1
|
Kleven BDC, Chien LC, Cross CL, Labus B, Bernick C. Traumatic Encephalopathy Syndrome: Head Impact Exposure and Blood Biomarkers in Professional Combat Athletes. J Head Trauma Rehabil 2025:00001199-990000000-00244. [PMID: 39998558 DOI: 10.1097/htr.0000000000001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
OBJECTIVE This study aimed to (1) determine whether there was an association between a diagnosis of traumatic encephalopathy syndrome (TES) and changes in three specific serum biomarkers, and (2) determine head impact exposure thresholds among both TES+ and TES- groups. SETTING Data were collected from Cleveland Clinic's Professional Athletes Brain Health Study (PABHS). PARTICIPANTS This study included 192 professional combat athletes, 35 years of age and older. Athletes must be actively fighting or retired with a minimum of 10 professional fights over their careers. DESIGN/INTERVENTION This was a retrospective observational study of the PABHS longitudinal cohort. MAIN MEASURES The generalized linear model with the generalized estimating equation for repeated measurements was used to compare various biomarkers between both active and retired TES- and TES+ groups. RESULTS The odds ratio for TES diagnosis was 5.44 (95% CI = 2.48, 11.94; P < .0001) among active fighters and 10.75 (95% CI = 3.52, 32.85; P < .0001) among retired fighters, indicating the odds for a TES diagnosis were over 5 times greater for active fighters with every fight completed at or beyond 30 professional fights. Retired fighters had 10 times greater odds of TES diagnosis with every fight completed at or beyond 15 professional fights. Likewise, the odds of a TES diagnosis were 2.0% (95% CI = 0.3, 3.1; P = 0.0039) greater with each pg/mL increase of glial fibrillary acidic protein (GFAP). No relationship was observed between a TES diagnosis and neurofilament light chain or P-tau231. CONCLUSION This study provides preliminary evidence that progressively elevated levels of the GFAP blood biomarker increase the odds of a TES diagnosis among retired professional fighters. Further evaluation is required to improve clarity and understanding of the relationship between progressive changes in the GFAP blood biomarker and a TES diagnosis, specifically evaluating the duration of chronicity and exposure thresholds.
Collapse
Affiliation(s)
- Brooke D Conway Kleven
- Author Affiliations: Sports Innovation Institute (Dr Kleven), Department of Brain Health, Kirk Kerkorian School of Medicine (Dr Kleven), Department of Epidemiology and Biostatistics, School of Public Health (Dr Chien, Dr Cross, and Dr Labus), University of Nevada, Las Vegas, Las Vegas, Nevada; and Cleveland Clinic Lou Ruvo Center for Brain Health (Dr Bernick), Las Vegas, Nevada
| | | | | | | | | |
Collapse
|
2
|
Liu Y, Zhu Y, Wang X, Li Y, Yang S, Li H, Dong B, Wang Z, Song Y, Xu J, Xue C. Mechanisms by which Ganglioside GM1, a specific type of glycosphingolipid, ameliorates BMAA-induced neurotoxicity in early-life stage of zebrafish embryos. Food Res Int 2025; 200:115502. [PMID: 39779142 DOI: 10.1016/j.foodres.2024.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
The neurotoxin β-methylamino-L-alanine (BMAA) produced by cyanobacteria is widely present in foods and dietary supplements, posing a significant threat to human health. Ganglioside GM1 (GM1) has demonstrated potential for treating neurodegenerative diseases; however, its ability to prevent BMAA-induced neurotoxicity remains uncertain. In this study, zebrafish embryos were treated with Ganglioside GM1 to investigate its neuroprotective effects against BMAA exposure and the underlying mechanisms. Exposure to BMAA (400 μM) resulted in increased malformation rate and heart rates in zebrafish embryos at 72 h post-fertilization, along with the decreased survival rates. Conversely, GM1 intervention rescued BMAA-induced movement disorders and brain cell apoptosis, and oxidative stress was alleviated. In addition, GM1 inhibited the neurotoxic effects of BMAA in zebrafish embryos, as indicated by the up-regulation of genes related to neuron development (gpx1a, bdnf, ngfb, and islet-1) and the down-regulations of neurodegeneration-related genes (cdk5, gfap, and nptxr). GM1 treatment restored 261 differentially expressed genes (DEGs) identified through RNA sequencing, with the most enriched DEGs related to the mitogen-activated protein kinase (MAPK) signaling pathway (P < 0.05, 47 genes). GM1 modulated MAPK-targeted gene expression at the mRNA level. These findings suggest that GM1 alleviates BMAA-induced neurotoxicity in the early-life stage of zebrafish embryos. The neuroprotective mechanism may involve the MAPK pathway, offering new insights into lipid signaling for the prevention of neurotoxic hazards to biological health.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yuhe Zhu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yiyang Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Shuaiqi Yang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Hongyan Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Bo Dong
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Zhigao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China
| |
Collapse
|
3
|
Sharma P, Giri A, Tripathi PN. Emerging Trends: Neurofilament Biomarkers in Precision Neurology. Neurochem Res 2024; 49:3208-3225. [PMID: 39347854 DOI: 10.1007/s11064-024-04244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Neurofilaments are structural proteins found in the cytoplasm of neurons, particularly in axons, providing structural support and stability to the axon. They consist of multiple subunits, including NF-H, NF-M, and NF-L, which form long filaments along the axon's length. Neurofilaments are crucial for maintaining the shape and integrity of neurons, promoting axonal transport, and regulating neuronal function. They are part of the intermediate filament (IF) family, which has approximately 70 tissue-specific genes. This diversity allows for a customizable cytoplasmic meshwork, adapting to the unique structural demands of different tissues and cell types. Neurofilament proteins show increased levels in both cerebrospinal fluid (CSF) and blood after neuroaxonal damage, indicating injury regardless of the underlying etiology. Precise measurement and long-term monitoring of damage are necessary for determining prognosis, assessing disease activity, tracking therapeutic responses, and creating treatments. These investigations contribute to our understanding of the importance of proper NF composition in fundamental neuronal processes and have implications for neurological disorders associated with NF abnormalities along with its alteration in different animal and human models. Here in this review, we have highlighted various neurological disorders such as Alzheimer's, Parkinson's, Huntington's, Dementia, and paved the way to use neurofilament as a marker in managing neurological disorders.
