1
|
Freitas RCCD, Bortolin RH, Kuraoka S, Rogers MA, Blaser MC, Chelvanambi S, Borges JB, Oliveira VFD, Dagli-Hernandez C, Bastos GM, Marçal EDSR, Malaquias VB, Gonçalves RM, Faludi AA, Silbiger VN, Luchessi AD, Aikawa M, Hirata RDC, Singh SA, Aikawa E, Hirata MH. Integrative analysis of miRNAs and proteins in plasma extracellular vesicles of patients with familial hypercholesterolemia. Clin Chim Acta 2025; 568:120123. [PMID: 39778611 DOI: 10.1016/j.cca.2025.120123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND AIMS Familial Hypercholesterolemia (FH) is a monogenic disease that leads to early-onset atherosclerosis. Causative mutations in FH-related genes are found in 60-80 % of patients, while epigenetic factors may contribute to mutation-negative cases. This study analyzed miRNAs and proteins from plasma-derived extracellular vesicles (EVs) of FH patients to explore their contribution in FH diagnosis. METHODS Clinical and laboratory data were obtained from 54 FH patients and 38 normolipidemic individuals. FH-related gene variants were identified using exon-targeted gene sequencing. Plasma EVs miRNome and proteome were analysed using small RNA sequencing and liquid chromatography/mass spectrometry. RESULTS Thirteen FH patients carried LDLR deleterious variants (MD group), while 41 did not (non-MD group). Over 2000 miRNAs were detected in plasma EVs, with miR-122-5p higher in FH patients compared to controls, and miR-21-5p higher in the MD group than in the non-MD group (p < 0.05). Proteomic analysis identified 300 proteins with 18 out of 38 proteins more abundant in EVs than in total plasma. Eighteen EVs-derived proteins had differential abundance in FH patients compared to control group (p < 0.05). EV levels of miR-122-5p, miR-21-5p and 12 proteins were correlated with serum lipids (p < 0.05). The integrative analysis between dysregulated miRNAs (miR-122-5p and miR-21-5p) and altered proteins (APOD, APOF, MBL2 and MASP1) from EVs identified several common pathways involved in cholesterol metabolism. CONCLUSION Co-regulation of plasma EVs miR-122-5p, miR-21-5p, APOD, APOF, MBL2 and MASP1 and their correlation with serum lipids suggest their involvement in impaired cholesterol metabolism and may be useful as biomarkers of FH severity.
Collapse
Affiliation(s)
- Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil; Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, The United States of America
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, The United States of America
| | - Shiori Kuraoka
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, The United States of America
| | - Maximillian A Rogers
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, The United States of America
| | - Mark C Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, The United States of America
| | - Sarvesh Chelvanambi
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, The United States of America
| | - Jessica Bassani Borges
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo 01323-001, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil
| | - Gisele Medeiros Bastos
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo 01323-001, Brazil
| | - Elisangela da Silva Rodrigues Marçal
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil; Laboratory of Molecular Research in Cardiology, Institute of Cardiology Dante Pazzanese, Sao Paulo 04012-909, Brazil
| | - Vanessa Barbosa Malaquias
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil
| | | | - Andre Arpad Faludi
- Medical Division, Institute of Cardiology Dante Pazzanese, Sao Paulo 04012-909, Brazil
| | - Vivian Nogueira Silbiger
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, The United States of America
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, The United States of America
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, The United States of America; Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, The United States of America
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil.
