1
|
Di Felice V, Barone R, Trovato E, D’Amico D, Macaluso F, Campanella C, Marino Gammazza A, Muccilli V, Cunsolo V, Cancemi P, Multhoff G, Coletti D, Adamo S, Farina F, Cappello F. Physiactisome: A New Nanovesicle Drug Containing Heat Shock Protein 60 for Treating Muscle Wasting and Cachexia. Cells 2022; 11:cells11091406. [PMID: 35563712 PMCID: PMC9100106 DOI: 10.3390/cells11091406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
Currently, no commercially available drugs have the ability to reverse cachexia or counteract muscle wasting and the loss of lean mass. Here, we report the methodology used to develop Physiactisome—a conditioned medium released by heat shock protein 60 (Hsp60)—overexpressing C2C12 cell lines enriched with small and large extracellular vesicles. We also present evidence supporting its use in the treatment of cachexia. Briefly, we obtain a nanovesicle-based secretion by genetically modifying C2C12 cell lines with an Hsp60-overexpressing plasmid. The secretion is used to treat naïve C2C12 cell lines. Physiactisome activates the expression of PGC-1α isoform 1, which is directly involved in mitochondrial biogenesis and muscle atrophy suppression, in naïve C2C12 cell lines. Proteomic analyses show Hsp60 localisation inside isolated nanovesicles and the localisation of several apocrine and merocrine molecules, with potential benefits for severe forms of muscle atrophy. Considering that Physiactisome can be easily obtained following tissue biopsy and can be applied to autologous muscle stem cells, we propose a potential nanovesicle-based anti-cachexia drug that could mimic the beneficial effects of exercise. Thus, Physiactisome may improve patient survival and quality of life. Furthermore, the method used to add Hsp60 into nanovesicles can be used to deliver other drugs or active proteins to vesicles.
Collapse
Affiliation(s)
- Valentina Di Felice
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
- Correspondence:
| | - Rosario Barone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
| | - Eleonora Trovato
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
| | - Daniela D’Amico
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77573, USA
| | - Filippo Macaluso
- SMART Engineering Solutions & Technologies Research Center, eCampus University, 22160 Novedrate, Italy;
- Euro-Mediterranean Institutes of Science and Technology, 90139 Palermo, Italy
| | - Claudia Campanella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, 95129 Catania, Italy; (V.M.); (V.C.)
| | - Vincenzo Cunsolo
- Department of Chemical Sciences, University of Catania, 95129 Catania, Italy; (V.M.); (V.C.)
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90127 Palermo, Italy;
| | - Gabriele Multhoff
- Department of Radiation Oncology, School of Medicine, Central Institute for Translational Cancer Research, Technical University of Munich, TranslaTUM, 80333 Munich, Germany;
| | - Dario Coletti
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00185 Rome, Italy; (D.C.); (S.A.)
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm ERL U1164, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005 Paris, France
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00185 Rome, Italy; (D.C.); (S.A.)
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm ERL U1164, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 75005 Paris, France
| | - Felicia Farina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (R.B.); (E.T.); (D.D.); (C.C.); (A.M.G.); (F.F.); (F.C.)
- Euro-Mediterranean Institutes of Science and Technology, 90139 Palermo, Italy
| |
Collapse
|
2
|
Joseph V, Levine M. Ronald C.D. Breslow (1931-2017): A career in review. Bioorg Chem 2021; 115:104868. [PMID: 34523507 DOI: 10.1016/j.bioorg.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
Reviewed herein are key research accomplishments of Professor Ronald Charles D. Breslow (1931-2017) throughout his more than 60 year research career. These accomplishments span a wide range of topics, most notably physical organic chemistry, medicinal chemistry, and bioorganic chemistry. These topics are reviewed, as are topics of molecular electronics and origin of chirality, which combine to make up the bulk of this review. Also reviewed briefly are Breslow's contributions to the broader chemistry profession, including his work for the American Chemical Society and his work promoting gender equity. Throughout the article, efforts are made to put Breslow's accomplishments in the context of other work being done at the time, as well as to include subsequent iterations and elaborations of the research.
