1
|
Ruan X, Mueck AO. The WHO claims estrogens are 'carcinogenic': is this true? Climacteric 2023; 26:263-270. [PMID: 37068508 DOI: 10.1080/13697137.2023.2196002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Estrogens are in the list of carcinogenic chemicals from the World Health Organization (WHO). However, estrogens require additional factors such as stromal factors or progestogens to increase the ratio of proliferation/apoptosis for initiation of replication errors and consequent mutations to occur. These mutations require at least 5-10 years to develop into clinically detectable cancer, whereby this review is focused on breast cancer. The US National Cancer Institute highlighted a second mechanism of carcinogenicity: certain estrogen metabolites are capable of inducing DNA damage, even in low concentration. They can be assessed in the tissue and circulation. However, those deleterious reactions require excessive unrestricted oxidative cell stress, for example in industrial areas with heavy pollution. We have shown that this can be avoided using transdermal instead of oral estradiol treatment, especially important in smokers. The spectrum of metabolites is also influenced by other exogenous factors such as nutrition, physical activity and certain diseases. Reduction of breast cancer risk as demonstrated in the Women's Health Initiative (WHI) was explained by pro-apoptotic estrogen effects working after a certain 'time gap'. In addition, certain estrogen metabolites are carcinoprotective, if no genetic polymorphisms would impair their beneficial activities. Thus, since additional factors are required for both main pathways of carcinogenicity and because estrogens can even have carcinoprotective effects, we cannot agree with the statement from the WHO.
Collapse
Affiliation(s)
- X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department of Women's Health, Research Centre for Women's Health and University Women's Hospital of Tuebingen, University Hospitals of Tuebingen, Tuebingen, Germany
| | - A O Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department of Women's Health, Research Centre for Women's Health and University Women's Hospital of Tuebingen, University Hospitals of Tuebingen, Tuebingen, Germany
| |
Collapse
|
2
|
Zhang L, Ruan X, Gu M, Mueck AO. E2 + norethisterone promotes the PI3K-AKT pathway via PGRMC1 to induce breast cancer cell proliferation. Climacteric 2022; 25:467-475. [PMID: 35137666 DOI: 10.1080/13697137.2022.2029837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to find evidence that progesterone receptor membrane component 1 (PGRMC1) promotes estradiol (E2) + norethisterone (NET)-induced breast cancer proliferation through activation of the phosphatidylinositol-3-kinase (PI3K)-AKT pathway. METHODS PGRMC1-mediated breast cancer cellular proliferation and phosphorylation of PGRMC1 were studied using wild-type (hemagglutinin [HA]-tagged) MCF-7 cells, which were stably transfected with expression vector containing HA (MCF-7-HA cells), PGRMC1 (MCF-7-PGRMC1 cells) and Ser181 point mutated PGRMC1 (MCF-7-PGRMC1-S181A cells). Bioinformatics, cell proliferation, western blot, isobaric tags for relative and absolute quantitation (iTRAQ)-based RNA sequencing, real-time quantitative polymerase chain reaction (RT-qPCR) and cell cycle in vitro assays were performed to indicate the function of PGRMC1 and its possible mechanisms in breast cancer. RESULTS NET + E2 elicited a significant proliferation in MCF-7-Vec at 10-6 M and 10-10 M, respectively. MCF-7-PGRMC1 did increase the phosphorylation of AKT or ERK, which can be blocked by treatment with casein kinase 2 (CK2) inhibitor quinalizarin or in MCF-7-PGRMC1-S181A cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the PI3K-AKT pathway is upregulated in MCF-7-PGRMC1 cells. Importantly, upregulation of the PI3K-AKT pathway mainly through promotion of cell cycle regulation strongly promoted cell proliferation in MCF-7-PGRMC1 cells. CONCLUSIONS CK2 is involved in phosphorylation of PGRMC1 at S181. The mechanism for the action of PGRMC1 for mediating proliferative progestogen effects obviously starts with promotion cell cycle regulation, and then activation of the PI3K-AKT pathway.
