1
|
Akarsu SA, İleritürk M, Küçükler S, Akaras N, Gür C, Kandemir FM. Ameliorative effects of sinapic acid against vancomycin-induced testicular oxidative damage, apoptosis, inflammation, testicular histopathologic disorders and decreased epididymal sperm quality. Reprod Toxicol 2024; 129:108666. [PMID: 39059777 DOI: 10.1016/j.reprotox.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
In this study, it was aimed to determine the effect of sinapic acid (SNP), a polyphenol with antioxidant, anti-inflammatory and antibacterial properties, on testicular damage caused by vancomycin (VCM), a widely used antibiotic against gram positive bacteria. A total of 35 male Sprague Dawley rats were used in the study, divided into five groups: control, VCM, SNP, VCM + SNP 10, and VCM + SNP 20. Following a week of oral administration, the rats were euthanized under sevoflurane anesthesia. While the VCM group had a significant increase in MDA levels, the SNP administration inhibited the increase in MDA levels. VCM led to a significant decrease in GSH levels, SOD, CAT, and GPx activity in the testicular tissue of rats, while SNP administration increased these antioxidant levels. SNP administration decreased the mRNA expression levels of VCM induced Nrf-2, HO-1, and NQO1 in testicular tissue while increasing the levels of MAPK14, MAPK15, JNK, P53, Apaf-1, Caspase-3, Caspase-6, Caspase-9, and Beclin-1 mRNA transcript levels. The VCM group showed a significant increase in Bax and NF-κB levels in testicular tissue, while Bcl-2 levels decreased. VCM significantly decreased sperm motility and increased the percentage of damaged sperm in rats. Histopathological results revealed that VCM caused disruption of basement membranes and disorganization of seminiferous tubules, but SNP administration preserved testicular histology. As a result, VCM increased oxidative stress, apoptosis, and autophagy in the testicular tissue of rats, altered testicular histopathology, and decreased sperm quality, while SNP decreased these effects.
Collapse
Affiliation(s)
- Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey.
| | - Mustafa İleritürk
- Department of Laboratory and Veterinary Health, Horasan Vocational School, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
2
|
Colopi A, Guida E, Cacciotti S, Fuda S, Lampitto M, Onorato A, Zucchi A, Balistreri CR, Grimaldi P, Barchi M. Dietary Exposure to Pesticide and Veterinary Drug Residues and Their Effects on Human Fertility and Embryo Development: A Global Overview. Int J Mol Sci 2024; 25:9116. [PMID: 39201802 PMCID: PMC11355024 DOI: 10.3390/ijms25169116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Drug residues that contaminate food and water represent a serious concern for human health. The major concerns regard the possible irrational use of these contaminants, since this might increase the amplitude of exposure. Multiple sources contribute to the overall exposure to contaminants, including agriculture, domestic use, personal, public and veterinary healthcare, increasing the possible origin of contamination. In this review, we focus on crop pesticides and veterinary drug residues because of their extensive use in modern agriculture and farming, which ensures food production and security for the ever-growing population around the world. We discuss crop pesticides and veterinary drug residues with respect to their worldwide distribution and impacts, with special attention on their harmful effects on human reproduction and embryo development, as well as their link to epigenetic alterations, leading to intergenerational and transgenerational diseases. Among the contaminants, the most commonly implicated in causing such disorders are organophosphates, glyphosate and antibiotics, with tetracyclines being the most frequently reported. This review highlights the importance of finding new management strategies for pesticides and veterinary drugs. Moreover, due to the still limited knowledge on inter- and transgenerational effects of these contaminants, we underlie the need to strengthen research in this field, so as to better clarify the specific effects of each contaminant and their long-term impact.