Collapse
Affiliation(s)
- Priti Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Aditi Giri
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
4
|
Negrin LL, Ristl R, Wollner G, Hajdu S. Differences in Eotaxin Serum Levels between Polytraumatized Patients with and without Concomitant Traumatic Brain Injury-A Matched Pair Analysis. J Clin Med 2024; 13:4218. [PMID: 39064258 PMCID: PMC11277900 DOI: 10.3390/jcm13144218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Early detection of traumatic brain injury (TBI) is crucial for minimizing secondary neurological damage. Our study aimed to assess the potential of IL-4, IL-6, IL-7, IL-8, IL-10, TNF, and eotaxin serum levels-as a single clinical tool or combined into a panel-for diagnosing TBI in multiple injured patients. Methods: Out of 110 prospectively enrolled polytrauma victims (median age, 39 years; median ISS, 33; 70.9% male) admitted to our level I trauma center over four years, we matched 41 individuals with concomitant TBI (TBI cohort) to 41 individuals without TBI (non-TBI cohort) based on age, gender, Injury Severity Score (ISS), and mortality. Patients' protein levels were measured upon admission (day 0) and on days 1, 3, 5, 7, and 10 during routine blood withdrawal using one separation gel tube each time. Results: The median serum levels of IL-4, IL-6, IL-7, IL-8, IL-10, and TNF exhibited non-similar time courses in the two cohorts and showed no significant differences on days 0, 1, 3, 5, and 7. However, the median eotaxin levels had similar trend lines in both cohorts, with consistently higher levels in the TBI cohort, reaching significance on days 0, 3, and 5. In both cohorts, the median eotaxin level significantly decreased from day 0 to day 1, then significantly increased until day 10. We also found a significant positive association between day 0 eotaxin serum levels and the presence of TBI, indicating that for every 20 pg/mL increase in eotaxin level, the odds of a prevalent TBI rose by 10.5%. ROC analysis provided a cutoff value of 154 pg/mL for the diagnostic test (sensitivity, 0.707; specificity, 0.683; AUC = 0.718). Conclusions: Our findings identified the brain as a significant source, solely of eotaxin release in humans who have suffered a TBI. Nevertheless, the eotaxin serum level assessed upon admission has limited diagnostic value. IL-4, IL-6, IL-7, IL-8, IL-10, and TNF do not indicate TBI in polytraumatized patients.
Collapse
Affiliation(s)
- Lukas L. Negrin
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| | - Robin Ristl
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gregor Wollner
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| | - Stefan Hajdu
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| |
Collapse
|
5
|
Eggertsen PP, Palmfeldt J, Pedersen AR, Frederiksen OV, Olsen RKJ, Nielsen JF. Serum neurofilament light chain, inflammatory markers, and kynurenine metabolites in patients with persistent post-concussion symptoms: A cohort study. J Neurol Sci 2024; 460:123016. [PMID: 38636323 DOI: 10.1016/j.jns.2024.123016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Concussion leads to persistent post-concussion symptoms (PPCS) in up to one-third of those affected. While previous research has linked the initial trauma to elevated serum levels of neurofilament light chain (NFL), inflammatory markers, and neurotoxic metabolites within the kynurenine pathway, few studies have explored their relevance in PPCS. This study aims to investigate these biomarkers in PPCS patients, elucidating their relevance in the prolonged phase of concussion. METHODS Serum samples from 86 PPCS individuals aged 18-30 years, 2-6 months post-trauma were analyzed, with 54 providing follow-up samples after seven months. NFL was measured using single-molecule array (Simoa) technology, 13 inflammatory markers via a Luminex immunoassay, and five kynurenine metabolites using liquid chromatography-mass spectrometry. A control group of 120 healthy anonymous blood donors was recruited for comparison. RESULTS No significant NFL differences were found in PPCS participants compared with healthy individuals (p = 0.22). Intriguingly, a subset (9.3%) of PPCS participants initially exhibited abnormally high NFL levels (>9.7 pg/mL), which normalized upon follow-up (p = 0.032). Additionally, serum levels of the inflammatory markers, monocyte chemoattractant protein-1 (MCP-1/CCL2), and eotaxin-1/CCL11 were 25-40% lower than in healthy individuals (p ≤ 0.001). As hypothesized, PPCS participants exhibited a 22% reduction in the ratio of kynurenic acid to quinolinic acid (neuroprotective index) (p < 0.0001), indicating a shift towards the formation of neurotoxic metabolites. CONCLUSION NFL may serve as a biomarker to monitor recovery, and future studies should investigate the potential therapeutic benefits of modulating the kynurenine pathway to improve PPCS.
Collapse
Affiliation(s)
- Peter Preben Eggertsen
- Hammel Neurorehabilitation Centre and University Research Clinic, Department of Clinical Medicine, Aarhus University, Voldbyvej 15A, Hammel 8450, Denmark; Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark.