Collapse
Affiliation(s)
- L Zhang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.,Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen, Tuebingen, Germany
| | - M Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - A O Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.,Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Xu X, Ruan X, Zhang Y, Cai G, Ju R, Yang Y, Cheng J, Gu M. Comprehensive Analysis of the Implication of PGRMC1 in Triple-Negative Breast Cancer. Front Bioeng Biotechnol 2021; 9:714030. [PMID: 34746100 PMCID: PMC8569863 DOI: 10.3389/fbioe.2021.714030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
TNBC represents the most malignant subtype of breast cancer with heterogenicity and poor prognosis. PGRMC1 has been reported to predict worse prognosis and correlate with MHT mediated signal transduction in breast cancer, whereas its involvement in TNBC remains poorly explored. The purpose of the study was to explore the roles of PGRMC1 in TNBC. Bioinformatic approaches were performed to analyzed the expression of PGRMC1 among different subtypes of breast cancers using RNA-seq data from the TCGA, METABRIC and GEO databases. PGRMC1 mRNA expression and survival in breast cancer were analyzed. Furthermore, we analyzed the expression of PGRMC1 in TNBC by single cell RNA-seq data and immunohistochemistry. The expression of PGRMC1 in TNBC group was significantly higher compared with that of Luminal subtypes, especially in the epithelia cells, which was further proved by IHC at protein level. Better overall survival (p = 0.027) was observed in the patients with lower expression of PGRMC1. Different states of hormone and Her2 receptors contributed to the distinct functions of PGRMC1. In TNBC, PGRMC1 might play an important role in mitochondrial functions. In summary, this study revealed the correlation between PGRMC1 expression and its clinical significance in TNBC, probably through mitochondria-associated pathway, which may provide new ideas for prognosis and therapy of TNBC.
Collapse
Affiliation(s)
- Xin Xu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ying Zhang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Guiju Cai
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Rui Ju
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yu Yang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jiaojiao Cheng
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Muqing Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
4
|
Molecular Characterization of Membrane Steroid Receptors in Hormone-Sensitive Cancers. Cells 2021; 10:cells10112999. [PMID: 34831222 PMCID: PMC8616056 DOI: 10.3390/cells10112999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.
Collapse
|
5
|
Pedroza DA, Subramani R, Tiula K, Do A, Rashiraj N, Galvez A, Chatterjee A, Bencomo A, Rivera S, Lakshmanaswamy R. Crosstalk between progesterone receptor membrane component 1 and estrogen receptor α promotes breast cancer cell proliferation. J Transl Med 2021; 101:733-744. [PMID: 33903732 DOI: 10.1038/s41374-021-00594-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022] Open
Abstract
Progesterone (P4) and estradiol (E2) have been shown to stimulate and regulate breast cancer proliferation via classical nuclear receptor signaling through progesterone receptor (PR) and estrogen receptor α (ERα), respectively. However, the basis of communication between PR/ERα and membrane receptors remains largely unknown. Here, we aim to identify classical and nonclassical endocrine signaling mechanisms that can alter cell proliferation through a possible crosstalk between PR, ERα, and progesterone receptor membrane component 1 (PGRMC1), a membrane receptor frequently observed in breast cancer cells. While P4 and E2 treatment increased cell proliferation of ER+/PR+/PGRMC1 overexpressing breast cancer cells, silencing ERα and PR or treatment with selective estrogen receptor modulator (SERM) tamoxifen, or (PR-antagonist) RU-486 decreased cell proliferation. All four treatments rapidly altered PGRMC1 mRNA levels and protein expression. Furthermore, P4 and E2 treatments rapidly activated EGFR a known interacting partner of PGRMC1 and its downstream signaling. Interestingly, downregulation of ERα by tamoxifen and ERα silencing decreased the expression levels of PGRMC1 with no repercussions to PR expression. Strikingly PGRMC1 silencing decreased ERα expression irrespective of PR. METABRIC and TCGA datasets further demonstrated that PGRMC1 expression was comparable to that of ERα in Luminal A and B breast cancers. Targeting of PR, ERα, and PGRMC1 confirmed that a crosstalk between classical and nonclassical signaling mechanisms exists in ER+ breast cancer cells that could enhance the growth of ER+/PR+/PGRMC1 overexpressing tumors.