| |
Collapse
|
2
|
Meng K, Meng F, Wu Y, Lin L. Multi-omics analysis identified extracellular vesicles as biomarkers for cardiovascular diseases. Talanta 2024; 280:126710. [PMID: 39213888 DOI: 10.1016/j.talanta.2024.126710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cell-derived extracellular vesicles (EVs) have emerged as a promising non-invasive liquid biopsy technique due to their accessibility and their ability to encapsulate and transport diverse biomolecules. EVs have garnered substantial research interest, notably in cardiovascular diseases (CVDs), where their roles in pathophysiology and as diagnostic and prognostic biomarkers are increasingly recognized. This review provides a comprehensive overview of EVs, starting with their origins, followed by the techniques used for their isolation and characterization. We explore the diverse cargo of EVs, including nucleic acids, proteins, lipids, and metabolites, highlighting their roles in intercellular communication and as potential biomarkers. We then delve into the application of genomics, transcriptomics, proteomics, and metabolomics in the analysis of EVs, particularly within the context of CVDs. Finally, we discuss how integrated multi-omics approaches are unveiling novel biomarkers, offering fresh insights into the diagnosis and prognosis of CVDs. This review underscores the growing importance of EVs in clinical diagnostics and the potential of multi-omics to propel future advancements in CVD biomarker discovery.
Collapse
Affiliation(s)
- Ke Meng
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Fanqi Meng
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361004, Fujian, China
| | - Yuan Wu
- Department of Cardiac Surgery, Yuebei People's Hospital, Shaoguan, Guangdong, China.
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Sheikh MSA, Salma U. Impact of microRNAs on cardiovascular diseases and aging. J Int Med Res 2024; 52:3000605241279190. [PMID: 39370977 PMCID: PMC11459564 DOI: 10.1177/03000605241279190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality for both men and women among all ethnicities worldwide. Although significant improvements in the management of CVD occurred in the 20th century, non-invasive, universal, early diagnostic biomarkers and newer therapeutic drugs are needed for clinical treatment by physicians. MicroRNAs (miRNAs) are a class of endogenous, non-coding, single-stranded, small RNA molecules that are critically controlled by all human biological processes. Moreover, dysregulated miRNA expression is directly involved in various CVDs, including stable coronary artery disease and acute coronary syndrome. Several miRNAs that are enriched in the plasma of CVD patients have potential as clinical biomarkers, and overexpression or inhibition of specific miRNAs has novel therapeutic significance in the management of CVD. Aging is a multifactorial physiological process that gradually deteriorates tissue and organ function and is considered a non-modifiable major risk factor for CVDs. Recently, several studies established that various miRNAs essentially regulate aging and aging-related disease processes. This narrative review briefly discusses the recently updated molecular involvement of miRNAs in CVDs, their possible diagnostic, prognostic, and therapeutic value, and their relationship to the aging process.
Collapse
Affiliation(s)
- Md Sayed Ali Sheikh
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Umme Salma
- Department of Gynecology and Obstetrics, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Payandeh Z, Tangruksa B, Synnergren J, Heydarkhan-Hagvall S, Nordin JZ, Andaloussi SE, Borén J, Wiseman J, Bohlooly-Y M, Lindfors L, Valadi H. Extracellular vesicles transport RNA between cells: Unraveling their dual role in diagnostics and therapeutics. Mol Aspects Med 2024; 99:101302. [PMID: 39094449 DOI: 10.1016/j.mam.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/11/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Modern methods of molecular diagnostics and therapy have revolutionized the field of medicine in recent years by providing more precise and effective tools for detecting and treating diseases. This progress includes a growing exploration of the body's secreted vesicles, known as extracellular vesicles (EVs), for both diagnostic and therapeutic purposes. EVs are a heterogeneous population of lipid bilayer vesicles secreted by almost every cell type studied so far. They are detected in body fluids and conditioned culture media from living cells. EVs play a crucial role in communication between cells and organs, both locally and over long distances. They are recognized for their ability to transport endogenous RNA and proteins between cells, including messenger RNA (mRNA), microRNA (miRNA), misfolded neurodegenerative proteins, and several other biomolecules. This review explores the dual utilization of EVs, serving not only for diagnostic purposes but also as a platform for delivering therapeutic molecules to cells and tissues. Through an exploration of their composition, biogenesis, and selective cargo packaging, we elucidate the intricate mechanisms behind RNA transport between cells via EVs, highlighting their potential use for both diagnostic and therapeutic applications. Finally, it addresses challenges and outlines prospective directions for the clinical utilization of EVs.