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark
| | - Asger Roer Pedersen
- University Research Clinic for Innovative Patient Pathways, Diagnostic Centre, Silkeborg Regional Hospital, Falkevej 1, Silkeborg 8600, Denmark
| | | | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark
| | - Jørgen Feldbæk Nielsen
- Hammel Neurorehabilitation Centre and University Research Clinic, Department of Clinical Medicine, Aarhus University, Voldbyvej 15A, Hammel 8450, Denmark
| |
Collapse
|
6
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 PMCID: PMC11091041 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
7
|
Tuure J, Mohammadian M, Tenovuo O, Blennow K, Hossain I, Hutchinson P, Maanpää HR, Menon DK, Newcombe VF, Takala RS, Tallus J, van Gils M, Zetterberg H, Posti JP. Late Blood Levels of Neurofilament Light Correlate With Outcome in Patients With Traumatic Brain Injury. J Neurotrauma 2024; 41:359-368. [PMID: 37698882 PMCID: PMC11071082 DOI: 10.1089/neu.2023.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Neurofilament light (NF-L) is an axonal protein that has shown promise as a traumatic brain injury (TBI) biomarker. Serum NF-L shows a rather slow rise after injury, peaking after 1-2 weeks, although some studies suggest that it may remain elevated for months after TBI. The aim of this study was to examine if plasma NF-L levels several months after the injury correlate with functional outcome in patients who have sustained TBIs of variable initial severity. In this prospective study of 178 patients with TBI and 40 orthopedic injury controls, we measured plasma NF-L levels in blood samples taken at the follow-up appointment on average 9 months after injury. Patients with TBI were divided into two groups (mild [mTBI] vs. moderate-to-severe [mo/sTBI]) according to the severity of injury assessed with the Glasgow Coma Scale upon admission. Recovery and functional outcome were assessed using the Extended Glasgow Outcome Scale (GOSE). Higher levels of NF-L at the follow-up correlated with worse outcome in patients with moderate-to-severe TBI (Spearman's rho = -0.18; p < 0.001). In addition, in computed tomography-positive mTBI group, the levels of NF-L were significantly lower in patients with GOSE 7-8 (median 18.14; interquartile range [IQR] 9.82, 32.15) when compared with patients with GOSE <7 (median 73.87; IQR 32.17, 110.54; p = 0.002). In patients with mTBI, late NF-L levels do not seem to provide clinical benefit for late-stage assessment, but in patients with initially mo/sTBI, persistently elevated NF-L levels are associated with worse outcome after TBI and may reflect ongoing brain injury.
Collapse
Affiliation(s)
- Juho Tuure
- Department of Clinical Neurosciences, University of Turku, Finland
| | - Mehrbod Mohammadian
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
| | - Kaj Blennow
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Iftakher Hossain
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Henna-Riikka Maanpää
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Finland
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginia F. Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Riikka S.K. Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Finland
| | - Jussi Tallus
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Department of Radiology, Turku University Hospital and University of Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jussi P. Posti
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Finland
| |
Collapse
|
8
|
Umlauf BJ, Frampton G, Cooper A, Greene HF. A novel strategy to increase the therapeutic potency of GBM chemotherapy via altering parenchymal/cerebral spinal fluid clearance rate. J Control Release 2023; 364:195-205. [PMID: 37865172 DOI: 10.1016/j.jconrel.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Patients with glioblastoma (GBM) face a poor prognosis with a median survival of less than two years. Escalating the dose of chemotherapy is often impossible due to patient comorbidities; thus, we focused on modulating brain clearance as a mechanism to enhance drug accumulation. Given the recently identified interconnectivity between brain parenchymal fluid and cerebral spinal fluid (CSF), we reasoned enhancing drug concentration in the CSF also increases drug concentration in the parenchyma where a GBM resides. To improve drug accumulation in the CSF, we impair the motility of ependymal cell cilia. We identified FDA-approved therapeutics that interact with cilia as a "side effect." Therapeutics that inhibit airway cilia also inhibit ependymal cilia. Multiple cilia-inhibiting drugs, when administered in combination with GBM chemotherapy temozolomide (TMZ), significantly improved the overall survival of mice bearing orthotopic GBM. Combining TMZ with lidocaine results in 100% of animals surviving tumor-free to the study endpoint. This treatment results in a ~ 40-fold increase in brain TMZ levels and is well-tolerated. Mice bearing MGMT methylated, human PDX orthotopic GBM also responded with 100% of animals surviving tumor-free to the study endpoint. Finally, even mice bearing TMZ-resistant, orthotopic GBM responded to the combination treatment with 40% of animals surviving tumor-free to the study endpoint, implying this strategy can sensitize TMZ-resistant GBM. These studies offer a new concept for treating malignant brain tumors by improving the accumulation of TMZ in the CNS. In the future, this regimen may also improve the treatment of additional encephalopathies treated by brain-penetrating therapeutics. SIGNIFICANCE: We exploit the interconnectivity of parenchymal and cerebral spinal fluid to enhance the amount of temozolomide that accumulates in the central nervous system to improve the survival of mice bearing brain tumors.
Collapse
Affiliation(s)
- Benjamin J Umlauf
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA; Mulva Clinic for the Neurosciences, The University of Texas at Austin, 1601 Trinity St. Bldg A., Austin, USA.
| | - Gabriel Frampton
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| | - Alexis Cooper
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| | - Hannah-Faith Greene
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| |
Collapse
|
9
|
Halicki MJ, Hind K, Chazot PL. Blood-Based Biomarkers in the Diagnosis of Chronic Traumatic Encephalopathy: Research to Date and Future Directions. Int J Mol Sci 2023; 24:12556. [PMID: 37628736 PMCID: PMC10454393 DOI: 10.3390/ijms241612556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative disease consistently associated with repetitive traumatic brain injuries (TBIs), which makes multiple professions, such as contact sports athletes and the military, especially susceptible to its onset. There are currently no approved biomarkers to diagnose CTE, thus it can only be confirmed through a post-mortem brain autopsy. Several imaging and cerebrospinal fluid biomarkers have shown promise in the diagnosis. However, blood-based biomarkers can be more easily obtained and quantified, increasing their clinical feasibility and potential for prophylactic use. This article aimed to comprehensively review the studies into potential blood-based biomarkers of CTE, discussing common themes and limitations, as well as suggesting future research directions. While the interest in blood-based biomarkers of CTE has recently increased, the research is still in its early stages. The main issue for many proposed biomarkers is their lack of selectivity for CTE. However, several molecules, such as different phosphorylated tau isoforms, were able to discern CTE from different neurodegenerative diseases. Further, the results from studies on exosomal biomarkers suggest that exosomes are a promising source of biomarkers, reflective of the internal environment of the brain. Nonetheless, more longitudinal studies combining imaging, neurobehavioral, and biochemical approaches are warranted to establish robust biomarkers for CTE.