Collapse
Affiliation(s)
- Ambra Colopi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Eugenia Guida
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Silvia Cacciotti
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Serena Fuda
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Matteo Lampitto
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Angelo Onorato
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Alice Zucchi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy;
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Marco Barchi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| |
Collapse
|
3
|
Elnasharty MMM, Elwan AM, Elhadidy ME, Mohamed MA, Abd El-Rahim AH, Hafiz NA, Abd-El-Moneim OM, Abd El-Aziz KB, Abdalla AM, Farag IM. Various investigations of ameliorative role of Ashwagandha seeds ( Withania somnifera) against amoxicillin toxicity. Toxicol Res (Camb) 2024; 13:tfae091. [PMID: 38873278 PMCID: PMC11167568 DOI: 10.1093/toxres/tfae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/03/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Several studies showed the adverse effects of amoxicillin on various body organs. So, this research has been designed to evaluate the modulatory role of Ashwagandha seed extract (ASE) against amoxicillin (AM) toxicity. Rats treated with AM (90 mg/kg), protected by ASE doses (100, 200 and 300 mg/kg), and treated by ASE at the same three doses. At the end of the experimental period, DNA comet assay, cytogenetic examinations, sperm-shape analysis, evaluation of the malondialdehyde (MDA) percentages, histopathological examinations, and biophysical tests (modulus, relaxation time, permittivity, entropy, and internal energy change of brain) were documented. The results confirmed that AM treatment induced significant elevation of DNA damage, cytogenetic aberrations, and MDA content in brain, liver, and testis tissues and sperm-shape anomalies. ASE treatment significantly minimized the genetic changes, sperm-shape anomalies, and MDA generation. These enhancements were more pronounced by protective ASE and increased by increasing the dose level. In histopathological examinations, AM treatment caused neurotoxicity in brain tissue. ASE treatment, partially, minimized these damages and the positive effects of therapeutic ASE were more noticeable. Biophysical parameters showed that therapeutic ASE was better for relaxation time, permittivity, and free energy change. Protective and therapeutic ASE were able to recover entropy and internal energy changes in variant degrees.
Collapse
Affiliation(s)
- Mohamed M M Elnasharty
- Department of Microwave Physics and Dielectrics, National Research Centre, Giza 12622, Egypt
| | - Azhar M Elwan
- Department of Biochemistry, National Research Centre, Giza 12622, Egypt
| | - Mohamed E Elhadidy
- Department of Research on Children with Special Needs, National Research Centre, Giza 12622, Egypt
| | - Mona A Mohamed
- Department of Chemistry of Medicinal Plants, National Research Centre, Giza 12622, Egypt
| | | | - Naglaa A Hafiz
- Department of Cell Biology, National Research Centre, Giza 12622, Egypt
| | | | | | - Aboelfetoh M Abdalla
- Department of Horticultural Crops Technology, National Research Centre, Giza 12622, Egypt
| | - Ibrahim M Farag
- Department of Cell Biology, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
4
|
Toraman E, Budak B, Bayram C, Sezen S, Mokhtare B, Hacımüftüoğlu A. Role of parthenolide in paclitaxel-induced oxidative stress injury and impaired reproductive function in rat testicular tissue. Chem Biol Interact 2024; 387:110793. [PMID: 37949423 DOI: 10.1016/j.cbi.2023.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The chemotherapeutic agent paclitaxel (PTX) causes testicular toxicity due to oxidative stress. Parthenolide (PTL), the active ingredient of the Tanacetum parthenium plant, is used to treat inflammation, dizziness, and spasms. In the present study, we evaluated the therapeutic effect of PTL on PTX-induced testicular toxicity in rats and its role in reproductive function. To this end, 6 groups were formed: control, PTX, sham, T1, T2, and T3. After testicular toxicity was induced in rats with 8 mg/kg PTX, the rats were treated with 1 mg/kg, 2 mg/kg, and 4 mg/kg PTL for 14 days. GSH and MDA levels were measured in rat testicular tissue after the last dose of PTL was administered. To determine the damage caused by PTX to testicular tissue by detecting 8-OHdG and iNOS, sections were prepared and examined histopathologically and immunohistochemically. Furthermore, the gene expressions and enzymatic activities of SOD, CAT, GPx, GST, and GR were investigated in all groups. After PTL treatment, MDA, 8-OHdG, and iNOS levels decreased while GSH levels increased in testicular tissue. Increased levels of antioxidant genes and enzymes also reduced oxidative stress. Additionally, the expression levels of the Dazl, Ddx4, and Amh genes, which are involved in gametogenesis and sperm production, decreased in case of toxicity and increased with PTL treatment. The data from this study show that PTL may have a therapeutic effect in the treatment of testicular damage by eliminating the oxidative stress-induced damage caused by PTX in testicular tissue, providing an effective approach to alleviating testicular toxicity, and playing an important role in reproduction/sperm production, especially at a dose of 4 mg/kg.
