1
|
Laurens C, Louche K, Sengenes C, Coué M, Langin D, Moro C, Bourlier V. Adipogenic progenitors from obese human skeletal muscle give rise to functional white adipocytes that contribute to insulin resistance. Int J Obes (Lond) 2015; 40:497-506. [PMID: 26395744 DOI: 10.1038/ijo.2015.193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND/OBJECTIVES Recent reports indicate that inter/intramuscular adipose tissue (IMAT), composed by adipocytes underneath the deep fascia of the muscles, is positively correlated with aging, obesity and insulin resistance in humans. However, no molecular/cellular evidence is available to support these interactions. The current study aimed to better characterize human skeletal muscle-derived adipogenic progenitors obtained from obese volunteers and investigate the impact of derived adipocytes on insulin action in primary skeletal muscle cells. METHODS Primary cultured stroma-vascular fraction (SVF) obtained from vastus lateralis muscle biopsies of middle-aged obese subjects was immunoseparated (magnetic beads or flow cytometry). The characteristics and/or metabolic phenotype of CD56(+), CD56(-) and CD56(-)CD15(+) cellular fractions were investigated by complementary approaches (flow cytometry, cytology, quantitative PCR and metabolic assays). The effects of conditioned media from CD56(-)CD15(+) cells differentiated into adipocytes on insulin action and signaling in human primary myotubes was also examined. RESULTS Our data indicate that CD56(+) and CD56(-) cellular fractions isolated from cultured SVF of human muscle contain two distinct committed progenitors: CD56(+) cells (that is, satellite cells) as myogenic progenitors and CD15(+) cells as adipogenic progenitors, respectively. CD56(-)CD15(+)-derived adipocytes display the phenotype and metabolic properties of white adipocytes. Secretions of CD56(-)CD15(+) cells differentiated into functional white adipocytes reduced insulin-mediated non-oxidative glucose disposal (P=0.0002) and insulin signaling. CONCLUSIONS Using in-vitro models, we show for the first time that secretions of skeletal muscle adipocytes are able to impair insulin action and signaling of muscle fibers. This paracrine effect could explain, at least in part, the negative association between high levels of IMAT and insulin sensitivity in obesity and aging.
Collapse
Affiliation(s)
- C Laurens
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - K Louche
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - C Sengenes
- UMR5273 UPS/CNRS/EFS/INSERM U1031, STROMALab, University de Toulouse, Toulouse, France
| | - M Coué
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - D Langin
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France.,Department of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - C Moro
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - V Bourlier
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| |
Collapse
|
2
|
The modifying effect of vitamin C on the association between perfluorinated compounds and insulin resistance in the Korean elderly: a double-blind, randomized, placebo-controlled crossover trial. Eur J Nutr 2015; 55:1011-20. [PMID: 25939797 DOI: 10.1007/s00394-015-0915-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/25/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE There is limited evidence whether environmental exposure to perfluorinated compounds (PFCs) affects insulin resistance (IR) and whether vitamin C intake protects against the adverse effect of PFCs. This study was carried out to investigate the effect of PFCs on IR through oxidative stress, and the effects of a 4-week consumption of vitamin C supplement compared placebo on development of IR by PFCs. METHODS For a double-blind, community-based, randomized, placebo-controlled crossover intervention of vitamin C, we assigned 141 elderly subjects to both vitamin C and placebo treatments for 4 weeks. We measured serum levels of PFCs to estimate PFC exposures and urinary levels of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) for oxidative stress. We also measured levels of fasting glucose and insulin and derived the homeostatic model assessment (HOMA) index to assess IR. RESULTS Perfluorooctane sulfonate (PFOS) and perfluorododecanoic acid (PFDoDA) levels were found to be positively associated with HOMA index at the baseline and after placebo treatment. Risks of IR for the top decile of PFOS and PFDoDA exposures were significantly elevated compared with those with lower PFOS and PFDoDA exposures (both, P < 0.0001). However, the effects of PFOS and PFDoDA on HOMA disappeared after vitamin C supplementation (both, P > 0.30). Furthermore, PFOS and PFDoDA levels were also significantly associated with MDA and 8-OHdG levels, and MDA levels were positively associated with HOMA index. CONCLUSION PFOS and PFDoDA exposures were positively associated with IR and oxidative stress, and vitamin C supplementation protected against the adverse effects of PFOS and PFDoDA on IR.