Collapse
Affiliation(s)
| | - Karen Hind
- Durham Wolfson Research Institute for Health and Wellbeing, Stockton-on-Tees TS17 6BH, UK;
| | - Paul L. Chazot
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
10
|
Tomaiuolo R, Zibetti M, Di Resta C, Banfi G. Challenges of the Effectiveness of Traumatic Brain Injuries Biomarkers in the Sports-Related Context. J Clin Med 2023; 12:jcm12072563. [PMID: 37048647 PMCID: PMC10095236 DOI: 10.3390/jcm12072563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Traumatic brain injury affects 69 million people every year. One of the main limitations in managing TBI patients is the lack of univocal diagnostic criteria, including the absence of standardized assessment methods and guidelines. Computerized axial tomography is the first-choice examination, despite the limited prevalence of positivity; moreover, its performance is undesirable due to the risk of radiological exposure, prolonged stay in emergency departments, inefficient use of resources, high cost, and complexity. Furthermore, immediacy and accuracy in diagnosis and management of TBIs are critically unmet medical needs. Especially in the context of sports-associated TBI, there is a strong need for prognostic indicators to help diagnose and identify at-risk subjects to avoid their returning to play while the brain is still highly vulnerable. Fluid biomarkers may emerge as new prognostic indicators to develop more accurate prediction models, improving risk stratification and clinical decision making. This review describes the current understanding of the cellular sources, temporal profile, and potential utility of leading and emerging blood-based protein biomarkers of TBI; its focus is on biomarkers that could improve the management of mild TBI cases and can be measured readily and directly in the field, as in the case of sports-related contexts.
Collapse
Affiliation(s)
- Rossella Tomaiuolo
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Martina Zibetti
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Chiara Di Resta
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Correspondence:
| | - Giuseppe Banfi
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- IRCCS Galeazzi-Sant’Ambrogio, 20157 Milan, Italy
| |
Collapse
|
11
|
Harris G, Rickard JJS, Butt G, Kelleher L, Blanch RJ, Cooper J, Oppenheimer PG. Review: Emerging Eye-Based Diagnostic Technologies for Traumatic Brain Injury. IEEE Rev Biomed Eng 2023; 16:530-559. [PMID: 35320105 PMCID: PMC9888755 DOI: 10.1109/rbme.2022.3161352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Abstract
The study of ocular manifestations of neurodegenerative disorders, Oculomics, is a growing field of investigation for early diagnostics, enabling structural and chemical biomarkers to be monitored overtime to predict prognosis. Traumatic brain injury (TBI) triggers a cascade of events harmful to the brain, which can lead to neurodegeneration. TBI, termed the "silent epidemic" is becoming a leading cause of death and disability worldwide. There is currently no effective diagnostic tool for TBI, and yet, early-intervention is known to considerably shorten hospital stays, improve outcomes, fasten neurological recovery and lower mortality rates, highlighting the unmet need for techniques capable of rapid and accurate point-of-care diagnostics, implemented in the earliest stages. This review focuses on the latest advances in the main neuropathophysiological responses and the achievements and shortfalls of TBI diagnostic methods. Validated and emerging TBI-indicative biomarkers are outlined and linked to ocular neuro-disorders. Methods detecting structural and chemical ocular responses to TBI are categorised along with prospective chemical and physical sensing techniques. Particular attention is drawn to the potential of Raman spectroscopy as a non-invasive sensing of neurological molecular signatures in the ocular projections of the brain, laying the platform for the first tangible path towards alternative point-of-care diagnostic technologies for TBI.
Collapse
Affiliation(s)
- Georgia Harris
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Jonathan James Stanley Rickard
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Department of Physics, Cavendish LaboratoryUniversity of CambridgeCB3 0HECambridgeU.K.
| | - Gibran Butt
- Ophthalmology DepartmentUniversity Hospitals Birmingham NHS Foundation TrustB15 2THBirminghamU.K.
| | - Liam Kelleher
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Richard James Blanch
- Department of Military Surgery and TraumaRoyal Centre for Defence MedicineB15 2THBirminghamU.K.
- Neuroscience and Ophthalmology, Department of Ophthalmology, University Hospitals Birmingham NHS Foundation TrustcBirminghamU.K.
| | - Jonathan Cooper
- School of Biomedical EngineeringUniversity of GlasgowG12 8LTGlasgowU.K.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Healthcare Technologies Institute, Institute of Translational MedicineB15 2THBirminghamU.K.
| |
Collapse
|
12
|
Hiskens MI, Mengistu TS, Li KM, Fenning AS. Systematic Review of the Diagnostic and Clinical Utility of Salivary microRNAs in Traumatic Brain Injury (TBI). Int J Mol Sci 2022; 23:13160. [PMID: 36361944 PMCID: PMC9654991 DOI: 10.3390/ijms232113160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 07/29/2023] Open
Abstract
Research in traumatic brain injury (TBI) is an urgent priority, as there are currently no TBI biomarkers to assess the severity of injury, to predict outcomes, and to monitor recovery. Small non-coding RNAs (sncRNAs) including microRNAs can be measured in saliva following TBI and have been investigated as potential diagnostic markers. The aim of this systematic review was to investigate the diagnostic or prognostic ability of microRNAs extracted from saliva in human subjects. PubMed, Embase, Scopus, PsycINFO and Web of Science were searched for studies that examined the association of saliva microRNAs in TBI. Original studies of any design involving diagnostic capacity of salivary microRNAs for TBI were selected for data extraction. Nine studies met inclusion criteria, with a heterogeneous population involving athletes and hospital patients, children and adults. The studies identified a total of 188 differentially expressed microRNAs, with 30 detected in multiple studies. MicroRNAs in multiple studies involved expression change bidirectionality. The study design and methods involved significant heterogeneity that precluded meta-analysis. Early data indicates salivary microRNAs may assist with TBI diagnosis. Further research with consistent methods and larger patient populations is required to evaluate the diagnostic and prognostic potential of saliva microRNAs.