Collapse
Affiliation(s)
- Emine Toraman
- Atatürk University, Science Faculty, Department of Molecular Biology and Genetics, Erzurum, Turkey.
| | - Büşra Budak
- Atatürk University, Faculty of Medicine, Department of Obstetrics and Gynaecology, Erzurum, Turkey
| | - Cemil Bayram
- Atatürk University, Faculty of Medicine, Department of Medical Pharmacology, Erzurum, Turkey
| | - Selma Sezen
- Ağrı İbrahim Çeçen University, Faculty of Medicine, Department of Medical Pharmacology, Ağrı, Turkey
| | - Behzad Mokhtare
- Atatürk University, Faculty of Veterinary Medicine, Department of Veterinary Pathology, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Atatürk University, Faculty of Medicine, Department of Medical Pharmacology, Erzurum, Turkey
| |
Collapse
|
5
|
Akin AT, Toluk A, Ozdamar S, Taheri S, Kaymak E, Mehmetbeyoglu E. Effects of adriamycin on cell differentiation and proliferation in rat testis. Biotech Histochem 2023; 98:523-533. [PMID: 37655584 DOI: 10.1080/10520295.2023.2248880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Although adriamycin (ADR) is used to treat many cancers, it can be toxic to healthy organs including the testis. We investigated the effects of ADR on pluripotency in rat testis. Testicular damage was induced by either cumulative or single dose single dose administration of ADR in Wistar albino rats. Rats were divided randomly into three groups: untreated control, cumulative dose ADR group (2 mg/kg ADR every three days for 30 days) and single dose ADR group (15 mg/kg, single dose ADR). Testicular damage was evaluated and seminiferous tubule diameters were measured using light microscopy. Expression levels of Oct4, Sox2, Klf4, c-Myc, Utf1 and Dazl were assessed by immunohistochemistry and real time PCR. Serum testosterone levels were measured using ELISA assay. Histopathologic scores were lower and mean seminiferous tubule diameters were less compared to the ADR groups. Oct4, Sox2, Klf4 and Utf1 expressions were decreased significantly in spermatogenic cells of both cumulative and single dose ADR groups compared to the control group. We found that c-Myc expression in spermatogenic and Leydig cells were increased significantly in both ADR groups compared to the control group. Dazl expression was decreased in the cumulative adriamycin group compared to the control group, but increased in the single dose ADR group compared to both the control and cumulative ADR groups. Serum testosterone levels were decreased in both ADR groups compared to the control group. Our findings suggest that ADR is detrimental to regulation and maintenance of pluripotency in rat testis.