Collapse
Affiliation(s)
- Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden
| | - Benyapa Tangruksa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden; Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Sepideh Heydarkhan-Hagvall
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden; Global Patient Safety - Biopharma, AstraZeneca, 431 83, Gothenburg, Mölndal, Sweden
| | - Joel Z Nordin
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
| | - John Wiseman
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Gothenburg, Mölndal, Sweden
| | - Mohammad Bohlooly-Y
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Gothenburg, Mölndal, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden.
| |
Collapse
|
5
|
Bhat OM, Mir RA, Nehvi IB, Wani NA, Dar AH, Zargar MA. Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases. IJC HEART & VASCULATURE 2024; 53:101469. [PMID: 39139609 PMCID: PMC11320467 DOI: 10.1016/j.ijcha.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - M Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
6
|
Karlin H, Sooda M, Larson M, Rong J, Huan T, Mens MMJ, van Rooij FJA, Ikram MA, Courchesne P, Freedman JE, Joehanes R, Mueller GP, Kavousi M, Ghanbari M, Levy D. Plasma Extracellular MicroRNAs Associated With Cardiovascular Disease Risk Factors in Middle-Aged and Older Adults. J Am Heart Assoc 2024; 13:e033674. [PMID: 38860398 PMCID: PMC11255734 DOI: 10.1161/jaha.123.033674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/01/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Extracellular microRNAs (miRNAs) are a class of noncoding RNAs that remain stable in the extracellular milieu, where they contribute to various physiological and pathological processes by facilitating intercellular signaling. Previous studies have reported associations between miRNAs and cardiovascular diseases (CVDs); however, the plasma miRNA signatures of CVD and its risk factors have not been fully elucidated at the population level. METHODS AND RESULTS Plasma miRNA levels were measured in 4440 FHS (Framingham Heart Study) participants. Linear regression analyses were conducted to test the cross-sectional associations of each miRNA with 8 CVD risk factors. Prospective analyses of the associations of miRNAs with new-onset obesity, hypertension, type 2 diabetes, CVD, and all-cause mortality were conducted using proportional hazards regression. Replication was carried out in 1999 RS (Rotterdam Study) participants. Pathway enrichment analyses were conducted and target genes were predicted for miRNAs associated with ≥5 risk factors in the FHS. In the FHS, 6 miRNAs (miR-193b-3p, miR-122-5p, miR-365a-3p, miR-194-5p, miR-192-5p, and miR-193a-5p) were associated with ≥5 risk factors. This miRNA signature was enriched for pathways associated with CVD and several genes annotated to these pathways were predicted targets of the identified miRNAs. Furthermore, miR-193b-3p, miR-194-5p, and miR-193a-5p were each associated with ≥2 risk factors in the RS. Prospective analysis revealed 8 miRNAs associated with all-cause mortality in the FHS. CONCLUSIONS These findings highlight associations between miRNAs and CVD risk factors that may provide valuable insights into the underlying pathogenesis of CVD.