Collapse
|
3
|
Miyaki A, Choi Y, Maeda S. Pentraxin 3 production in the adipose tissue and the skeletal muscle in diabetic-obese mice. Am J Med Sci 2014; 347:228-33. [PMID: 23442541 DOI: 10.1097/maj.0b013e31828341af] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
: Inflammation has been shown to promote obesity-induced insulin resistance. Although pentraxin (PTX) 3 is known as an anti-inflammatory factor, the effect of PTX3 on insulin sensitivity has not yet been elucidated. The aim of this study is to investigate a part of the role of PTX3 on insulin sensitivity. The authors studied the PTX3 and glucose transport protein expression levels in epididymal adipose tissue and soleus muscles of male diabetic-obese [Tsumura Suzuki obese-diabetic (TSOD)] and lean control mice. The levels of PTX3 in both skeletal muscle and adipose tissue were significantly lower in TSOD mice than in controls, and there was a significant positive correlation between them. They observed a significant positive correlation between PTX3 and glucose transport protein 4 levels in skeletal muscle. This study suggests that PTX3 may play a part of role as promoting insulin sensitivity of skeletal muscle in TSOD mice.
Collapse
Affiliation(s)
- Asako Miyaki
- Graduate School of Comprehensive Human Sciences (AM) and Faculty of Health and Sport Sciences (YC, SM), University of Tsukuba, Tsukuba, Japan
| | | | | |
Collapse
|
4
|
O'Keefe L, Simcocks AC, Hryciw DH, Mathai ML, McAinch AJ. The cannabinoid receptor 1 and its role in influencing peripheral metabolism. Diabetes Obes Metab 2014; 16:294-304. [PMID: 23782485 DOI: 10.1111/dom.12144] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/02/2013] [Accepted: 06/11/2013] [Indexed: 12/27/2022]
Abstract
Evidence from in vitro and in vivo studies has demonstrated the deleterious pathological effects of a dysregulated endocannabinoid system. Increased stimulation of the cannabinoid receptor 1 (CB1 ) and subsequent downstream cellular signalling are both causative in the deleterious pathological effects observed in a number of diseases. When the CB1 cell signalling cascade is blocked, this results in whole body weight-loss, leading to a reduction in obesity and associated co-morbidities. In the central nervous system; however, CB1 antagonism results in adverse psychological side effects. Blockade of CB1 via peripheral acting compounds that do not cross the blood-brain barrier have been determined to have beneficial effects in metabolic tissues such as the liver and skeletal muscle. These results support the notion that peripheral blockade of CB1 using pharmacological antagonists is a viable target for the treatment of the current epidemic of obesity and its associated co-morbidities.
Collapse
Affiliation(s)
- L O'Keefe
- Biomedical and Lifestyle Disease Unit, College of Health and Biomedicine, Victoria University, Victoria, Australia
| | | | | | | | | |
Collapse
|
5
|
Elsen M, Raschke S, Tennagels N, Schwahn U, Jelenik T, Roden M, Romacho T, Eckel J. BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells. Am J Physiol Cell Physiol 2014; 306:C431-40. [DOI: 10.1152/ajpcell.00290.2013] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While white adipose tissue (AT) is an energy storage depot, brown AT is specialized in energy dissipation. Uncoupling protein 1 (UCP1)-expressing adipocytes with a different origin than classical brown adipocytes have been found in white AT. These “brite” (brown-in-white) adipocytes may represent a therapeutic target to counteract obesity. Bone morphogenetic proteins (BMPs) play a role in the regulation of adipogenesis. Based on studies with murine cells, BMP4 is assumed to induce stem cell commitment to the white adipocyte lineage, whereas BMP7 promotes brown adipogenesis. There is evidence for discrepancies between mouse and human AT. Therefore, we compared the effect of BMP4 and BMP7 on white-to-brown transition in primary human adipose stem cells (hASCs) from subcutaneous AT. Long-term exposure of hASCs to recombinant BMP4 or BMP7 during differentiation increased adipogenesis, as determined by lipid accumulation and peroxisome proliferator-activated receptor-γ (PPARγ) expression. Not only BMP7, but also BMP4, increased UCP1 expression in hASCs and decreased expression of the white-specific marker TCF21. The ability of hASCs to induce UCP1 in response to BMP4 and BMP7 markedly differed between donors and could be related to the expression of the brite marker CD137. However, mitochondrial content and oxygen consumption were not increased in hASCs challenged with BMP4 and BMP7. In conclusion, we showed for the first time that BMP4 has similar effects on white-to-brown transition as BMP7 in our human cell model. Thus the roles of BMP4 and BMP7 in adipogenesis cannot always be extrapolated from murine to human cell models.
