implemented to screen the thrombolytic activity in human serum. Besides, the in silico study was performed for the five selected chemical compounds of Bauhinia scandens, found by UPLC-QTOF-MS By using Discover Studio 2020, UCSF Chimera, PyRx autodock vina and online tools. The MEBS and its fractions exhibited remarkable inhibition in dose dependant manner in the antinociceptive and antiinflammatory investigations. The antipyretic results of MEBS and DMBS were close to the standard drug indomethacin. Investigation of the thrombolytic effect of MEBS, CTBS, DMBS, and BTBS revealed notable clot-lytic potentials. Besides, the phenolic compounds of the plant extracts revealed strong binding affinity to the COX-1, COX-2, mPGES-1 and plasminogen activator enzymes. To recapitulate, based on the research work, Bauhinia scandens L. stem and its phytochemicals can be considered as prospective wellsprings for novel drug development and discovery by future researchers.
Collapse
Affiliation(s)
- Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Sajib Rudra
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Safaet Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | | | - Susmita Paul
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Fahmida Tasnim Richi
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saimon Shahriar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammed Aktar Sayeed
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chattogram 4318, Bangladesh.
| | - Nadia Islam Tumpa
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Amlan Ganguly
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
15
|
Gholizadeh R, Abdolmaleki Z, Bahremand T, Ghasemi M, Gharghabi M, Dehpour AR. Involvement of N-Methyl-D-Aspartate Receptors in the Anticonvulsive Effects of Licofelone on Pentylenetetrazole-Induced Clonic Seizure in Mice. J Epilepsy Res 2021; 11:14-21. [PMID: 34395219 PMCID: PMC8357553 DOI: 10.14581/jer.21003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Licofelone is a dual 5-lipoxygenase/cyclooxygenase inhibitor, with well-documented anti-inflammatory and analgesic effects, which is used for treatment of osteoarthritis. Recent preclinical studies have also suggested neuroprotective and anti-oxidative properties of this drug in some neurological conditions such as seizure and epilepsy. We have recently demonstrated a role for nitric oxide (NO) signaling in the anti-epileptic activity of licofelone in two seizure models in rodents. Given the important role of N-methyl-D-aspartate receptors (NMDARs) activation in the NO production and its function in the nervous system, in the present study, we further investigated the involvement of NMDAR in the effects of licofelone (1, 3, 5, 10, and 20 mg/kg, intraperitoneal [i.p.]) in an in vivo model of seizure in mice. METHODS Clonic seizures were induced in male NMRI mice by intravenous administration of pentylenetetrazol (PTZ). RESULTS Acute administration of licofelone exerted anticonvulsant effects at 10 (p<0.01) and 20 mg/kg (p<0.001). A combined treatment with sub-effective doses of the selective NMDAR antagonist MK-801 (0.05 mg/kg, i.p.) and licofelone (5 mg/kg, i.p.) significantly (p<0.001) exerted an anticonvulsant effect on the PTZ-induced clonic seizures in mice. Notably, pre-treatment with the NMDAR co-agonist D-serine (30 mg/kg, i.p.) partially hindered the anticonvulsant effects of licofelone (20 mg/kg). CONCLUSIONS Our data suggest a possible role for the NMDAR in the anticonvulsant effects of licofelone on the clonic seizures induced by PTZ in mice.
Collapse
Affiliation(s)
- Ramtin Gholizadeh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, College of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, College of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Taraneh Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Dos Santos FM, Pflüger PF, Lazzarotto L, Uczay M, de Aguida WR, da Silva LS, Boaretto FBM, de Sousa JT, Picada JN, da Silva Torres IL, Pereira P. Gamma-Decanolactone Alters the Expression of GluN2B, A 1 Receptors, and COX-2 and Reduces DNA Damage in the PTZ-Induced Seizure Model After Subchronic Treatment in Mice. Neurochem Res 2021; 46:2066-2078. [PMID: 34019198 DOI: 10.1007/s11064-021-03345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Gamma-decanolactone (GD) has been shown to reduce epileptic behavior in different models, inflammatory decreasing, oxidative stress, and genotoxic parameters. This study assessed the GD effect on the pentylenetetrazole (PTZ) model after acute and subchronic treatment. We evaluated the expression of the inflammatory marker cyclooxygenase-2 (COX-2), GluN2B, a subunit of the NMDA glutamate receptor, adenosine A1 receptor, and GD genotoxicity and mutagenicity. Male and female mice were treated with GD (300 mg/kg) for 12 days. On the tenth day, they were tested in the Hot Plate test. On the thirteenth day, all animals received PTZ (90 mg/kg), and epileptic behavior PTZ-induced was observed for 30 min. Pregabalin (PGB) (30 mg/kg) was used as a positive control. Samples of the hippocampus and blood were collected for Western Blotting analyses and Comet Assay and bone marrow to the Micronucleus test. Only the acute treatment of GD reduced the seizure occurrence and increased the latency to the first stage 3 seizures. Males treated with GD for 12 days demonstrated a significant increase in the expression of the GluN2B receptor and a decrease in the COX-2 expression. Acute and subchronic treatment with GD and PGB reduced the DNA damage produced by PTZ in males and females. There is no increase in the micronucleus frequency in bone marrow after subchronic treatment. This study suggests that GD, after 12 days, could not reduce PTZ-induced seizures, but it has been shown to protect against DNA damage, reduce COX-2 and increase GluN2B expression.