Collapse
Affiliation(s)
- Hannah Karlin
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Meera Sooda
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Martin Larson
- Framingham Heart StudyFraminghamMAUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Jian Rong
- Framingham Heart StudyFraminghamMAUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
| | - Tianxiao Huan
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
- Ophthalmology and Visual SciencesUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Michelle M. J. Mens
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
- Department of Social and Behavioral SciencesHarvard T.H Chan School of Public HealthBostonMAUSA
| | - Frank J. A. van Rooij
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Paul Courchesne
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Jane E. Freedman
- Department of Medicine, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Roby Joehanes
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Gregory P. Mueller
- Department of Anatomy, Physiology, and Genetics, F. Edward Hebert School of MedicineUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Maryam Kavousi
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Mohsen Ghanbari
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Daniel Levy
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
- Boston University School of MedicineBostonMAUSA
| |
Collapse
|
7
|
Chen H, Yao H, Chi J, Li C, Liu Y, Yang J, Yu J, Wang J, Ruan Y, Pi J, Xu JF. Engineered exosomes as drug and RNA co-delivery system: new hope for enhanced therapeutics? Front Bioeng Biotechnol 2023; 11:1254356. [PMID: 37823027 PMCID: PMC10562639 DOI: 10.3389/fbioe.2023.1254356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Chemotherapy often faces some obstacles such as low targeting effects and drug resistance, which introduce the low therapeutic efficiency and strong side effects. Recent advances in nanotechnology allows the use of novel nanosystems for targeted drug delivery, although the chemically synthesized nanomaterials always show unexpected low biocompability. The emergence of exosome research has offered a better understanding of disease treatment and created novel opportunities for developing effective drug delivery systems with high biocompability. Moreover, RNA interference has emerged as a promising strategy for disease treatments by selectively knocking down or over-expressing specific genes, which allows new possibilities to directly control cell signaling events or drug resistance. Recently, more and more interests have been paid to develop optimal delivery nanosystems with high efficiency and high biocompability for drug and functional RNA co-delivery to achieve enhanced chemotherapy. In light of the challenges for developing drug and RNA co-delivery system, exosomes have been found to show very attractive prospects. This review aims to explore current technologies and challenges in the use of exosomes as drug and RNA co-delivery system with a focus on the emerging trends and issues associated with their further applications, which may contribute to the accelerated developments of exosome-based theraputics.
Collapse
Affiliation(s)
- Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Chaowei Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiajun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
8
|
Zhang Y, Dou Y, Liu Y, Di M, Bian H, Sun X, Yang Q. Advances in Therapeutic Applications of Extracellular Vesicles. Int J Nanomedicine 2023; 18:3285-3307. [PMID: 37346366 PMCID: PMC10281276 DOI: 10.2147/ijn.s409588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale bilayer phospholipid membrane vesicles released by cells. Contained large molecules such as nucleic acid, protein, and lipid, EVs are an integral part of cell communication. The contents of EVs vary based on the cell source and play an important role in both pathological and physiological conditions. EVs can be used as drugs or targets in disease treatment, and changes in the contents of EVs can indicate the progression of diseases. In recent years, with the continuous exploration of the structure, characteristics, and functions of EVs, the potential of engineered EVs for drug delivery and therapy being constantly explored. This review provides a brief overview of the structure, characteristics and functions of EVs, summarizes the advanced application of EVs and outlook on the prospect of it. It is our hope that this review will increase understanding of the current development of medical applications of EVs and help us overcome future challenges.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Mingyuan Di
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Hanming Bian
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
9
|
Xu L, Fu T, Wang Y, Ji N. Diagnostic value of peripheral blood miR-296 combined with vascular endothelial growth factor B on the degree of coronary artery stenosis in patients with coronary heart disease. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:520-529. [PMID: 36852944 DOI: 10.1002/jcu.23433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Coronary heart disease (CHD) is a disorder resulting from organic and functional coronary artery stenosis (CAS), thus causing reduced oxygenated blood in the heart. miRNAs are useful biomarkers in the diagnosis of atherosclerosis, CHD, and acute coronary syndrome. Vascular endothelial growth factor (VEGF) is closely related to CHD. This study explored the correlation of miR-296 and VEGF-B expression levels in peripheral blood with CAS degree in CHD patients. METHODS Totally 220 CHD patients were enrolled and classified into mild-(71 cases)/moderate-(81 cases)/severe-CAS (68 cases) groups, with another 80 healthy cases as controls. The serum miR-296 and VEGF-B expression levels were detected using reverse transcription quantitative polymerase chain reaction. The correlation between miR-296 and CAS-related indexes was assessed via Pearson analysis. The binding relationship of miR-296 and VEGF-B was first predicted and their correlation was further analyzed via the Pearson method. The clinical diagnostic efficacy of miR-296 or VEGF-B on CAS degree was evaluated by the receiver operating characteristic curve. RESULTS Serum miR-296 was downregulated in CHD patients and was the lowest in patients with severe-CAS. miR-296 was negatively-correlated with high-sensitivity C-reactive protein, brain natriuretic peptide, and cardiac troponin I. miR-296 targeted VEGF-B. VEGF-B was upregulated in CHD patients and inversely-related to miR-296. Low expression of miR-296 and high expression of VEGF-B both had high clinical diagnostic values on CAS degree in CHD patients. miR-296 combined with VEGF-B increased the diagnostic value on CAS. CONCLUSION Low expression of miR-296 combined with high expression of its target VEGF-B predicts CAS degree in CHD patients.