Collapse
Affiliation(s)
- Matthew I. Hiskens
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, 475 Bridge Road, Mackay, QLD 4740, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD 4702, Australia
| | - Tesfaye S. Mengistu
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, 475 Bridge Road, Mackay, QLD 4740, Australia
- Faculty of Medicine, School of Public Health, University of Queensland, 266 Herston Road, Herston, QLD 4006, Australia
| | - Katy M. Li
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD 4702, Australia
| | - Andrew S. Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD 4702, Australia
| |
Collapse
|
13
|
Hotta N, Tadokoro T, Henry J, Koga D, Kawata K, Ishida H, Oguma Y, Hirata A, Mitsuhashi M, Yoshitani K. Monitoring of Post-Brain Injuries By Measuring Plasma Levels of Neuron-Derived Extracellular Vesicles. Biomark Insights 2022; 17:11772719221128145. [PMID: 36324609 PMCID: PMC9618756 DOI: 10.1177/11772719221128145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EV) released from neurons into the blood can reflect the state of nervous tissue. Measurement of neuron derived EV (NDE) may serve as an indicator of brain injury. METHODS A sandwich immunoassay was established to measure plasma NDE using anti-neuron CD171 and anti-EV CD9 ([CD171 + CD9+]). Plasma samples were obtained from commercial sources, cross-country (n = 9), football (n = 22), soccer (n = 19), and rugby (n = 18) athletes over time. Plasma was also collected from patients undergoing total aortic arch replacement (TAR) with selective cerebral perfusion during cardiopulmonary bypass before and after surgery (n = 36). RESULTS The specificity, linearity, and reproducibility of NDE assay (measurement of [CD171 + CD9+]) were confirmed. By scanning electron microscopy and nanoparticle tracking, spherical vesicles ranging in size from 150 to 300 nm were confirmed. Plasma levels of NDE were widely spread over 2 to 3 logs in different individuals with a significant age-dependent decrease. However, NDE were very stable in each individual within a ± 50% change over time (cross-country, football, soccer), whereas rugby players were more variable over 4 years. In patients undergoing TAR, NDE increased rapidly in days post-surgery and were significantly (P = .0004) higher in those developing postoperative delirium (POD) (n = 13) than non-delirium patients (n = 23). CONCLUSIONS The blood test to determine plasma levels of NDE was established by a sandwich immunoassay using 2 antibodies against neuron (CD171) and exosomes (CD9). NDE levels varied widely in different individuals and decreased with age, indicating that NDE levels should be considered as a normalizer of NDE biomarker studies. However, NDE levels were stable over time in each individual, and increased rapidly after TAR with greater increases associated with patients developing POD. This assay may serve as a surrogate for evaluating and monitoring brain injuries.
Collapse
Affiliation(s)
- Naoshi Hotta
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takahiro Tadokoro
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | - Daisuke Koga
- Department of Anatomy, Asahikawa Medical University, Asahikawa, Japan
| | - Keisuke Kawata
- School of Public Health, Indiana University, Bloomington, IN, USA
| | - Hiroyuki Ishida
- Sports Medicine Research Center, Keio University, Kanagawa, Japan
| | - Yuko Oguma
- Sports Medicine Research Center, Keio University, Kanagawa, Japan
| | - Akihiro Hirata
- Sports Medicine Research Center, Keio University, Kanagawa, Japan
| | - Masato Mitsuhashi
- NanoSomiX, Inc., Irvine, CA, USA,Masato Mitsuhashi, M.D., Ph.D., Technical section, CTO, NanoSomiX, Inc. 15375 Barranca Parkway E-101, Irvine, CA 92718, USA.
| | - Kenji Yoshitani
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
14
|
A review of molecular and genetic factors for determining mild traumatic brain injury severity and recovery. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
15
|
van Amerongen S, Caton DK, Ossenkoppele R, Barkhof F, Pouwels PJW, Teunissen CE, Rozemuller AJM, Hoozemans JJM, Pijnenburg YAL, Scheltens P, Vijverberg EGB. Rationale and design of the “NEurodegeneration: Traumatic brain injury as Origin of the Neuropathology (NEwTON)” study: a prospective cohort study of individuals at risk for chronic traumatic encephalopathy. Alzheimers Res Ther 2022; 14:119. [PMID: 36050790 PMCID: PMC9438060 DOI: 10.1186/s13195-022-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022]
Abstract
Background Repetitive head injury in contact sports is associated with cognitive, neurobehavioral, and motor impairments and linked to a unique neurodegenerative disorder: chronic traumatic encephalopathy (CTE). As the clinical presentation is variable, risk factors are heterogeneous, and diagnostic biomarkers are not yet established, the diagnostic process of CTE remains a challenge. The general objective of the NEwTON study is to establish a prospective cohort of individuals with high risk for CTE, to phenotype the study population, to identify potential fluid and neuroimaging biomarkers, and to measure clinical progression of the disease. The present paper explains the protocol and design of this case-finding study. Methods NEwTON is a prospective study that aims to recruit participants at risk for CTE, with features of the traumatic encephalopathy syndrome (exposed participants), and healthy unexposed control individuals. Subjects are invited to participate after diagnostic screening at our memory clinic or recruited by advertisement. Exposed participants receive a comprehensive baseline screening, including neurological examination, neuropsychological tests, questionnaires and brain MRI for anatomical imaging, diffusion tensor imaging (DTI), resting-state functional MRI (rsfMRI), and quantitative susceptibility mapping (QSM). Questionnaires include topics on life-time head injury, subjective cognitive change, and neuropsychiatric symptoms. Optionally, blood and cerebrospinal fluid are obtained for storage in the NEwTON biobank. Patients are informed about our brain donation program in collaboration with the Netherlands Brain Brank. Follow-up takes place annually and includes neuropsychological assessment, questionnaires, and optional blood draw. Testing of control subjects is limited to baseline neuropsychological tests, MRI scan, and also noncompulsory blood draw. Results To date, 27 exposed participants have finished their baseline assessments. First baseline results are expected in 2023. Conclusions The NEwTON study will assemble a unique cohort with prospective observational data of male and female individuals with high risk for CTE. This study is expected to be a primary explorative base and designed to share data with international CTE-related cohorts. Sub-studies may be added in the future with this cohort as backbone.