Collapse
Affiliation(s)
- Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Ramadevi Subramani
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Kira Tiula
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Anthony Do
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Navya Rashiraj
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Adriana Galvez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Animesh Chatterjee
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Alejandra Bencomo
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Servando Rivera
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Rajkumar Lakshmanaswamy
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| |
Collapse
|
6
|
Lee SR, Yang H, Jo SL, Lee YH, Lee HW, Park BK, Hong EJ. Suppressed estrogen supply via extra-ovarian progesterone receptor membrane component 1 in menopause. J Biomed Res 2021; 35:228-237. [PMID: 33911053 PMCID: PMC8193715 DOI: 10.7555/jbr.35.20200172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In post-menopausal women, intra-mammary estrogen, which is converted from extra-ovarian estrone (E1), promotes the growth of breast cancer. Since the aromatase inhibitor letrozole does not suppress 17β-estradiol (E2) production from E1, high intra-mammary E1 concentrations impair letrozole's therapeutic efficacy. Progesterone receptor membrane component 1 (Pgrmc1) is a non-classical progesterone receptor associated with breast cancer progression. In the present study, we introduced a Pgrmc1 heterozygous knockout (hetero KO) murine model exhibiting low Pgrmc1 expression, and observed estrogen levels and steroidogenic gene expression. Naïve Pgrmc1 hetero KO mice exhibited low estrogen (E2 and E1) levels and low progesterone receptor (PR) expression, compared to wild-type mice. In contrast, Pgrmc1 hetero KO mice that have been ovariectomized (OVX), including letrozole-treated OVX mice (OVX-letrozole), exhibited high estrogen levels and PR expression. Increased extra-ovarian estrogen production in Pgrmc1 hetero KO mice was observed with the induction of steroid sulfatase (STS). In MCF-7 cell, letrozole suppressed PR expression, but PGRMC1 knockdown increased PR and STS expression. Our presented results highlight the important role of Pgrmc1 in modulating estrogen production when ovary-derived estrogen is limited, thereby suggesting a potential therapeutic approach for letrozole resistance.
Collapse
Affiliation(s)
- Sang R Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Seong Lae Jo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young Ho Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Bae-Keun Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
7
|
Kim G, Lee JG, Cheong SA, Yon JM, Lee MS, Hong EJ, Baek IJ. Progesterone receptor membrane component 1 is required for mammary gland development†. Biol Reprod 2020; 103:1249-1259. [PMID: 32915211 DOI: 10.1093/biolre/ioaa164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
The physiological functions of progesterone (P4) in female reproductive organs including the mammary glands are mediated via the progesterone receptor (PR), but not all P4 functions can be explained by PR-mediated signaling. Progesterone receptor membrane component 1 (PGRMC1), a potential mediator of P4 actions, plays an important role in the ovary and uterus in maintaining female fertility and pregnancy, but its function in mammary glands has not been elucidated. This study investigated the role of PGRMC1 in mouse mammary gland development. Unlike in the uterus, exogenous estrogen (E2) and/or P4 did not alter PGRMC1 expression in the mammary gland, and Pgrmc1-knockout (KO) mice displayed reduced ductal elongation and side branching in response to hormone treatment. During pregnancy, PGRMC1 was expressed within both the luminal and basal epithelium and gradually increased with gestation and decreased rapidly after parturition. Moreover, although lactogenic capacity was normal after parturition, Pgrmc1 KO resulted in defective mammary gland development from puberty until midpregnancy, while the expression of PR and its target genes was not significantly different between wild-type and Pgrmc1-KO mammary gland. These data suggest that PGRMC1 is essential for mammary gland development during puberty and pregnancy in a PR-independent manner.