Collapse
Affiliation(s)
- Manuela Elsen
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Silja Raschke
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Norbert Tennagels
- R&D Diabetes Division, Sanofi-Aventis Deutschland, Frankfurt, Germany
| | - Uwe Schwahn
- R&D Diabetes Division, Sanofi-Aventis Deutschland, Frankfurt, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany; and
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany; and
- Department of Endocrinology and Diabetology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Tania Romacho
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| |
Collapse
|
6
|
Jiang LQ, Franck N, Egan B, Sjögren RJO, Katayama M, Duque-Guimaraes D, Arner P, Zierath JR, Krook A. Autocrine role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am J Physiol Endocrinol Metab 2013; 305:E1359-66. [PMID: 24105413 DOI: 10.1152/ajpendo.00236.2013] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Low-grade inflammation associated with type 2 diabetes (T2DM) is postulated to exacerbate insulin resistance. We report that serum levels, as well as IL-13 secreted from cultured skeletal muscle, are reduced in T2DM vs. normal glucose-tolerant (NGT) subjects. IL-13 exposure increases skeletal muscle glucose uptake, oxidation, and glycogen synthesis via an Akt-dependent mechanism. Expression of microRNA let-7a and let-7d, which are direct translational repressors of the IL-13 gene, was increased in skeletal muscle from T2DM patients. Overexpression of let-7a and let-7d in cultured myotubes reduced IL-13 secretion. Furthermore, basal glycogen synthesis was reduced in cultured myotubes exposed to an IL-13-neutralizing antibody. Thus, IL-13 is synthesized and released by skeletal muscle through a mechanism involving let-7, and this effect is attenuated in skeletal muscle from insulin-resistant T2DM patients. In conclusion, IL-13 plays an autocrine role in skeletal muscle to increase glucose uptake and metabolism, suggesting a role in glucose homeostasis in metabolic disease.
Collapse
Affiliation(s)
- Lake Q Jiang
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kim JH, Park HY, Bae S, Lim YH, Hong YC. Diethylhexyl phthalates is associated with insulin resistance via oxidative stress in the elderly: a panel study. PLoS One 2013; 8:e71392. [PMID: 23977034 PMCID: PMC3747269 DOI: 10.1371/journal.pone.0071392] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/03/2013] [Indexed: 12/20/2022] Open
Abstract
Background Insulin resistance (IR) is believed to be the underlying mechanism of metabolic syndrome and type 2 diabetes mellitus (DM). Recently, a few studies have demonstrated that phthalates could cause oxidative stress which would contribute to the development of IR. Therefore, we evaluated whether exposure to phthalates affects IR, and oxidative stress is involved in the phthalates-IR pathway. Methods We recruited 560 elderly participants, and obtained blood and urine samples during repeated medical examinations. For the determination of phthalate exposure, we measured urinary levels of mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) as metabolites of diethylhexyl phthalates (DEHP), and mono-n-butyl phthalate (MnBP) as a metabolite of di-butyl phthalate (DBP). Malondialdehyde (MDA), an oxidative stress biomarker, was also measured in urine samples. We measured serum levels of fasting glucose and insulin, and derived the homeostatic model assessment (HOMA) index to assess IR. A mixed-effect model and penalized regression spline were used to estimate the associations among phthalate metabolites, MDA, and IR. Results The molar sum of MEHHP and MEOHP (∑DEHP) were significantly associated with HOMA (β = 0.26, P = 0.040), and the association was apparent among participants with a history of DM (β = 0.88, P = 0.037) and among females (β = 0.30, P = 0.022). However, the relation between MnBP and HOMA was not found. When we evaluated whether oxidative stress is involved in increases of HOMA by ∑DEHP, MDA levels were significantly associated with increases of ∑DEHP (β = 0.11, P<0.001) and HOMA (β = 0.49, P = 0.049). Conclusions Our study results suggest that exposure to DEHP in the elderly population increases IR, which is related with oxidative stress, and that participants with a history of DM and females are more susceptible to DEHP exposure.