Collapse
|
16
|
Hiskens MI. Targets of Neuroprotection and Review of Pharmacological Interventions in Traumatic Brain Injury. J Pharmacol Exp Ther 2022; 382:149-166. [PMID: 35644464 DOI: 10.1124/jpet.121.001023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/06/2022] [Indexed: 03/08/2025] Open
Abstract
Traumatic brain injury (TBI) is a major contributor to disability and death worldwide, and manifests in cognitive, behavioral, and motor impairment. Although there have been numerous pre-clinical studies that have identified promising pharmacologic treatments, to date, all Phase III clinical trials have failed. Thus, this is a priority area for ongoing research and development. Treatment strategies have traditionally focused on neuroprotection of the injured brain to reduce secondary injury, neuronal death, and lesion size. The aim of this minireview is to describe the secondary injury pathophysiology of TBI and give an examination of key targets of neuroprotection, select Phase III trials that have been undertaken, and future possibilities for successful drug development. SIGNIFICANCE STATEMENT: This minireview provides an up-to-date summary of the key Phase III clinical trials that have been undertaken in the development of a neuropharmacological treatment for traumatic brain injury. The article discusses the key targets for treatment, the potential reasons for the lack of translation of promising pre-clinical compounds, and the most promising avenues for future development.
Collapse
Affiliation(s)
- Matthew I Hiskens
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, QLD; and School of Health, Medical, and Applied Sciences, Central Queensland University, Rockhampton, QLD
| |
Collapse
|
17
|
Salivary S100 calcium-binding protein beta (S100B) and neurofilament light (NfL) after acute exposure to repeated head impacts in collegiate water polo players. Sci Rep 2022; 12:3439. [PMID: 35236877 PMCID: PMC8891257 DOI: 10.1038/s41598-022-07241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
Blood-based biomarkers of brain injury may be useful for monitoring brain health in athletes at risk for concussions. Two putative biomarkers of sport-related concussion, neurofilament light (NfL), an axonal structural protein, and S100 calcium-binding protein beta (S100B), an astrocyte-derived protein, were measured in saliva, a biofluid which can be sampled in an athletic setting without the risks and burdens associated with blood sampled by venipuncture. Samples were collected from men’s and women’s collegiate water polo players (n = 65) before and after a competitive tournament. Head impacts were measured using sensors previously evaluated for use in water polo, and video recordings were independently reviewed for the purpose of validating impacts recorded by the sensors. Athletes sustained a total of 107 head impacts, all of which were asymptomatic (i.e., no athlete was diagnosed with a concussion or more serious). Post-tournament salivary NfL was directly associated with head impact frequency (RR = 1.151, p = 0.025) and cumulative head impact magnitude (RR = 1.008, p = 0.014), while controlling for baseline salivary NfL. Change in S100B was not associated with head impact exposure (RR < 1.001, p > 0.483). These patterns suggest that repeated head impacts may cause axonal injury, even in asymptomatic athletes.
Collapse
|
18
|
Tamez-Peña J, Rosella P, Totterman S, Schreyer E, Gonzalez P, Venkataraman A, Meyers SP. Post-concussive mTBI in Student Athletes: MRI Features and Machine Learning. Front Neurol 2022; 12:734329. [PMID: 35082743 PMCID: PMC8784748 DOI: 10.3389/fneur.2021.734329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose: To determine and characterize the radiomics features from structural MRI (MPRAGE) and Diffusion Tensor Imaging (DTI) associated with the presence of mild traumatic brain injuries on student athletes with post-concussive syndrome (PCS). Material and Methods: 122 student athletes (65 M, 57 F), median (IQR) age 18.8 (15–20) years, with a mixed level of play and sports activities, with a known history of concussion and clinical PCS, and 27 (15 M, 12 F), median (IQR) age 20 (19, 21) years, concussion free athlete subjects were MRI imaged in a clinical MR machine. MPRAGE and DTI-FA and DTI-ADC images were used to extract radiomic features from white and gray matter regions within the entire brain (2 ROI) and the eight main lobes of the brain (16 ROI) for a total of 18 analyzed regions. Radiomic features were divided into five different data sets used to train and cross-validate five different filter-based Support Vector Machines. The top selected features of the top model were described. Furthermore, the test predictions of the top four models were ensembled into a single average prediction. The average prediction was evaluated for the association to the number of concussions and time from injury. Results: Ninety-one PCS subjects passed inclusion criteria (91 Cases, 27 controls). The average prediction of the top four models had a sensitivity of 0.80, 95% CI: [0.71, 0.88] and specificity of 0.74 95%CI [0.54, 0.89] for distinguishing subjects from controls. The white matter features were strongly associated with mTBI, while the whole-brain analysis of gray matter showed the worst association. The predictive index was significantly associated with the number of concussions (p < 0.0001) and associated with the time from injury (p < 0.01). Conclusion: MRI Radiomic features are associated with a history of mTBI and they were successfully used to build a predictive machine learning model for mTBI for subjects with PCS associated with a history of one or more concussions.