Collapse
Affiliation(s)
- Globinna Kim
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Seung-A Cheong
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Jung-Min Yon
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Myeong Sup Lee
- Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
8
|
Association of circulating Progesterone Receptor Membrane Component-1 (PGRMC1) with PGRMC1 expression in breast tumour tissue and with clinical breast tumour characteristics. Maturitas 2020; 140:64-71. [PMID: 32972637 DOI: 10.1016/j.maturitas.2020.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/13/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Progesterone receptor membrane component-1 (PGRMC1) in breast cancer tissue has been suggested to predict a worse prognosis. The aim of this study was to assess for the first time whether PGRMC1 expressed in cancer tissue is associated with PGRMC1 blood concentrations and whether both are correlated with clinical tumour characteristics known to predict a worse outcome. METHODS In total, 201 patients with invasive breast cancer and 65 with benign breast disease (control group) were recruited. PGRMC1 blood concentrations were measured by a recently developed ELISA, PGRMC1 in breast cancer tissue was assessed by immunohistochemistry, and the correlation between the two was calculated. Receiver-operating characteristic (ROC) curve analysis was used to assess area under the curve (AUC). Furthermore, PGRMC1 was correlated with tumour characteristics such as tumour diameter, tumour grade and metastatic status, and with known blood tumour markers. RESULTS AUC for the breast cancer group was 0.713, which was significantly higher than in the control group (p < 0.01). Blood PGRMC1 concentrations had a strong (positive) correlation with tissue PGRMC1 expression (p < 0.01) but were not associated with serum tumour markers CEA, CA125, CA153 and TPS. Tissue PGRMC1, ER and cancer stage were positively associated with blood PGRMC1 (p < 0.05). CONCLUSIONS As PGRMC1 expression levels in cancer tissue were significantly correlated with PGRMC1 in blood, and because concentrations in blood were also positively associated with breast tumour characteristics known to predict a worse prognosis, PGRMC1 may be valuable as a new tumour marker and may be superior to known tumour markers such as CEA, CA125, CA153 and TPS.
Collapse
|
9
|
Terzaghi L, Banco B, Groppetti D, Dall'Acqua PC, Giudice C, Pecile A, Grieco V, Lodde V, Luciano AM. Progesterone receptor membrane component 1 (PGRMC1) expression in canine mammary tumors: A preliminary study. Res Vet Sci 2020; 132:101-107. [PMID: 32544632 DOI: 10.1016/j.rvsc.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 11/26/2022]
Abstract
Canine mammary tumors (CMT) represent the most common neoplasms in female dogs and their diagnosis and classification relies on histopathological examination. Recently, PGRMC1 has been considered to be a putative biomarker for diagnosis and prognosis in many human cancers as it is expressed in a wide variety of tumors. This study represents the first description of PGRMC1 expression in CMT. PGRMC1 expression was initially assessed by immunohistochemistry in healthy or hyperplastic tissues and in four major histopathological types of CMT: simple and complex adenomas and carcinomas. PGRMC1 staining was represented by a scoring system that considered the percentage of positive cells and staining intensity. PGRMC1 expression was defined as either weak, moderate or strong. In healthy and hyperplastic tissues almost 100% of the epithelial cells stained intensely for PGRMC1. Adenomas showed similar features but with a more variable intensity. In tubular areas of adenocarcinomas, a lower percentage of epithelial cells (30-60%) stained for PGRMC1 with a weak intensity. Both the percentage of cells and intensity of PGRMC1 staining became progressively negative in the solid parts of the tumor. Western blot analysis of healthy and neoplastic mammary tissue (carcinomas samples) revealed the presence of the 25 kDa PGRMC1 band in both types of tissue, while the 50 kDa form was mainly detected in the healthy counterpart. This study reveals that PGRMC1 is expressed in CMT and its expression pattern changes depending on the pattern of growth of CMT. Further studies are now needed to determine PGRMC1's putative role and usefulness for typing and prognosis of different CMT subtypes.
Collapse
Affiliation(s)
- Laura Terzaghi
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Barbara Banco
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Debora Groppetti
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Priscila C Dall'Acqua
- Department of Preventive Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil; Laboratory of Reproductive Physiology, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Chiara Giudice
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Alessandro Pecile
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Valeria Grieco
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Alberto M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy.
| |
Collapse
|