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Chemical Sciences, Ariel University, Israel
| | - Mindy Levine
- Department of Chemical Sciences, Ariel University, Israel.
| |
Collapse
|
3
|
Singh D, Gupta S, Verma I, Morsy MA, Nair AB, Ahmed ASF. Hidden pharmacological activities of valproic acid: A new insight. Biomed Pharmacother 2021; 142:112021. [PMID: 34463268 DOI: 10.1016/j.biopha.2021.112021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 12/24/2022] Open
Abstract
Valproic acid (VPA) is an approved drug for managing epileptic seizures, bipolar disorders, and migraine. VPA has been shown to elevate the level of gamma-aminobutyric acid (GABA) in the brain through competitive inhibition of GABA transaminase, thus promoting the availability of synaptic GABA and facilitating GABA-mediated responses. VPA, which is a small chain of fatty acids, prevents histone deacetylases (HDACs). HDACs play a crucial role in chromatin remodeling and gene expression through posttranslational changes of chromatin-associated histones. Recent studies reported a possible effect of VPA against particular types of cancers. This effect was partially attributed to its role in regulating epigenetic modifications through the inhibition of HDACs, which affect the expression of genes associated with cell cycle control, cellular differentiation, and apoptosis. In this review, we summarize the current information on the actions of VPA in diseases such as diabetes mellitus, kidney disorders, neurodegenerative diseases, muscular dystrophy, and cardiovascular disorders.
Collapse
Affiliation(s)
- Dhirendra Singh
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India.
| | - Inderjeet Verma
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
4
|
Liu X, Liu M, Lee L, Davies M, Wang Z, Kim H, Feeley BT. Trichostatin A regulates fibro/adipogenic progenitor adipogenesis epigenetically and reduces rotator cuff muscle fatty infiltration. J Orthop Res 2021; 39:1452-1462. [PMID: 32970360 PMCID: PMC7987912 DOI: 10.1002/jor.24865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 02/04/2023]
Abstract
Rotator cuff (RC) muscle fatty infiltration (FI) is an important factor that determines the clinical outcome of patients with RC repair. There is no effective treatment for RC muscle FI at this time. The goal of this study is to define the role Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor in regulating muscle fibro/adipogenic progenitors (FAPs) adipogenesis and treating muscle fatty degeneration after massive RC tears in a mouse model. We hypothesize that TSA reduces muscle FI after massive RC tears. HDAC activity was measured in FAPs in RC muscle after tendon/nerve transection or sham surgery. FAPs were treated with TSA for 2 weeks and FAP adipogenesis was evaluated with perilipin and Oil Red O staining, as well as reverse transcript-polymerase chain reaction for adipogenesis-related genes. About 0.5 mg/kg TSA or dimethyl sulfoxide was administered to C57B/L6 mice with massive rotator cuff tears through daily intraperitoneal injection for 6 weeks. Supraspinatus muscles were harvested for biochemical and histology analysis. We found that FAPs showed significantly higher HDAC activity after RC tendon/nerve transection. TSA treatment significantly reduced HDAC activity and inhibited adipogenesis of FAPs. TSA also abolished the role of bone morphogenetic protein-7 in inducing FAP adipogenesis and promoted FAP brown/beige adipose tissue (BAT) differentiation. TSA injection significantly increased histone H3 acetylation and reduced FI of rotator cuff muscles after massive tendon tears. Results from this study showed that TSA can regulate FAP adipogenesis and promote FAP BAT differentiation epigenetically. HDAC inhibition may be a new treatment strategy to reduce muscle FI after RC tears and repair.