Collapse
Affiliation(s)
- José Tamez-Peña
- Tecnologico de Monterrey, Escuela de Medicina, Monterrey, Mexico.,Qmetrics Technologies, Rochester, NY, United States
| | - Peter Rosella
- UR Imaging-UMI, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States
| | | | | | | | - Arun Venkataraman
- UR Imaging-UMI, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States
| | - Steven P Meyers
- UR Imaging-UMI, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States
| |
Collapse
|
19
|
Serrano-Navarro IC, Ramos-Zúñiga R, González-Rios JA. The underestimated extent of post-concussion syndrome (Espectro subestimado del síndrome postconmocional). STUDIES IN PSYCHOLOGY 2022. [DOI: 10.1080/02109395.2021.2006946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ilse C. Serrano-Navarro
- Translational Neuroscience Research Institute, University Centre for Health Sciences, Universidad de Guadalajara, Jalisco, México
| | - Rodrigo Ramos-Zúñiga
- Translational Neuroscience Research Institute, University Centre for Health Sciences, Universidad de Guadalajara, Jalisco, México
| | - Jorge A. González-Rios
- Translational Neuroscience Research Institute, University Centre for Health Sciences, Universidad de Guadalajara, Jalisco, México
| |
Collapse
|
20
|
Hiskens MI, Vella RK, Schneiders AG, Fenning AS. Minocycline improves cognition and molecular measures of inflammation and neurodegeneration following repetitive mTBI. Brain Inj 2021; 35:831-841. [PMID: 33818227 DOI: 10.1080/02699052.2021.1909139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To compare the neuroprotective effects of minocycline treatment in a murine model of mTBI on measures of spatial learning and memory, neuroinflammation, excitotoxicity, and neurodegeneration. DESIGN Adult male C57BL/6 J mice were randomly assigned into vehicle control, vehicle with repetitive mTBI, minocycline without mTBI, or minocycline with repetitive mTBI groups. METHODS A validated mouse model of repetitive impact-induced rotational acceleration was used to deliver 15 mTBIs across 23 days. Cognition was assessed via Morris water maze (MWM) testing, and mRNA analysis investigated MAPT, GFAP, AIF1, GRIA1, TARDBP, TNF, and NEFL genes. Assessment was undertaken 48 h and 3 months following final mTBI. RESULTS In the chronic phase of recovery, MWM testing revealed impairment in the vehicle mTBI group compared to unimpacted controls (p < .01) that was not present in the minocycline mTBI group, indicating chronic neuroprotection. mRNA analysis revealed AIF1 elevation in the acute cortex (p < .01) and chronic hippocampus (p < .01) of the vehicle mTBI group, with minocycline treatment leading to improved markers of microglial activation and inflammation in the chronic stage of recovery. CONCLUSIONS These data suggest that minocycline treatment alleviated some mTBI pathophysiology and clinical features at chronic time-points.
Collapse
Affiliation(s)
- Matthew I Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton 4701, Australia
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton 4701, Australia
| | - Anthony G Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton 4701, Australia
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton 4701, Australia
| |
Collapse
|
21
|
Karantali E, Kazis D, McKenna J, Chatzikonstantinou S, Petridis F, Mavroudis I. Neurofilament light chain in patients with a concussion or head impacts: a systematic review and meta-analysis. Eur J Trauma Emerg Surg 2021; 48:1555-1567. [PMID: 34003313 DOI: 10.1007/s00068-021-01693-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Traumatic brain injury is one of the leading causes of disability worldwide. Mild traumatic brain injury (TBI) is the most common and benign form of TBI, usually referred to by the medical term "concussion". The purpose of our systematic review and meta-analysis was to explore the role of serum and CSF neurofilament light chain (NfL) as a potential biomarker in concussion. METHODS We systematically searched PubMed, Web of Science, and Cochrane databases using specific keywords. As the primary outcome, we assessed CSF or serum NfL levels in patients with concussion and head impacts versus controls. The role of NfL in patients with concussion and head impacts compared to healthy controls was also assessed, as well as in sports-related and military-related conditions. RESULTS From the initial 617 identified studies, we included 24 studies in our qualitative analysis and 14 studies in our meta-analysis. We found a statistically significant increase of serum NfL in patients suffering from a concussion or head impacts compared to controls (p = 0.0023), highlighting its potential role as a biomarker. From our sub-group analyses, sports-related concussion and mild TBI were mostly correlated with increased serum NfL values. Compared to controls, sports-related concussion was significantly associated with higher NfL levels (p = 0.0015), while no association was noted in patients suffering from head impacts or military-related TBI. CONCLUSION Serum NfL levels are higher in all patients suffering from concussion compared to healthy controls. The sports-related concussion was specifically associated with higher levels of NfL. Further studies exploring the use of NfL as a diagnostic and prognostic biomarker in mild TBI and head impacts are needed.
Collapse
Affiliation(s)
- Eleni Karantali
- Third Neurological Department, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Dimitrios Kazis
- Third Neurological Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jack McKenna
- Department of Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Fivos Petridis
- Third Neurological Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Mavroudis
- Department of Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
22
|
Hiskens MI, Schneiders AG, Vella RK, Fenning AS. Repetitive mild traumatic brain injury affects inflammation and excitotoxic mRNA expression at acute and chronic time-points. PLoS One 2021; 16:e0251315. [PMID: 33961674 PMCID: PMC8104440 DOI: 10.1371/journal.pone.0251315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/24/2021] [Indexed: 12/30/2022] Open
Abstract
The cumulative effect of mild traumatic brain injuries (mTBI) can result in chronic neurological damage, however the molecular mechanisms underpinning this detriment require further investigation. A closed head weight drop model that replicates the biomechanics and head acceleration forces of human mTBI was used to provide an exploration of the acute and chronic outcomes following single and repeated impacts. Adult male C57BL/6J mice were randomly assigned into one of four impact groups (control; one, five and 15 impacts) which were delivered over 23 days. Outcomes were assessed 48 hours and 3 months following the final mTBI. Hippocampal spatial learning and memory assessment revealed impaired performance in the 15-impact group compared with control in the acute phase that persisted at chronic measurement. mRNA analyses were performed on brain tissue samples of the cortex and hippocampus using quantitative RT-PCR. Eight genes were assessed, namely MAPT, GFAP, AIF1, GRIA1, CCL11, TARDBP, TNF, and NEFL, with expression changes observed based on location and follow-up duration. The cortex and hippocampus showed vulnerability to insult, displaying upregulation of key excitotoxicity and inflammation genes. Serum samples showed no difference between groups for proteins phosphorylated tau and GFAP. These data suggest that the cumulative effect of the impacts was sufficient to induce mTBI pathophysiology and clinical features. The genes investigated in this study provide opportunity for further investigation of mTBI-related neuropathology and may provide targets in the development of therapies that help mitigate the effects of mTBI.