Collapse
Affiliation(s)
- Fernanda Marcelia Dos Santos
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pricila Fernandes Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Leticia Lazzarotto
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariana Uczay
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wesley Roberto de Aguida
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisiane Santos da Silva
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-Clinical Research. Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | - Iraci Lucena da Silva Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-Clinical Research. Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Health Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratory of Neuropharmacology and Preclinical Toxicology, Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Sarmento Leite 500/305, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
17
|
Evaluation of Anticonvulsant Activity of Dual COX-2/5-LOX Inhibitor Darbufelon and Its Novel Analogues. Sci Pharm 2021. [DOI: 10.3390/scipharm89020022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation is an integral part of epilepsy pathogenesis and other convulsive conditions, and non-steroidal anti-inflammatory drugs (NSAIDs) present a potent tool for the contemporary search and design of novel anticonvulsants. In the present paper, evaluation of the anticonvulsant activity of the potential NSAID dual COX-2/5-LOX inhibitor darbufelone methanesulfonate using an scPTZ model in mice in dose 100 mg/kg is reported. Darbufelone possesses anticonvulsant properties in the scPTZ model and presents interest for in-depth studies as a possible anticonvulsant multi-target agent with anti-inflammatory activity. The series of 4-thiazolidinone derivatives have been synthesized following the analogue-based drug design and hybrid-pharmacophore approach using a darbufelone matrix. The synthesized derivatives showed a significant protection level for animals in the scPTZ model and are promising compounds for the design of potential anticonvulsants with satisfactory drug-like parameters.
Collapse
|
18
|
Ateba SB, Njamen D, Krenn L. The Genus Eriosema (Fabaceae): From the Ethnopharmacology to an Evidence-Based Phytotherapeutic Perspective? Front Pharmacol 2021; 12:641225. [PMID: 34025412 PMCID: PMC8138667 DOI: 10.3389/fphar.2021.641225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/17/2021] [Indexed: 01/13/2023] Open
Abstract
The genus Eriosema (Fabaceae) includes approximately 150 species widely distributed across tropical and subtropical regions of the world (Africa, Neotropics, Asia and Australia). Throughout these regions, several species are used since centuries in different traditional medicinal systems, while others are used as food or food supplement. The present review attempts to critically summarize current information concerning the uses, phytochemistry and pharmacology of the Eriosema genus and to evaluate the therapeutic potential. The information published in English and French (up to September 2020) on ethnopharmacology or traditional uses, chemistry, pharmacology and toxicology of Eriosema genus was collected from electronic databases [SciFinder, PubMed, Google, Google Scholar, Scopus, Web of Science, Prelude Medicinal Plants—http://www.ethnopharmacologia.org/recherche-dans-prelude/?plant, The Plant List (http://www.theplantlist.org/), POWO (http://powo.science.kew.org/) and IUCN Red List Categories (https://www.iucnredlist.org/)], conference proceedings, books, M.Sc. and Ph.D. dissertations. The information retrieved on the ethnomedicinal indications of Eriosema genus allowed to list 25 species (∼16.6% of the genus). The majority of uses is recorded from Africa. Phytochemical analyses of 8 species led to the identification and/or isolation of 107 compounds, with flavonoids (69.2%), chromones (7.5%) and benzoic acid derivatives (3.7%) as the main chemical classes. Pharmacological investigations with crude extracts and isolated compounds showed a broad range of activities including aphrodisiac, estrogenic, anti-osteoporosis, hypolipidemic, anti-diabetic, anti-diarrheal, anti-microbial, anti-oxidant, anthelmintic, anti-cancer, and acetylcholinesterase inhibitory activities. Despite the low number of Eriosema species tested, there is convincing evidence in vitro and in vivo studies validating some traditional and ethnobotanical uses. However, the utility of several of the described uses has not yet been confirmed in pharmacological studies. Reviewed data could serve as a reference tool and preliminary information for advanced research on Eriosema species.