Collapse
Affiliation(s)
- Jin Hee Kim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Yin Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sanghyuk Bae
- Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youn-Hee Lim
- Department of Epidemiology and Biostatistics, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
8
|
Yelisyeyeva O, Semen K, Zarkovic N, Kaminskyy D, Lutsyk O, Rybalchenko V. Activation of aerobic metabolism by Amaranth oil improves heart rate variability both in athletes and patients with type 2 diabetes mellitus. Arch Physiol Biochem 2012; 118:47-57. [PMID: 22393897 DOI: 10.3109/13813455.2012.659259] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of present research was to study the effects of Amaranth oil (AmO) supplementation on aerobic metabolism and heart rate variability (HRV) in type 2 diabetes mellitus patients and in athletes. Several parameters of aerobic metabolism and HRV were assessed. Supplementation with AmO caused mild pro-oxidant activity resulting in improved uptake of oxidative destruction products and modulation of catalase and SOD activity with subsequent development of an antioxidant effect. These findings were very distinct in athletes but less pronounced in diabetics. Redistribution of haemoglobin ligands in athletes indicates involvement of haemoproteins in free radical reactions during AmO supplementation. Improvement in HRV by daily consumption of AmO as observed in both study groups suggested increased production of endogenous oxygen and enhancement of the cardio-respiratory function. The advantage of activation of aerobic metabolism in OS-related disorders resulting in improved self-organization of the living system and hormetic reaction mechanisms are discussed.
Collapse
|
9
|
Simar D, Chen H, Lambert K, Mercier J, Morris MJ. Interaction between maternal obesity and post-natal over-nutrition on skeletal muscle metabolism. Nutr Metab Cardiovasc Dis 2012; 22:269-276. [PMID: 21208789 DOI: 10.1016/j.numecd.2010.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 11/12/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND AIMS Maternal obesity and post-natal over-nutrition play an important role in programming glucose and lipid metabolism later in life. The aim of this study was to decipher the contributions of maternal obesity and post-natal over-nutrition on glucose and lipid metabolism in skeletal muscle. METHOD AND RESULTS Male offspring of Sprague Dawley rat mothers fed either chow or high fat diet (HFD) for 5 weeks prior to mating were subsequently fed either chow or HFD until 18 weeks of age. Collection of plasma and skeletal muscle was performed at weaning (20 days) and 18 weeks. At weaning, offspring from obese mothers showed increased body weight, plasma insulin and lactate concentrations associated with reduced skeletal muscle glucose transporter 4 (GLUT4) and increased monocarboxylate transporter 1 (MCT1) protein. In 18-week old offspring, post-weaning HFD further exacerbated the elevated body weight caused by maternal obesity. Surprisingly this additive effect on body weight was not reflected in plasma glucose, insulin, lactate and MCT1; these markers were only increased by post-weaning HFD consumption. However, an additive effect of maternal obesity and post-weaning HFD led to decreased muscle GLUT4 levels, as well as mRNA levels of carnitine palmitoyl transferase-1, myogenic differentiation protein and myogenin. CONCLUSION Post-weaning HFD exerted an additive effect to that of maternal obesity on body weight and skeletal muscle markers of glucose and lipid metabolism but not on plasma glucose and insulin levels, suggesting that maternal obesity and post-natal over-nutrition impair skeletal muscle function via different mechanisms.
Collapse
Affiliation(s)
- D Simar
- School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
10
|
Cha HN, Song SE, Kim YW, Kim JY, Won KC, Park SY. Lack of inducible nitric oxide synthase prevents lipid-induced skeletal muscle insulin resistance without attenuating cytokine level. J Pharmacol Sci 2012; 117:77-86. [PMID: 22001626 DOI: 10.1254/jphs.11093fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
We examined whether deletion of inducible nitric oxide synthase (iNOS) could prevent lipid infusion-induced insulin resistance in iNOS-knockout and wild-type mice with the in vivo euglycemic-hyperinsulinemic clamp technique. Plasma NO metabolites were increased in lipid-infused wild-type mice, while they were not increased in iNOS-knockout mice. Plasma tumor necrosis factor-α levels were increased in both wild-type and iNOS-knockout by lipid-infusion. Lipid infusion reduced glucose infusion rate (GIR) and whole body glucose uptake in wild-type mice, whereas iNOS-knockout mice displayed comparable GIR and whole body glucose uptake compared with the control. In the gastrocnemius, lipid infusion decreased glucose uptake and glycolysis that were accompanied with increased phosphorylation of c-Jun N-terminal kinase and reduced phosphorylation of phosphoinositide 3-kinases and serine/threonine kinase Akt. However, lipid infusion did not affect glucose uptake or phosphorylation of these proteins in iNOS-knockout mice. The mRNA levels of inflammatory cytokines were also increased in the gastrocnemis of wild-type and iNOS-knockout mice by lipid infusion. Nitrotyrosine level in the gastrocnemius was increased in lipid-infused wild-type mice but it was not increased in iNOS-knockout mice. These results suggest that lack of iNOS prevents lipid infusion-induced skeletal muscle insulin resistance without attenuating cytokine levels.