Collapse
Affiliation(s)
- Ali Tugrul Akin
- Department of Biology, Science Faculty, Erciyes University, Kayseri, Turkey
| | - Ayse Toluk
- Department of Biology, Science Faculty, Erciyes University, Kayseri, Turkey
| | - Saim Ozdamar
- Histology-Embryology Department, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Serpil Taheri
- Medical Biology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Histology-Embryology Department, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Ecmel Mehmetbeyoglu
- Betul-Ziya Eren Genome and Stem Cell Center, Medical Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Resveratrol Ameliorates Vancomycin-Induced Testicular Dysfunction in Male Rats. Medicina (B Aires) 2023; 59:medicina59030486. [PMID: 36984488 PMCID: PMC10056352 DOI: 10.3390/medicina59030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Background and Objectives: Numerous studies have indicated that antibiotics may adversely affect testicular and sperm function. As an alternative to penicillin, vancomycin is a glycopeptide antibiotic developed to treat resistant strains of Staphylococcus aureus. A few studies have suggested that vancomycin could cause testicular toxicity and apoptosis. Vancomycin, however, has not been investigated in terms of its mechanism of causing testicular toxicity. Materials and Methods: An experiment was conducted to investigate the effects of resveratrol (20 mg/kg, oral gavage) against vancomycin (200 mg/kg, i.p.) on the testicular function of Wistar rats for one week (7 days). There were three subgroups of animals. First, saline (i.p.) was administered to the control group. Then, in the second group, vancomycin was administered. Finally, vancomycin and resveratrol were administered in combination in the third group. Results: After seven days of vancomycin treatment, testosterone levels, sperm counts, and sperm motility were significantly reduced, but resveratrol attenuated the effects of vancomycin and restored the testosterone levels, sperm counts, and sperm motility to normal. In the presence of resveratrol, the vancomycin effects were attenuated, and the luteinizing hormone and follicular hormone levels were normalized after seven days of treatment with vancomycin. Histologically, vancomycin administration for seven days caused damage to testicular tissues and reduced the thickness of the basal lamina. However, the resveratrol administration with vancomycin prevented vancomycin’s toxic effects on testicular tissue. Conclusion: Resveratrol showed potential protective effects against vancomycin-induced testicular toxicity in Wistar rats.
Collapse
|
7
|
Zhang S, Wang T, Zhang D, Wang X, Zhang Z, Lim C, Lee S. Probiotic characterization of Lactiplantibacillus plantarum HOM3204 and its restoration effect on antibiotic-induced dysbiosis in mice. Lett Appl Microbiol 2022; 74:949-958. [PMID: 35231139 PMCID: PMC9315005 DOI: 10.1111/lam.13683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to evaluate the probiotic characteristics of Lactiplantibacillus plantarum HOM3204 isolated from homemade pickled cabbage and to examine its restoration effect on antibiotic-induced dysbiosis in mice. Lact. plantarum HOM3204 tolerated simulated gastric and intestinal juices with a 99.38% survival rate. It also showed strong adhesion ability (3.45%) to Caco-2 cells and excellent antimicrobial activity against foodborne pathogens in vitro. For safety (antibiotic susceptibility) of this strain, it was susceptible to all the tested seven antibiotics. Lact. plantarum HOM3204 had good stability during storage, especially in cold and frozen conditions. Furthermore, Lact. plantarum HOM3204 significantly restored the gut microbiota composition by increasing the abundance of Lactobacilli and Bifidobacteria and decreasing Enterococci, and improved antioxidative function by raising the concentrations of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in serum of antibiotic-induced dysbiosis in mice. These results suggest that Lact. plantarum HOM3204 could be a potential probiotic as a functional food ingredient.