Collapse
Affiliation(s)
- Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
| | - Mengyao Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
| | - Lawrence Lee
- Department of Veterans Affairs, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
| | - Michael Davies
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
| | - Zili Wang
- Department of Veterans Affairs, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
- Department of Orthopaedic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Hubert Kim
- Department of Veterans Affairs, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
| | - Brian T. Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
5
|
Abstract
OBJECTIVES Recent evidence from the fields of microbiology and immunology, as well as a small number of human sepsis studies, suggest that epigenetic regulation may play a central role in the pathogenesis of sepsis. The term "epigenetics" refers to regulatory mechanisms that control gene expression but are not related to changes in DNA sequence. These include DNA methylation, histone modifications, and regulation of transcription via non-coding RNAs. Epigenetic modifications, occurring in response to external stressors, lead to changes in gene expression, and thus lie at the intersection between genetics and the environment. In this review, we examine data from in vitro studies, animal studies, and the existing human sepsis studies in epigenetics to demonstrate that epigenetic mechanisms are likely central to the pathogenesis of sepsis and that epigenetic therapies may have potential in the treatment of sepsis and its associated organ failures. DATA SOURCES Online search of published scientific literature via Pubmed using the term "epigenetics" in combination with the terms "sepsis", "infection", "bacterial infection", "viral infection", "critical illness", "acute respiratory distress syndrome", and "acute lung injury". STUDY SELECTION Articles were chosen for inclusion based on their relevance to sepsis, acute inflammation, sepsis-related immune suppression, and sepsis-related organ failure. Reference lists were reviewed to identify additional relevant articles. DATA EXTRACTION Relevant data was extracted and synthesized for narrative review. DATA SYNTHESIS Epigenetic regulation is a key determinant of gene expression in sepsis. At the onset of infection, host-pathogen interactions often result in epigenetic alterations to host cells that favor pathogen survival. In parallel, the host inflammatory response is characterized by epigenetic modifications in key regulatory genes, including tumor necrosis factor and interleukin-1β. In human sepsis patients, multiple epigenetic modifying enzymes show differential expression in early sepsis, suggesting a role for epigenetics in coordinating the response to infection. In the later stages of sepsis, epigenetic modifications accompany endotoxin tolerance and the immune-suppressed state. In animal models, treatment with epigenetic modifiers can mitigate the effects of sepsis and improve survival as well as reverse sepsis-associated organ injury. CONCLUSIONS Epigenetic modifications are associated with key phases of sepsis, from the host-pathogen interaction, to acute inflammation, to immune suppression. Epigenetic markers show promise in the diagnosis and prognosis of sepsis and epigenetic modifying agents show promise as therapeutic tools in animal models of sepsis. Human studies in the area of epigenetics are sorely lacking and should be a priority for sepsis researchers.
Collapse
|
6
|
Koutnik AP, Poff AM, Ward NP, DeBlasi JM, Soliven MA, Romero MA, Roberson PA, Fox CD, Roberts MD, D'Agostino DP. Ketone Bodies Attenuate Wasting in Models of Atrophy. J Cachexia Sarcopenia Muscle 2020; 11:973-996. [PMID: 32239651 PMCID: PMC7432582 DOI: 10.1002/jcsm.12554] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/18/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cancer Anorexia Cachexia Syndrome (CACS) is a distinct atrophy disease negatively influencing multiple aspects of clinical care and patient quality of life. Although it directly causes 20% of all cancer-related deaths, there are currently no model systems that encompass the entire multifaceted syndrome, nor are there any effective therapeutic treatments. METHODS A novel model of systemic metastasis was evaluated for the comprehensive CACS (metastasis, skeletal muscle and adipose tissue wasting, inflammation, anorexia, anemia, elevated protein breakdown, hypoalbuminemia, and metabolic derangement) in both males and females. Ex vivo skeletal muscle analysis was utilized to determine ubiquitin proteasome degradation pathway activation. A novel ketone diester (R/S 1,3-Butanediol Acetoacetate Diester) was assessed in multifaceted catabolic environments to determine anti-atrophy efficacy. RESULTS Here, we show that the VM-M3 mouse model of systemic metastasis demonstrates a novel, immunocompetent, logistically feasible, repeatable phenotype with progressive tumor growth, spontaneous metastatic spread, and the full multifaceted CACS with sex dimorphisms across tissue wasting. We also demonstrate that the ubiquitin proteasome degradation pathway was significantly upregulated in association with reduced insulin-like growth factor-1/insulin and increased FOXO3a activation, but not tumor necrosis factor-α-induced nuclear factor-kappa B activation, driving skeletal muscle atrophy. Additionally, we show that R/S 1,3-Butanediol Acetoacetate Diester administration shifted systemic metabolism, attenuated tumor burden indices, reduced atrophy/catabolism and mitigated comorbid symptoms in both CACS and cancer-independent atrophy environments. CONCLUSIONS Our findings suggest the ketone diester attenuates multifactorial CACS skeletal muscle atrophy and inflammation-induced catabolism, demonstrating anti-catabolic effects of ketone bodies in multifactorial atrophy.