Collapse
Affiliation(s)
- Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, South Korea
| | | | | | | | | | | |
Collapse
|
11
|
Cohen G, Riahi Y, Sasson S. Lipid peroxidation of poly-unsaturated fatty acids in normal and obese adipose tissues. Arch Physiol Biochem 2011; 117:131-9. [PMID: 21395403 DOI: 10.3109/13813455.2011.557387] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adipose tissues function as the primary storage compartment of fatty acids and as an endocrine organ that affects peripheral tissues. Many of adipose tissue-derived factors, often termed adipokines, have been discovered in recent years. The synthesis and secretion of these factors vary in different depots of adipose tissues. Excessive lipid accumulation in adipocytes induces inflammatory processes by up-regulating the expression and release of pro-inflammatory cytokines. In addition, activated macrophages in the obese adipose tissue release inflammatory cytokines. Adipose tissue inflammation has also been linked to an enhanced metabolism of polyunsaturated fatty acids (PUFAs). The non-enzymatic peroxidation of PUFAs and of their 12/15-lipoxygenase-derived hydroperoxy metabolites leads to the generation of the reactive aldehyde species 4-hydroxyalkenals. This review shows that 4-hydroxyalkenals, in particular 4-hydroxynonenal, play a key role in lipid storage homeostasis in normal adipocytes. Nonetheless, in the obese adipose tissue an increased production of 4-hydroxyalkenals contributes to the inflamed phenotype.
Collapse
Affiliation(s)
- G Cohen
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
12
|
Mowery NT, May AK, Collier BC, Dossett LA, Gunter OL, Dortch MJ, Diaz JJ. Glucose Metabolism, Not Obesity, Predicts Mortality in Critically Ill Surgical Patients. Am Surg 2010. [DOI: 10.1177/000313481007601223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our hypothesis was to determine if insulin resistance and hyperglycemia, rather than obesity, are predictive of mortality in the surgically critically ill. An observational study of an automated protocol in surgical and trauma intensive care units was performed. Two groups were created based on body mass index (BMI): Obese (OB) defined as BMI ≥ 30 (n = 338) and nonobese defined as BMI < 30 (n = 885). Euglycemia was maintained using an automated protocol using an adapting multiplier, which we used as our marker of stress insulin resistance. The primary outcome was hospital mortality. One thousand, two hundred and twenty-three patients met criteria with 73,225 glucose values. The OB group required more insulin (4.5 U/hr vs 3.2 U/hr, P ≤ 0.01) and had a higher mean multiplier (0.07 vs 0.06, P < 0.01) reflecting insulin resistance. There was no difference in mortality between OB and nonobese (11.6% vs 11.5%, P = 0.96). Logistic regression showed that insulin dose (odds ratio 0.864; 95% confidence interval 0.772-0.967, P = 0.01), and not BMI, was an independent predictor of survival in this population. Obesity is not an independent risk factor for mortality in the surgical critical care population. Insulin resistance and subsequent hyperglycemia are increased in obesity and are independent predictors of mortality.
Collapse
Affiliation(s)
- Nathan T. Mowery
- Department of Surgery, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Addison K. May
- Division of Trauma and Surgical Critical Care, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bryan C. Collier
- Division of Trauma and Surgical Critical Care, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lesly A. Dossett
- Division of Trauma and Surgical Critical Care, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Oliver L. Gunter
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University, St. Louis, Missouri
| | - Marcus J. Dortch
- Division of Trauma and Surgical Critical Care, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jose J. Diaz
- Division of Trauma and Surgical Critical Care, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
13
|
Watkins BA, Hutchins H, Li Y, Seifert MF. The endocannabinoid signaling system: a marriage of PUFA and musculoskeletal health. J Nutr Biochem 2010; 21:1141-52. [PMID: 20934863 DOI: 10.1016/j.jnutbio.2010.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/25/2010] [Accepted: 04/15/2010] [Indexed: 12/27/2022]
Abstract
The role of diet in health and diseases related to muscle and bone has been an area of active study. Recently, endocannabinoids (EC), endogenous derivatives of arachidonic acid, an omega-6 (n-6) polyunsaturated fatty acid (PUFA), have been discovered to play regulatory roles in bone mass and muscle energy metabolism. This signaling system consists of the G-protein coupled cannabinoid receptors, CB1 and CB2, expressed in central and peripheral tissues and cells, which are variably activated by the production and on demand release of endogenous and synthetic agonists and antagonists. We propose that the balance between omega-6 and omega-3 (n-3) PUFA is an important modifier for the activation and suppression of endocannabinoid receptors and therefore, downstream signaling actions in cells. The potential of dietary PUFA to regulate this signaling system to influence the metabolic and physiological outcomes favorable to musculoskeletal health is the purpose of this review. The important role of n-3 PUFA in metabolic and physiological processes that attenuate muscle and bone loss under conditions of disease and stress is one aspect described herein. In this review, we first introduce the EC agonists (ligands) and their receptors (CB1 and CB2) and the general actions of EC signaling in various organs and systems. Second, we describe EC signaling in bone and muscle and how dietary PUFA influence the levels of endogenous agonists. Third, we discuss the potential implications of how dietary PUFA impact this system to minimize muscle atrophy and osteopenia and support healthy muscle development and bone modeling.