Collapse
Affiliation(s)
- S Zhang
- Coree Beijing Co., Ltd, Beijing, China
| | - T Wang
- Beijing Hanmi pharmaceutical Co., Ltd, Beijing, China
| | - D Zhang
- Coree Beijing Co., Ltd, Beijing, China
| | - X Wang
- Beijing Hanmi pharmaceutical Co., Ltd, Beijing, China
| | - Z Zhang
- Beijing Hanmi pharmaceutical Co., Ltd, Beijing, China
| | - C Lim
- Coree Beijing Co., Ltd, Beijing, China.,Coree Pohang Co., Ltd, Pohang, Korea
| | - S Lee
- Coree Beijing Co., Ltd, Beijing, China.,Coree Pohang Co., Ltd, Pohang, Korea
| |
Collapse
|
8
|
El-Sayed K, Ali DA, Maher SA, Ghareeb D, Selim S, Albogami S, Fayad E, Kolieb E. Prophylactic and Ameliorative Effects of PPAR-γ Agonist Pioglitazone in Improving Oxidative Stress, Germ Cell Apoptosis and Inflammation in Gentamycin-Induced Testicular Damage in Adult Male Albino Rats. Antioxidants (Basel) 2022; 11:antiox11020191. [PMID: 35204074 PMCID: PMC8868260 DOI: 10.3390/antiox11020191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-γ) is ubiquitously expressed in testicular tissue and plays a crucial role in regulating various physiological processes. Pioglitazone (PIO) is one of the PPAR-γ agonists, having anti-oxidant and anti-inflammatory effects. Patients on gentamycin treatment may undergo serious side effects such as testicular damage. To the best of our knowledge, this was the first study to investigate the possible protective anti-inflammatory and anti-apoptotic effects of PIO on gentamycin-induced testicular damage. Fifty adult male Wistar albino rats included in the study as the control group (CTL) received normal saline; a gentamycin-induced testicular damage group (GM) received gentamycin (100 mg/kg); PIO5, PIO10, PIO20 groups received PIO at a dose of 5, 10, and 20 mg/ kg, respectively, for 21 days, and gentamycin was started at day 15 of the experiment for 6 days. The parameters of spermatozoa and histopathological alterations in the testes were significantly improved in the PIO20 group. Moreover, MDA levels, inflammatory mediators, and apoptotic Bax expression were decreased. The activity of glutathione peroxidase, catalase, total antioxidant capacity, and anti-apoptotic Bcl-2 genes expression were increased. It was concluded that PIO20 could protect against gentamycin-induced testicular damage in Wistar rats through its anti-oxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Karima El-Sayed
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Dina A. Ali
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Shymaa Ahmed Maher
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Dalia Ghareeb
- Clinical Pathology Department, Faculty of Medicine, Suez University, Suez 41522, Egypt;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Sarah Albogami
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia; (S.A.); (E.F.)
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia; (S.A.); (E.F.)
| | - Eman Kolieb
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Correspondence: ; Tel.: +20-1006738513
| |
Collapse
|
9
|
Microwave-Assisted Synthesis, Structural Characterization and Assessment of the Antibacterial Activity of Some New Aminopyridine, Pyrrolidine, Piperidine and Morpholine Acetamides. Molecules 2021; 26:molecules26030533. [PMID: 33498526 PMCID: PMC7864198 DOI: 10.3390/molecules26030533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/23/2022] Open
Abstract
A series of new acetamide derivatives 22–28 of primary and secondary amines and para-toluene sulphinate sodium salt have been synthesized under microwave irradiation and assessed in vitro for their antibacterial activity against one Gram-positive and two Gram-negative bacterial species such as S. pyogenes, E. coli, and P. mirabilis using the Mueller-Hinton Agar diffusion (well diffusion) method. The synthesized compounds with significant differences in inhibition diameters and MICs were compared with those of amoxicillin, ampicillin, cephalothin, azithromycin and doxycycline. All of the evaluated acetamide derivatives were used with varying inhibition concentrations of 6.25, 12.5, 37.5, 62.5, 87.5, 112.5 and 125 µg/mL. The results show that the most important antibacterial properties were displayed by the synthetic compounds 22 and 24, both of bear a para-chlorophenyl moiety incorporated into the 2-position moiety of acetamide 1. The molecular structures of the new compounds were determined using the FT-IR and 1H-NMR techniques.