Collapse
Affiliation(s)
- Lei Xu
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ting Fu
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
10
|
Li J, Wu X, Ma H, Sun G, Ding P, Lu S, Zhang L, Yang P, Peng Y, Fu J, Wang L. New developments in non-exosomal and exosomal ncRNAs in coronary artery disease. Epigenomics 2022; 14:1355-1372. [PMID: 36514887 DOI: 10.2217/epi-2022-0201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim & methods: Non-exosomal and exosomal ncRNAs have been reported to be involved in the regulation of coronary artery disease (CAD). Therefore, to explore the biological effects of non-exosomal/exosomal ncRNAs in CAD, the authors searched for studies published in the last 3 years on these ncRNAs in CAD and summarized their functions and mechanisms. Results: The authors summarized 120 non-exosomal ncRNAs capable of regulating CAD progression. In clinical studies, 47 non-exosomal and nine exosomal ncRNAs were able to serve as biomarkers for the diagnosis of CAD. Conclusion: Non-exosomal/exosomal ncRNAs are not only able to serve as biomarkers for CAD diagnosis but can also regulate CAD progression through ceRNA mechanisms and are a potential target for early clinical intervention in CAD.
Collapse
Affiliation(s)
- Jingru Li
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Xinyu Wu
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Haocheng Ma
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Guihu Sun
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Peng Ding
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Si Lu
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lijiao Zhang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ping Yang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Yunzhu Peng
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jingyun Fu
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Luqiao Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
11
|
Xin W, Qin Y, Lei P, Zhang J, Yang X, Wang Z. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: Exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:900-922. [PMID: 36159596 PMCID: PMC9464648 DOI: 10.1016/j.omtn.2022.08.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7:200. [PMID: 35752619 PMCID: PMC9233709 DOI: 10.1038/s41392-022-01055-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetics is closely related to cardiovascular diseases. Genome-wide linkage and association analyses and candidate gene approaches illustrate the multigenic complexity of cardiovascular disease. Several epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding RNA, which are of importance for cardiovascular disease development and regression. Targeting epigenetic key enzymes, especially the DNA methyltransferases, histone methyltransferases, histone acetylases, histone deacetylases and their regulated target genes, could represent an attractive new route for the diagnosis and treatment of cardiovascular diseases. Herein, we summarize the knowledge on epigenetic history and essential regulatory mechanisms in cardiovascular diseases. Furthermore, we discuss the preclinical studies and drugs that are targeted these epigenetic key enzymes for cardiovascular diseases therapy. Finally, we conclude the clinical trials that are going to target some of these processes.