Collapse
Affiliation(s)
- Bruce A Watkins
- Lipid Chemistry and Molecular Biology Laboratory, School of Agriculture, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
14
|
Lim S, Cho YM, Park KS, Lee HK. Persistent organic pollutants, mitochondrial dysfunction, and metabolic syndrome. Ann N Y Acad Sci 2010; 1201:166-76. [PMID: 20649553 DOI: 10.1111/j.1749-6632.2010.05622.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The number of individuals with metabolic syndrome is increasing worldwide, constituting a major social problem in many countries. Recently, epidemiological and experimental studies have associated insulin resistance or type 2 diabetes with elevated body burdens of persistent organic pollutants (POPs). It has been proposed that mitochondrial dysfunction plays a key role in this association. Mitochondrial DNA abnormalities are known to cause pancreas beta cell damage, insulin resistance, and diabetes mellitus. Recently, much evidence has emerged showing that environmental toxins, including POPs, affect mitochondrial function and subsequently induce insulin resistance. In this review, we present a novel concept in which metabolic syndrome is the result of mitochondrial dysfunction, which in turn is caused by exposure to POPs. The potential mechanism including POPs for mitochondrial dysfunction on metabolic syndrome is also discussed. We propose that the mitochondrial paradigm for the etiology of metabolic syndrome will facilitate the prevention and treatment of this major health problem.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
15
|
Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species. Animal 2010; 4:1093-109. [DOI: 10.1017/s1751731110000601] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Bilan PJ, Samokhvalov V, Koshkina A, Schertzer JD, Samaan MC, Klip A. Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells. Arch Physiol Biochem 2009; 115:176-90. [PMID: 19671019 DOI: 10.1080/13813450903079314] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Obesity is associated with insulin resistance and increased risk for developing type 2 diabetes. Enlarged adipocytes develop resistance to the anti-lipolytic action of insulin. Elevated levels of fatty acids in the plasma and interstitial fluids lead to whole-body insulin resistance by disrupting normal insulin-regulated glucose uptake and glycogen storage in skeletal muscle. A new understanding has been cultivated in the past 5 to 10 years that adipocytes and macrophages (resident or bone marrow-derived) in adipose tissue of obese animals and humans are activated in a pro-inflammatory capacity and secrete insulin resistance-inducing factors. However, only recently have fatty acids themselves been identified as agents that engage toll-like receptors of the innate immunity systems of macrophages, adipocytes and muscle cells to trigger pro-inflammatory responses. This review summarizes our observations that fatty acids evoke the release of pro-inflammatory factors from macrophages that consequently induce insulin resistance in muscle cells.
Collapse
Affiliation(s)
- Phillip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Izumi M, Seki T, Iwasaki K, Sakamoto K. Chinese Herbal Medicine Yi-Gan-San Decreases the Lipid Accumulation in Mouse 3T3-L1 Adipocytes by Modulating the Activities of Transcription Factors SREBP-1c and FoxO1. TOHOKU J EXP MED 2009; 219:53-62. [DOI: 10.1620/tjem.219.53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Masayuki Izumi
- Graduate school of Life and Environmental Sciences, University of Tsukuba
- Center for Asian Traditional Medicine, Graduate School of Medicine, Tohoku University
| | - Takashi Seki
- Center for Asian Traditional Medicine, Graduate School of Medicine, Tohoku University
| | - Koh Iwasaki
- Center for Asian Traditional Medicine, Graduate School of Medicine, Tohoku University
| | - Kazuichi Sakamoto
- Graduate school of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|