Collapse
|
10
|
Kizilbay G, Karaman M. Possible inhibition mechanism of dobutamine hydrochloride as potent inhibitor for human glucose-6-phosphate dehydrogenase enzyme. J Biomol Struct Dyn 2020; 40:204-212. [PMID: 32835622 DOI: 10.1080/07391102.2020.1811155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first rate-limiting enzyme in the pentose phosphate pathway. One of the enzyme's most important functions is the production of a reducing agent that is essential for preserving the level of reduced glutathione (GSH). However, some chemicals, such as industrial waste and the active ingredients of several drugs, can cause reduction or blockage in this enzyme's activity. This case causes the occurrence of anemia by damaging erythrocytes. In this study, the G6PD enzyme was purified 21,981 fold with affinity chromatography and the effects of the active ingredients of some antiarrhythmic drugs on enzyme activity were investigated with in vitro and in silico methods. We found that dobutamine hydrochloride significantly decreased enzyme activity and its inhibitory constant (Ki) value was calculated as 19.02 ± 4.83 mM. The in vitro study results also show that dobutamine hydrochloride is a potent inhibitor of enzyme activity. We also found that dobutamine hydrochloride inhibits the hG6PD enzyme's activity by causing structural alterations in substrate and coenzyme binding sites.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gokce Kizilbay
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, Kilis, Turkey.,Advanced Technology Application and Research Center (ATACR), Kilis 7 Aralik University, Kilis, Turkey
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, Kilis, Turkey.,Advanced Technology Application and Research Center (ATACR), Kilis 7 Aralik University, Kilis, Turkey
| |
Collapse
|
11
|
Kocpinar EF, Gonul Baltaci N, Ceylan H, Kalin SN, Erdogan O, Budak H. Effect of a Prolonged Dietary Iron Intake on the Gene Expression and Activity of the Testicular Antioxidant Defense System in Rats. Biol Trace Elem Res 2020; 195:135-141. [PMID: 31309445 DOI: 10.1007/s12011-019-01817-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
Abstract
Despite the fact that iron represents a crucial element for the catalysis of many metabolic reactions, its accumulation in the cell leads to the production of reactive oxygen species (ROS), provoking pathological conditions such as cancer, cardiovascular diseases, diabetes, neurodegenerative diseases, and fertility. Thus, ROS are neutralized by the enzymatic antioxidant system for the purpose of protecting cells against any damage. Iron is a potential risk factor for male fertility. However, the mechanism of action of iron on the testicular antioxidant system at the gene and protein levels is not fully understood. Thus, the purpose of the current research was to ensure a better understanding of how the long-term iron treatment influences both gene expression and enzyme activities of the testicular antioxidant system in rat testis. The data of our study showed that a significant dose-dependent increase occurred in the iron level in rat testis. A reduction occurred in reduced glutathione (GSH) levels, which represent a marker of oxidative stress, along with long-term iron overload. The expression and activity of glucose 6-phosphate dehydrogenase (G6pd), glutathione reductase (Gr), glutathione peroxidase (Gpx), and glutathione S-transferases (Gst) were significantly affected by the presence of iron. The findings of the current research demonstrate that the long-term toxic dietary iron overload influences the gene expression and enzyme activity of the testicular antioxidant defense system, but the actual effect occurs at the protein level. This may modify the sperm function and dysfunction of the male reproductive system.
Collapse
Affiliation(s)
- Enver Fehim Kocpinar
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- Vocational School, Department of Medical Services and Techniques, Muş Alparslan University, Mus, Turkey
| | - Nurdan Gonul Baltaci
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Hamid Ceylan
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Seyda Nur Kalin
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Orhan Erdogan
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
12
|
Güller P, Budak H, Şişecioğlu M, Çiftci M. An in vivo and in vitro comparison of the effects of amoxicillin, gentamicin, and cefazolin sodium antibiotics on the mouse hepatic and renal glutathione reductase enzyme. J Biochem Mol Toxicol 2020; 34:e22496. [DOI: 10.1002/jbt.22496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/03/2020] [Accepted: 03/12/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Pınar Güller
- Department of ChemistryFaculty of Science, Atatürk UniversityErzurum Turkey
| | - Harun Budak
- Department of Molecular Biology and GeneticsFaculty of Science, Atatürk UniversityErzurum Turkey