Collapse
Affiliation(s)
- Sylvin Benjamin Ateba
- Department of Biology of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon
| | - Dieudonné Njamen
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Karabulut S, Taskiran AS. Effect of Pre-Treatment with Acetaminophen on Hippocampal Oxidative, Inflammatory, and Apoptotic Parameters in PTZ-Induced Acute Seizure Mice Model. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wang QQ, Han S, Li XX, Yuan R, Zhuo Y, Chen X, Zhang C, Chen Y, Gao H, Zhao LC, Yang S. Nuezhenide Exerts Anti-Inflammatory Activity through the NF-κB Pathway. Curr Mol Pharmacol 2021; 14:101-111. [PMID: 32525787 PMCID: PMC8778660 DOI: 10.2174/1874467213666200611141337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/04/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nuezhenide (NZD), an iridoid glycoside isolated from Ilex pubescens Hook. & Arn. var. kwangsiensis Hand.-Mazz., used as a traditional Chinese medicine for clearing away heat and toxic materials, displays a variety of biological activities such as anti-tumor, antioxidant, and other life-protecting activities. However, a few studies involving anti-inflammatory activity and the mechanism of NZD have also been reported. In the present study, the anti-inflammatory and antioxidative effects of NZD are illustrated. OBJECTIVE This study aims to test the hypothesis that NZD suppresses LPS-induced inflammation by targeting the NF-κB pathway in RAW264.7 cells. METHODS LPS-stimulated RAW264.7 cells were employed to detect the effect of NZD on the release of cytokines by ELISA. Protein expression levels of related molecular markers were quantitated by western blot analysis. The levels of ROS, NO, and Ca2+ were detected by flow cytometry. The changes in mitochondrial reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were observed and verified by fluorescence microscopy. Using immunofluorescence assay, the translocation of NF-κB/p65 from the cytoplasm into the nucleus was determined by confocal microscopy. RESULTS NZD exhibited anti-inflammatory activity and reduced the release of inflammatory cytokines such as nitrite, TNF-α, and IL-6. NZD suppressed the expression of the phosphorylated proteins like IKKα/β, IκBα, and p65. Besides, the flow cytometry results indicated that NZD inhibited the levels of ROS, NO, and Ca2+ in LPS-stimulated RAW264.7 cells. JC-1 assay data showed that NZD reversed LPS-induced MMP loss. Furthermore, NZD suppressed LPS-induced NF-B/p65 translocation from the cytoplasm into the nucleus. CONCLUSION NZD exhibits anti-inflammatory effects through the NF-κB pathway on RAW264.7 cells.
Collapse
Affiliation(s)
- Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Renyikun Yuan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Xinxin Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Chenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Yangling Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Li-Chun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| |
Collapse
|
21
|
Jiang J, Yu Y. Small molecules targeting cyclooxygenase/prostanoid cascade in experimental brain ischemia: Do they translate? Med Res Rev 2020; 41:828-857. [PMID: 33094540 DOI: 10.1002/med.21744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Acute brain ischemia accounts for most of stroke cases and constitutes a leading cause of deaths among adults and permanent disabilities in survivors. Currently, the intravenous thrombolysis is the only available medication for ischemic stroke; mechanical thrombectomy is an emerging alternative treatment for occlusion of large arteries and has shown some promise in selected subsets of patients. However, the overall narrow treatment window and potential risks largely limit the patient eligibility. New druggable targets are needed to innovate the treatment of brain ischemia. As the rate-limiting enzyme in the biosyntheses of prostanoids, cyclooxygenase (COX), particularly the inducible isoform COX-2, has long been implicated in mechanisms of acute stroke-induced brain injury and inflammation. However, the notion of therapeutically targeting COX has been diminished over the past two decades due to significant complications of the cardiovascular and cerebrovascular systems caused by long-term use of COX-2 inhibitor drugs. New treatment strategies targeting the downstream prostanoid signaling receptors regulating the deleterious effects of COX cascade have been proposed. As such, a large number of selective small molecules that negatively or positively modulate these important inflammatory regulators have been evaluated for neuroprotection and other beneficial effects in various animal models of brain ischemia. These timely preclinical studies, though not yet led to clinical innovation, provided new insights into the regulation of inflammatory reactions in the ischemic brain and could guide drug discovery efforts aiming for novel adjunctive strategies, along with current reperfusion therapy, to treat acute brain ischemia with higher specificity and longer therapeutic window.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