Collapse
Affiliation(s)
- Matthew I. Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, Queensland, Australia
| | - Anthony G. Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Rebecca K. Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Andrew S. Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
23
|
Celecoxib in a Preclinical Model of Repetitive Mild Traumatic Brain Injury: Hippocampal Learning Deficits Persist with Inflammatory and Excitotoxic Neuroprotection. TRAUMA CARE 2021. [DOI: 10.3390/traumacare1010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Repetitive mild traumatic brain injuries (mTBIs) contribute to inflammation-induced neurodegeneration. Cycloxygenase (COX) enzymes produce inflammatory cytokines that influence the microglia response to neurotrauma. Celecoxib is a selective COX-2 inhibitor that is prescribed in some conditions of mTBI to alleviate symptoms of concussion, and has shown benefits in neurodegenerative conditions. We investigated molecular pathways of neuroinflammation in response to celecoxib treatment in a mouse model of repetetive mTBI. Fifteen mTBIs were delivered over 23 days in adult male C57BL/6J mice in one of four groups (control, celecoxib without impact, celecoxib with impact, and vehicle with impact). Cognitive function was assessed at 48 h and three months following the final mTBI. Morris Water Maze testing revealed impaired hippocampal spatial learning performance in the celecoxib treatment with the impact group compared to the vehicle with impact control in the acute phase, with celecoxib treatment providing no improvement compared with the control at chronic testing; mRNA analysis of the cerebral cortex and hippocampus revealed expression change, indicating significant improvement in microglial activation, inflammation, excitotoxicity, and neurodegeneration at chronic measurement. These data suggest that, in the acute phase following injury, celecoxib protected against neuroinflammation, but exacerbated clinical cognitive disturbance. Moreover, while there was evidence of neuroprotective alleviation of mTBI pathophysiology at chronic measurement, there remained no change in clinical features.
Collapse
|
24
|
Donat CK, Yanez Lopez M, Sastre M, Baxan N, Goldfinger M, Seeamber R, Müller F, Davies P, Hellyer P, Siegkas P, Gentleman S, Sharp DJ, Ghajari M. From biomechanics to pathology: predicting axonal injury from patterns of strain after traumatic brain injury. Brain 2021; 144:70-91. [PMID: 33454735 PMCID: PMC7990483 DOI: 10.1093/brain/awaa336] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
The relationship between biomechanical forces and neuropathology is key to understanding traumatic brain injury. White matter tracts are damaged by high shear forces during impact, resulting in axonal injury, a key determinant of long-term clinical outcomes. However, the relationship between biomechanical forces and patterns of white matter injuries, associated with persistent diffusion MRI abnormalities, is poorly understood. This limits the ability to predict the severity of head injuries and the design of appropriate protection. Our previously developed human finite element model of head injury predicted the location of post-traumatic neurodegeneration. A similar rat model now allows us to experimentally test whether strain patterns calculated by the model predicts in vivo MRI and histology changes. Using a controlled cortical impact, mild and moderate injuries (1 and 2 mm) were performed. Focal and axonal injuries were quantified with volumetric and diffusion 9.4 T MRI at 2 weeks post injury. Detailed analysis of the corpus callosum was conducted using multi-shell diffusion MRI and histopathology. Microglia and astrocyte density, including process parameters, along with white matter structural integrity and neurofilament expression were determined by quantitative immunohistochemistry. Linear mixed effects regression analyses for strain and strain rate with the employed outcome measures were used to ascertain how well immediate biomechanics could explain MRI and histology changes. The spatial pattern of mechanical strain and strain rate in the injured cortex shows good agreement with the probability maps of focal lesions derived from volumetric MRI. Diffusion metrics showed abnormalities in the corpus callosum, indicating white matter changes in the segments subjected to high strain, as predicted by the model. The same segments also exhibited a severity-dependent increase in glia cell density, white matter thinning and reduced neurofilament expression. Linear mixed effects regression analyses showed that mechanical strain and strain rate were significant predictors of in vivo MRI and histology changes. Specifically, strain and strain rate respectively explained 33% and 28% of the reduction in fractional anisotropy, 51% and 29% of the change in neurofilament expression and 51% and 30% of microglia density changes. The work provides evidence that strain and strain rate in the first milliseconds after injury are important factors in determining patterns of glial and axonal injury and serve as experimental validators of our computational model of traumatic brain injury. Our results provide support for the use of this model in understanding the relationship of biomechanics and neuropathology and can guide the development of head protection systems, such as airbags and helmets.
Collapse
Affiliation(s)
- Cornelius K Donat
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London, UK
| | - Maria Yanez Lopez
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Nicoleta Baxan
- Biological Imaging Centre, Central Biomedical Services, Imperial College London, London, UK
| | - Marc Goldfinger
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Reneira Seeamber
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Franziska Müller
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Polly Davies
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Peter Hellyer
- Centre for Neuroimaging Sciences, King’s College London, London, UK
| | | | - Steve Gentleman
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - David J Sharp
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London, UK
- UK Dementia Research Institute, Care Research and Technology Centre; Imperial College London, London, UK
| | - Mazdak Ghajari
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London, UK
- Design Engineering, Imperial College London, UK
| |
Collapse
|
25
|
Large-scale informatic analysis to algorithmically identify blood biomarkers of neurological damage. Proc Natl Acad Sci U S A 2020; 117:20764-20775. [PMID: 32764143 DOI: 10.1073/pnas.2007719117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The identification of precision blood biomarkers which can accurately indicate damage to brain tissue could yield molecular diagnostics with the potential to improve how we detect and treat neurological pathologies. However, a majority of candidate blood biomarkers for neurological damage that are studied today are proteins which were arbitrarily proposed several decades before the advent of high-throughput omic techniques, and it is unclear whether they represent the best possible targets relative to the remainder of the human proteome. Here, we leveraged mRNA expression data generated from nearly 12,000 human specimens to algorithmically evaluate over 17,000 protein-coding genes in terms of their potential to produce blood biomarkers for neurological damage based on their expression profiles both across the body and within the brain. The circulating levels of proteins associated with the top-ranked genes were then measured in blood sampled from a diverse cohort of patients diagnosed with a variety of acute and chronic neurological disorders, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, Alzheimer's disease, and multiple sclerosis, and evaluated for their diagnostic performance. Our analysis identifies several previously unexplored candidate blood biomarkers of neurological damage with possible clinical utility, many of which whose presence in blood is likely linked to specific cell-level pathologic processes. Furthermore, our findings also suggest that many frequently cited previously proposed blood biomarkers exhibit expression profiles which could limit their diagnostic efficacy.
Collapse
|