| | - Melda Şişecioğlu
- Department of Molecular Biology and GeneticsFaculty of Science, Atatürk UniversityErzurum Turkey
| | - Mehmet Çiftci
- Department of ChemistryFaculty of Arts and Sciences, Bingöl University Bingöl Turkey
| |
Collapse
|
13
|
Savcı A, Koçpınar EF, Budak H, Çiftci M, Şişecioğlu M. The Effects of Amoxicillin, Cefazolin, and Gentamicin Antibiotics on the Antioxidant System in Mouse Heart Tissues. Protein Pept Lett 2020; 27:614-622. [PMID: 31721686 DOI: 10.2174/0929866526666191112125949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Free radicals lead to destruction in various organs of the organism. The improper use of antibiotics increases the formation of free radicals and causes oxidative stress. OBJECTIVE In this study, it was aimed to determine the effects of gentamicin, amoxicillin, and cefazolin antibiotics on the mouse heart. METHODS 20 male mice were divided into 4 groups (1st control, 2nd amoxicillin, 3rd cefazolin, and 4th gentamicin groups). The mice in the experimental groups were administered antibiotics intraperitoneally at a dose of 100 mg / kg for 6 days. The control group received normal saline in the same way. The gene expression levels and enzyme activities of SOD, CAT, GPx, GR, GST, and G6PD antioxidant enzymes were investigated. RESULTS GSH levels decreased in both the amoxicillin and cefazolin groups, while GR, CAT, and SOD enzyme activities increased. In the amoxicillin group, Gr, Gst, Cat, and Sod gene expression levels increased. CONCLUSION As a result, it was concluded that amoxicillin and cefazolin caused oxidative stress in the heart, however, gentamicin did not cause any effects.
Collapse
Affiliation(s)
- Ahmet Savcı
- Department of Chemistry, Faculty of Art and Science, Bingol University, Bingol, Turkey
| | - Enver Fehim Koçpınar
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Mus Alparslan University, Mus, Turkey
| | - Harun Budak
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mehmet Çiftci
- Department of Chemistry, Faculty of Art and Science, Bingol University, Bingol, Turkey
| | - Melda Şişecioğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
14
|
Ceylan H, Budak H, Kocpinar EF, Baltaci NG, Erdogan O. Examining the link between dose-dependent dietary iron intake and Alzheimer's disease through oxidative stress in the rat cortex. J Trace Elem Med Biol 2019; 56:198-206. [PMID: 31525623 DOI: 10.1016/j.jtemb.2019.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/01/2019] [Accepted: 09/08/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neurodegenerative diseases such as Alzheimer's and Parkinson's disease are characterized by the progressive deterioration of the structure and function of the nervous system. A number of environmental risk factors including potentially toxic elements such as iron, lead to negative effects on many metabolic reactions as well as neuroprotection. The aim of this study is to reveal whether long-term iron overload is one of the underlying factors in the pathogenesis of Alzheimer's disease (AD). METHODS 15 young-adult male rats were randomly divided into 5 groups treated with iron through drinking water for 4 months. Following feeding, the iron content, reduced glutathione (GSH), and hydrogen peroxide (H2O2) levels of cortex tissues were measured. Specific enzyme activities were determined spectrophotometrically. mRNA expression profiles were measured using real-time PCR (qPCR). RESULTS Iron levels were elevated in case of non-toxic (0.87 and 3 μg/mL) iron administration. However, no changes were observed in toxic (30 and 300 μg/mL) iron administration. GSH and H2O2 levels altered with long-term iron overload. Glutathione peroxidase (GPx) enzyme activities significantly increased in all groups, while glutathione S-transferase (GST) activity increased only in case of 0.87 and 30 μg/mL iron administration. Expression levels of neuroprotective and AD-related genes were altered by 3 μg/mL iron overload in a dose-dependent manner. The expression and activity of acetylcholinesterase (AChE) were elevated at 3 μg/mL iron concentration. CONCLUSION The findings of the present study allow us to conclude that long-term dietary iron intake, especially at a dose of 3 μg/mL demonstrates negative effects on the rat cortex by provoking antioxidant metabolism and AD pathology in a dose-dependently.
Collapse
Affiliation(s)
- Hamid Ceylan
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey.
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Enver Fehim Kocpinar
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey; Vocational School, Department of Medical Services and Techniques, Muş Alparslan University, Mus, Turkey
| | - Nurdan Gonul Baltaci
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Orhan Erdogan
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| |
Collapse
|