Collapse
Affiliation(s)
- Andrew P. Koutnik
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
| | - Angela M. Poff
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
| | - Nathan P. Ward
- Department of Cancer PhysiologyMoffitt Cancer Center, H. Lee Moffitt Cancer Center and Research InstituteTampaFLUSA
| | - Janine M. DeBlasi
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
| | - Maricel A. Soliven
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
| | | | | | - Carl D. Fox
- School of KinesiologyAuburn UniversityAuburnALUSA
| | | | - Dominic P. D'Agostino
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
- Institute for Human and Machine CognitionOcalaFLUSA
| |
Collapse
|
7
|
Widmann M, Nieß AM, Munz B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports Med 2020; 49:509-523. [PMID: 30778851 DOI: 10.1007/s40279-019-01070-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Physical activity and sports play major roles in the overall health status of humans. It is well known that regular exercise helps to lower the risk for a broad variety of health problems, such as cardiovascular disease, type 2 diabetes, and cancer. Being physically active induces a wide variety of molecular adaptations, for example fiber type switches or other metabolic alterations, in skeletal muscle tissue. These adaptations are based on exercise-induced changes to the skeletal muscle transcriptome. Understanding their nature is crucial to improve the development of exercise-based therapeutic strategies. Recent research indicates that specifically epigenetic mechanisms, i.e., pathways that induce changes in gene expression patterns without altering the DNA base sequence, might play a major role in controlling skeletal muscle transcriptional patterns. Epigenetic mechanisms include DNA and histone modifications, as well as expression of specific microRNAs. They can be modulated by environmental factors or external stimuli, such as exercise, and eventually induce specific and fine-tuned changes to the transcriptional response. In this review, we highlight current knowledge on epigenetic changes induced in exercising skeletal muscle, their target genes, and resulting phenotypic changes. In addition, we raise the question of whether epigenetic modifications might serve as markers for the design and management of optimized and individualized training protocols, as prognostic tools to predict training adaptation, or even as targets for the design of "exercise mimics".
Collapse
Affiliation(s)
- Manuel Widmann
- Department of Sports Medicine, University Medicine Tübingen, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany
| | - Andreas M Nieß
- Department of Sports Medicine, University Medicine Tübingen, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany
| | - Barbara Munz
- Department of Sports Medicine, University Medicine Tübingen, Hoppe-Seyler-Str. 6, D-72076, Tübingen, Germany.
| |
Collapse
|
8
|
McCarty MF, Iloki-Assanga S, Lujany LML. Nutraceutical targeting of TLR4 signaling has potential for prevention of cancer cachexia. Med Hypotheses 2019; 132:109326. [PMID: 31421423 DOI: 10.1016/j.mehy.2019.109326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022]
Abstract
The mechanisms underlying cancer cachexia - the proximate cause of at least 20% of cancer-related deaths - have until recently remained rather obscure. New research, however, clarifies that cancers evoking cachexia release microvesicles rich in heat shock proteins 70 and 90, and that these extracellular heat shock proteins induce cachexia by serving as agonists for toll-like receptor 4 (TLR4) in skeletal muscle, macrophages, and adipocytes. Hence, safe nutraceutical measures which can down-regulate TLR4 signaling can be expected to aid prevention and control of cancer cachexia. There is reason to suspect that phycocyanobilin, ferulic acid, glycine, long-chain omega-3s, green tea catechins, β-hydroxy-β-methylbutyrate, carnitine, and high-dose biotin may have some utility in this regard.
Collapse
|