Collapse
|
13
|
Marathon-Induced Cardiac Strain as Model for the Evaluation of Diagnostic microRNAs for Acute Myocardial Infarction. J Clin Med 2021; 11:jcm11010005. [PMID: 35011745 PMCID: PMC8745173 DOI: 10.3390/jcm11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The current gold standard biomarker for myocardial infarction (MI), cardiac troponin (cTn), is recognized for its high sensitivity and organ specificity; however, it lacks diagnostic specificity. Numerous studies have introduced circulating microRNAs as potential biomarkers for MI. This study investigates the MI-specificity of these serum microRNAs by investigating myocardial stress/injury due to strenuous exercise. Methods: MicroRNA biomarkers were retrieved by comprehensive review of 109 publications on diagnostic serum microRNAs for MI. MicroRNA levels were first measured by next-generation sequencing in pooled sera from runners (n = 46) before and after conducting a full competitive marathon. Hereafter, reverse transcription quantitative real-time PCR (qPCR) of 10 selected serum microRNAs in 210 marathon runners was performed (>10,000 qPCR measurements). Results: 27 potential diagnostic microRNA for MI were retrieved by the literature review. Eight microRNAs (miR-1-3p, miR-21-5p, miR-26a-5p, miR-122-5p, miR-133a-3p, miR-142-5p, miR-191-5p, miR-486-3p) showed positive correlations with cTnT in marathon runners, whereas two miRNAs (miR-134-5p and miR-499a-5p) showed no correlations. Upregulation of miR-133a-3p (p = 0.03) and miR-142-5p (p = 0.01) went along with elevated cTnT after marathon. Conclusion: Some MI-associated microRNAs (e.g., miR-133a-3p and miR-142-5p) have similar kinetics under strenuous exercise and MI as compared to cTnT, which suggests that their diagnostic specificity could be limited. In contrast, several MI-associated microRNAs (miR-26a-5p, miR-134-5p, miR-191-5p) showed different release behavior; hence, combining cTnT with these microRNAs within a multi-marker strategy may add diagnostic accuracy in MI.
Collapse
|
14
|
Li W, Li Y, Zhi W, Liu C, Fan W, Miao Q, Gu X. Diagnostic value of using exosome-derived cysteine-rich protein 61 as biomarkers for acute coronary syndrome. Exp Ther Med 2021; 22:1437. [PMID: 34721679 PMCID: PMC8549088 DOI: 10.3892/etm.2021.10872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Acute coronary syndrome (ACS) is the main manifestation of cardiovascular disease and the primary cause of adult hospitalization in China. There is an urgent demand for novel biomarkers for the diagnosis of ACS. Although plasma cysteine-rich protein 61 (Cyr61) has been previously reported to be accurate for ACS diagnosis, the accuracy of exosomal Cyr61 in ACS diagnosis remains unknown. In the present study, the aim was to assess the potential of applying exosomal Cyr61 in ACS diagnosis and to explore the role of Cyr61 in vascular remodeling in vitro. The abundance of Cyr61 in plasma-derived exosomes from patients with unstable angina pectoris (UAP), acute myocardial infarction (AMI) patients in addition to those isolated from healthy individuals were detected using an ELISA kit. The association between exosomal Cyr61 levels and clinical characteristics of ACS patients was analyzed through χ2 test, Fisher's exact test and Student's t-test. Receiver operating characteristic (ROC) curve analysis was used to determine the accuracy of using exosomal Cyr61 as a biomarker of ACS diagnosis. Furthermore, independent predictors of the existence of ACS were investigated through a multivariate analysis. Subsequently, the role of Cyr61 on vascular remodeling was evaluated in vascular smooth muscle cells (VSMCs) upon oxidized low-density lipoprotein (ox-LDL) treatment by performing Cyr61 knockdown, Cell Counting Kit-8, flow cytometry and Transwell assays. Exosomal Cyr61 expression was found to be significantly elevated in patients with ACS compared with that in healthy individuals. In addition, exosomal Cyr61 levels were associated with sex, family history of ACS and glucose levels. ROC curve analyzes revealed that exosomal Cyr61 expression could be used to differentiate patients with UAP, AMI and ACS from healthy individuals. Furthermore, exosomal Cyr61 levels were independently correlated with the existence of ACS. In vitro, Cyr61 expression was demonstrated to be significantly increased in VSMCs after ox-LDL exposure in a concentration- and time-dependent manner. Functionally, the elevated cell viability and migration of VSMCs induced by ox-LDL were partially but significantly inhibited by Cyr61 knockdown. By contrast, knocking down Cyr61 expression significantly elevated the apoptosis rate of VSMCs compared with that in the ox-LDL-treated group. In conclusion, data from the present study suggest that Cyr61 serve a regulatory role in vascular remodeling in vitro, where exosomal Cyr61 levels may represent a promising biomarker for ACS diagnosis.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yi Li
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wei Zhi
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Chen Liu