22
|
Borna H, Khalili S, Zakeri A, Mard-Soltani M, Akbarzadeh AR, Khalesi B, Payandeh Z. Proposed Multi-linear Regression Model to Identify Cyclooxygenase-2 Selective Active Pharmaceutical Ingredients. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Kumar JSD, Prabhakaran J, Molotkov A, Sattiraju A, Kim J, Doubrovin M, Mann JJ, Mintz A. Radiosynthesis and evaluation of [ 18F]FMTP, a COX-2 PET ligand. Pharmacol Rep 2020; 72:1433-1440. [PMID: 32632914 DOI: 10.1007/s43440-020-00124-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND The upregulation of cyclooxygenase-2 (COX-2) is involved in neuroinflammation associated with many neurological diseases as well as cancers of the brain. Outside the brain, inflammation and COX-2 induction contribute to the pathogenesis of pain, arthritis, acute allograft rejection, and in response to infections, tumors, autoimmune disorders, and injuries. Herein, we report the radiochemical synthesis and evaluation of [18F]6-fluoro-2-(4-(methylsulfonyl)phenyl)-N-(thiophen-2-ylmethyl)pyrimidin-4-amine ([18F]FMTP), a high-affinity COX-2 inhibitor, by cell uptake and PET imaging studies. METHODS The radiochemical synthesis of [18F]FMTP was optimized using chlorine to fluorine displacement method, by reacting [18F]fluoride/K222/K2CO3 with the precursor molecule. Cellular uptake studies of [18F]FMTP was performed in COX-2 positive BxPC3 and COX-2 negative PANC-1 cell lines with unlabeled FMTP as well as celecoxib to define specific binding agents. Dynamic microPET image acquisitionwas performed in anesthetized nude mice (n = 3), lipopolysaccharide (LPS) induced neuroinflammation mice (n = 4), and phosphate-buffered saline (PBS) administered control mice (n = 4) using a Trifoil microPET/CT for a scan period of 60 min. RESULTS A twofold higher binding of [18F]FMTP was found in COX-2 positive BxPC3 cells compared with COX-2 negative PANC-1 cells. The radioligand did not show specific binding to COX-2 negative PANC-1 cells. MicroPET imaging in wild-type mice indicated blood-brain barrier (BBB) penetration and fast washout of [18F]FMTP in the brain, likely due to the low constitutive COX-2 expression in the normal brain. In contrast, a ~ twofold higher uptake of the radioligand was found in LPS-induced mice brain than PBS treated control mice. CONCLUSIONS Specific binding to COX-2 in BxPC3 cell lines, BBB permeability, and increased brain uptake in neuroinflammation mice qualifies [18F]FMTP as a potential PET tracer for studying inflammation.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, Manhattan, NY, USA.
| | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, Manhattan, NY, USA.,Department of Psychiatry, Columbia University Medical Center, Manhattan, NY, USA
| | - Andrei Molotkov
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - Anirudh Sattiraju
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - Jongho Kim
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - Mikhail Doubrovin
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, Manhattan, NY, USA.,Department of Psychiatry, Columbia University Medical Center, Manhattan, NY, USA.,Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA.
| |
Collapse
|
24
|
Targeting prostaglandin receptor EP2 for adjunctive treatment of status epilepticus. Pharmacol Ther 2020; 209:107504. [PMID: 32088247 DOI: 10.1016/j.pharmthera.2020.107504] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
Abstract
Status epilepticus (SE) is an emergency condition that can cause permanent brain damage or even death when generalized convulsive seizures last longer than 30 min. Controlling the escalation and propagation of seizures quickly and properly is crucial to the prevention of irreversible neuronal death and the associated morbidity. However, SE often becomes refractory to current anticonvulsant medications, which primarily act on ion channels and commonly impose undesired effects. Identifying new molecular targets for SE might lead to adjunctive treatments that can be delivered even when SE is well established. Recent preclinical studies suggest that prostaglandin E2 (PGE2) is an essential inflammatory mediator for the brain injury and morbidity following prolonged seizures via activating four G protein-coupled receptors, namely, EP1-EP4. Given that EP2 receptor activation has been identified as a common culprit in several inflammation-associated neurological conditions, such as strokes and neurodegenerative diseases, selective small-molecule antagonists targeting EP2 have been recently developed and utilized to suppress PGE2-mediated neuroinflammation. Transient inhibition of the EP2 receptor by these bioavailable and brain-permeable antagonists consistently showed marked anti-inflammatory and neuroprotective effects in several rodent models of SE yet had no noticeable effect on seizures per se. This review provides overviews and perspectives of the EP2 receptor as an emerging target for adjunctive treatment, together with the current first-line anti-seizure drugs, to prevent acute brain inflammation and damage following SE.
Collapse
|
25
|
Dhir A. Natural polyphenols in preclinical models of epilepsy. Phytother Res 2020; 34:1268-1281. [DOI: 10.1002/ptr.6617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/11/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ashish Dhir
- Department of Neurology, School of MedicineUniversity of California, Davis Sacramento California
| |
Collapse
|
26
|
Terrone G, Balosso S, Pauletti A, Ravizza T, Vezzani A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 2019; 167:107742. [PMID: 31421074 DOI: 10.1016/j.neuropharm.2019.107742] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/10/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation and reactive oxygen and nitrogen species are rapidly induced in the brain after acute cerebral injuries that are associated with an enhanced risk for epilepsy in humans and related animal models. These phenomena reinforce each others and persist during epileptogenesis as well as during chronic spontaneous seizures. Anti-inflammatory and anti-oxidant drugs transiently administered either before, or shortly after the clinical onset of symptomatic epilepsy, similarly block the progression of spontaneous seizures, and may delay their onset. Moreover, neuroprotection and rescue of cognitive deficits are also observed in the treated animals. Therefore, although these treatments do not prevent epilepsy development, they offer clinically relevant disease-modification effects. These therapeutic effects are mediated by targeting molecular signaling pathways such as the IL-1β-IL-1 receptor type 1 and TLR4, P2X7 receptors, the transcriptional anti-oxidant factor Nrf2, while the therapeutic impact of COX-2 inhibition for reducing spontaneous seizures remains controversial. Some anti-inflammatory and anti-oxidant drugs that are endowed of disease modification effects in preclinical models are already in medical use and have a safety profile, therefore, they provide potential re-purposed treatments for improving the disease course and for reducing seizure burden. Markers of neuroinflammation and oxidative stress can be measured in blood or by neuroimaging, therefore they represent testable prognostic and predictive biomarkers for selecting the patient's population at high risk for developing epilepsy therefore eligible for novel treatments. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Gaetano Terrone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alberto Pauletti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
27
|
Jiang J, Yu Y, Kinjo ER, Du Y, Nguyen HP, Dingledine R. Suppressing pro-inflammatory prostaglandin signaling attenuates excitotoxicity-associated neuronal inflammation and injury. Neuropharmacology 2019; 149:149-160. [PMID: 30763657 DOI: 10.1016/j.neuropharm.2019.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
Abstract
Glutamate receptor-mediated excitotoxicity is a common pathogenic process in many neurological conditions including epilepsy. Prolonged seizures induce elevations in extracellular glutamate that contribute to excitotoxic damage, which in turn can trigger chronic neuroinflammatory reactions, leading to secondary damage to the brain. Blocking key inflammatory pathways could prevent such secondary brain injury following the initial excitotoxic insults. Prostaglandin E2 (PGE2) has emerged as an important mediator of neuroinflammation-associated injury, in large part via activating its EP2 receptor subtype. Herein, we investigated the effects of EP2 receptor inhibition on excitotoxicity-associated neuronal inflammation and injury in vivo. Utilizing a bioavailable and brain-permeant compound, TG6-10-1, we found that pharmacological inhibition of EP2 receptor after a one-hour episode of kainate-induced status epilepticus (SE) in mice reduced seizure-promoted functional deficits, cytokine induction, reactive gliosis, blood-brain barrier impairment, and hippocampal damage. Our preclinical findings endorse the feasibility of blocking PGE2/EP2 signaling as an adjunctive strategy to treat prolonged seizures. The promising benefits from EP2 receptor inhibition should also be relevant to other neurological conditions in which excitotoxicity-associated secondary damage to the brain represents a pathogenic event.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA; Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Erika Reime Kinjo
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Yifeng Du
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Hoang Phuong Nguyen
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ray Dingledine
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|