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Weize Fan
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Qing Miao
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xinshun Gu
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
15
|
Yu J, Li Y, Leng D, Cao C, Yu Y, Wang Y. microRNA-3646 serves as a diagnostic marker and mediates the inflammatory response induced by acute coronary syndrome. Bioengineered 2021; 12:5632-5640. [PMID: 34519257 PMCID: PMC8806520 DOI: 10.1080/21655979.2021.1967066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acute coronary syndrome (ACS) is one of the main syndromes of coronary artery disease with high mortality. The identification of biomarkers associated with disease occurrence and progression could improve early detection and risk prediction. This study was aimed to reveal the clinical significance and function of miR-3646 in ACS. The expression of miR-3646 was evaluated in ACS patients, healthy volunteers, and non-ACS patients and estimated the clinical significance of miR-3646. The ACS modeling rats were also established in this study to explore the potential mechanism underlying the function of miR-3646. miR-3646 was upregulated in ACS patients compared with healthy volunteers and non-ACS patients. The expression of miR-3646 was positively correlated with the severity and progression of ACS patients and could discriminate ACS patients from healthy volunteers and non-ACS patients. The knockdown of miR-3646 could reverse the inflammatory response induced by ACS.miR-3646 serves as a diagnostic biomarker for ACS. The knockdown of miR-3646 could alleviate ACS by reversing inflammatory response. These results provide a potential therapeutic target of ACS.
Collapse
Affiliation(s)
- Jinming Yu
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yongmei Li
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Deguo Leng
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Cheng Cao
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yongzhi Yu
- Department of Cardiology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yijuan Wang
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| |
Collapse
|
16
|
Chantzichristos D, Svensson PA, Garner T, Glad CA, Walker BR, Bergthorsdottir R, Ragnarsson O, Trimpou P, Stimson RH, Borresen SW, Feldt-Rasmussen U, Jansson PA, Skrtic S, Stevens A, Johannsson G. Identification of human glucocorticoid response markers using integrated multi-omic analysis from a randomized crossover trial. eLife 2021; 10:62236. [PMID: 33821793 PMCID: PMC8024021 DOI: 10.7554/elife.62236] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Glucocorticoids are among the most commonly prescribed drugs, but there is no biomarker that can quantify their action. The aim of the study was to identify and validate circulating biomarkers of glucocorticoid action. Methods: In a randomized, crossover, single-blind, discovery study, 10 subjects with primary adrenal insufficiency (and no other endocrinopathies) were admitted at the in-patient clinic and studied during physiological glucocorticoid exposure and withdrawal. A randomization plan before the first intervention was used. Besides mild physical and/or mental fatigue and salt craving, no serious adverse events were observed. The transcriptome in peripheral blood mononuclear cells and adipose tissue, plasma miRNAomic, and serum metabolomics were compared between the interventions using integrated multi-omic analysis. Results: We identified a transcriptomic profile derived from two tissues and a multi-omic cluster, both predictive of glucocorticoid exposure. A microRNA (miR-122-5p) that was correlated with genes and metabolites regulated by glucocorticoid exposure was identified (p=0.009) and replicated in independent studies with varying glucocorticoid exposure (0.01 ≤ p≤0.05). Conclusions: We have generated results that construct the basis for successful discovery of biomarker(s) to measure effects of glucocorticoids, allowing strategies to individualize and optimize glucocorticoid therapy, and shedding light on disease etiology related to unphysiological glucocorticoid exposure, such as in cardiovascular disease and obesity. Funding: The Swedish Research Council (Grant 2015-02561 and 2019-01112); The Swedish federal government under the LUA/ALF agreement (Grant ALFGBG-719531); The Swedish Endocrinology Association; The Gothenburg Medical Society; Wellcome Trust; The Medical Research Council, UK; The Chief Scientist Office, UK; The Eva Madura’s Foundation; The Research Foundation of Copenhagen University Hospital; and The Danish Rheumatism Association. Clinical trial number: NCT02152553. Several diseases, including asthma, arthritis, some skin conditions, and cancer, are treated with medications called glucocorticoids, which are synthetic versions of human hormones. These drugs are also used to treat people with a condition call adrenal insufficiency who do not produce enough of an important hormone called cortisol. Use of glucocorticoids is very common, the proportion of people in a given country taking them can range from 0.5% to 21% of the population depending on the duration of the treatment. But, like any medication, glucocorticoids have both benefits and risks: people who take glucocorticoids for a long time have an increased risk of diabetes, obesity, cardiovascular disease, and death. Because of the risks associated with taking glucocorticoids, it is very important for physicians to tailor the dose to each patient’s needs. Doing this can be tricky, because the levels of glucocorticoids in a patient’s blood are not a good indicator of the medication’s activity in the body. A test that can accurately measure the glucocorticoid activity could help physicians personalize treatment and reduce harmful side effects. As a first step towards developing such a test, Chantzichristos et al. identified a potential way to measure glucocorticoid activity in patient’s blood. In the experiments, blood samples were collected from ten patients with adrenal insufficiency both when they were on no medication, and when they were taking a glucocorticoid to replace their missing hormones. Next, the blood samples were analyzed to determine which genes were turned on and off in each patient with and without the medication. They also compared small molecules in the blood called metabolites and tiny pieces of genetic material called microRNAs that turn genes on and off. The experiments revealed networks of genes, metabolites, and microRNAs that are associated with glucocorticoid activity, and one microRNA called miR-122-5p stood out as a potential way to measure glucocorticoid activity. To verify this microRNA’s usefulness, Chantzichristos et al. looked at levels of miR-122-5p in people participating in three other studies and confirmed that it was a good indicator of the glucocorticoid activity. More research is needed to confirm Chantzichristos et al.’s findings and to develop a test that can be used by physicians to measure glucocorticoid activity. The microRNA identified, miR-122-5p, has been previously linked to diabetes, so studying it further may also help scientists understand how taking glucocorticoids may increase the risk of developing diabetes and related diseases.
Collapse
Affiliation(s)
- Dimitrios Chantzichristos
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Terence Garner
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Camilla Am Glad
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Brian R Walker
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Ragnhildur Bergthorsdottir
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Oskar Ragnarsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Penelope Trimpou
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Roland H Stimson
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Stina W Borresen
- Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stanko Skrtic
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Innovation Strategies and External Liaison, Pharmaceutical Technologies and Development, Gothenburg, Sweden
| | - Adam Stevens
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Gudmundur Johannsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
17
|
Zheng D, Huo M, Li B, Wang W, Piao H, Wang Y, Zhu Z, Li D, Wang T, Liu K. The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Front Cell Dev Biol 2021; 8:616161. [PMID: 33511124 PMCID: PMC7835482 DOI: 10.3389/fcell.2020.616161] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small vesicles (30–150 nm in diameter) enclosed by a lipid membrane bilayer, secreted by most cells in the body. They carry various molecules, including proteins, lipids, mRNA, and other RNA species, such as long non-coding RNA, circular RNA, and microRNA (miRNA). miRNAs are the most numerous cargo molecules in the exosome. They are endogenous non-coding RNA molecules, approximately 19–22-nt-long, and important regulators of protein biosynthesis. Exosomes can be taken up by neighboring or distant cells, where they play a role in post-transcriptional regulation of gene expression by targeting mRNA. Exosomal miRNAs have diverse functions, such as participation in inflammatory reactions, cell migration, proliferation, apoptosis, autophagy, and epithelial–mesenchymal transition. There is increasing evidence that exosomal miRNAs play an important role in cardiovascular health. Exosomal miRNAs are widely involved in the occurrence and development of cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, heart failure (HF), myocardial ischemia reperfusion injury, and pulmonary hypertension. In this review, we present a systematic overview of the research progress into the role of exosomal miRNAs in cardiovascular diseases, and present new ideas for the diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Dongdong Zheng
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ming Huo
- Department of Day Operating Room, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hulin Piao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yong Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tiance Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|