1
|
Wang Z, Wu Q, Shen W, Wan F, He J, Liu L, Tang S, Tan Z. Cooling redistributed endotoxin across different biofluids via modulating the ruminal microbiota and metabolome without altering quorum sensing signal levels in heat-stressed beef bulls. Anim Microbiome 2025; 7:38. [PMID: 40269989 PMCID: PMC12016233 DOI: 10.1186/s42523-025-00400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Cooling is one of the most common and economical methods to ameliorate heat stress (HS), and it has been discovered to alter the lipopolysaccharide (LPS) endotoxin level in ruminants. However, whether the endotoxin variation induced by cooling relates to the quorum sensing (QS) within the ruminal microflora remains unknown. The current study was consequently performed to examine whether cooling could influence the endotoxin distribution across different biofluids, ruminal microbiota, and ruminal metabolisms through affecting the QS of rumen microorganisms in beef cattle exposed to HS. Thirty-two Simmental bulls were used as experimental animals and randomly assigned to either the control (CON) group, or the mechanical ventilation and water spray (MVWS) treatment. The temperature-humidity index (THI) was recorded throughout this trial, and samples of the rumen liquid, blood, and urine were collected. RESULTS Cooling significantly lowered (P < 0.05) the temperature-humidity index (THI), ruminal endotoxin, and endotoxin concentration and excretion in urine, and significantly raised endotoxin level in blood (P < 0.05), but did not change the ruminal concentrations of QS signals including 3-OXO-C6-HSL and the AI-2 (P > 0.05). The linear discriminant analysis effect size (LEfSe) analysis revealed that Prevotellaceae, Rikenellaceae, Monoglobales and their affiliated members, as well as other bacterial taxa were significantly differently (P < 0.05) enriched between the two treatments. The Tax4Fun2 prediction suggested that QS function was upregulated in MVWS compared to CON. The metabolomic analysis indicated that cooling altered the ruminal metabolism profile and downregulated the pathways of lysine degradation, phenylalanine, tyrosine and tryptophan biosynthesis, and ubiquinone and other terpenoid-quinone biosynthesis. The significant (P < 0.05) correlations of the differential bacteria and metabolites with endotoxin and QS molecules were also demonstrated through Spearman analysis. CONCLUSIONS Based on the results of this trial, it could be speculated that the cooling reshaped the endotoxin distribution across different biofluids through manipulating ruminal microbiota and metabolome, which might involve the participation of QS. Further investigations are warranted to disclose and verify the mechanisms for those correlations found in this study.
Collapse
Affiliation(s)
- Zuo Wang
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Qingyang Wu
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Weijun Shen
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
| | - Fachun Wan
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Jianhua He
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Shaoxun Tang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Zhiliang Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| |
Collapse
|
2
|
Pang C, Xu Y, Ma X, Li S, Zhou S, Tian H, Wang M, Han B. Design, synthesis, and evaluation of novel arecoline-linked amino acid derivatives for insecticidal and antifungal activities. Sci Rep 2024; 14:9392. [PMID: 38658769 PMCID: PMC11043403 DOI: 10.1038/s41598-024-60053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
A series of arecoline derivatives with amino acid moieties were designed and synthesised using an acylamide condensation strategy, taking arecoline as the foundational structure. The insecticidal efficacy of these compounds against Aphis craccivora and Tetranychus cinnabarinus was evaluated. Notably, derivatives 3h and 3i demonstrated superior insecticidal activity compared with arecoline. Additionally, 3h and 3i showed good fungicidal effectiveness against two types of plant fungi. Moreover, molecular docking analyses suggested that 3h and 3i could affect the nervous systems of A. craccivora and T. cinnabarinus by binding to neuronal nicotinic acetylcholine receptors. These findings suggest that compounds 3h and 3i represent promising leads for further development in insecticide and fungicide research.
Collapse
Affiliation(s)
- Chaohai Pang
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
| | - Yuan Xu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan provincial key laboratory of research and development on tropical herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Xionghui Ma
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
| | - Shuhuai Li
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
| | - Shengfu Zhou
- Shenzhen Bay Laboratory, BayRay Innovation Center, Shenzhen, 518000, China
| | - Hai Tian
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
| | - Mingyue Wang
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
| | - Bingjun Han
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
| |
Collapse
|
3
|
Kondashevskaya MV, Artem’yeva KA, Aleksankina VV, Areshidze DA, Kozlova MA, Makartseva LA. Phenotypically Determined Liver Dysfunction in a Wistar Rat Model of Post-Traumatic Stress Disorder. J EVOL BIOCHEM PHYS+ 2022; 58:1015-1024. [PMID: 36061071 PMCID: PMC9420240 DOI: 10.1134/s002209302204007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
Abstract
The extraordinary situation of the 2019–2022 pandemic caused
a dramatic jump in the incidence of post-traumatic stress disorder
(PTSD). PTSD is currently regarded not only as a neuropsychiatric
disorder, but also as a comorbidity accompanied by cardiovascular
diseases, circulatory disorders, liver dysfunction, etc. The relationship
between behavioral disorders and the degree of morphofunctional
changes in the liver remains obscure. In this study, PTSD was modeled in
sexually mature male Wistar rats using predatory stress induced
by a prey’s fear for a predator. Testing in an elevated plus maze
allowed the rat population to be divided into animals with low-anxiety
(LAP) and high-anxiety (HAP) phenotypes. It was found that morphofunctional
analysis of the liver, in contrast to its biochemical profiling,
provides a clearer evidence that predatory stress induces liver
dysfunction in rats of both phenotypes. This may indicate a decrease
in the range of compensatory adaptive reactions in stressed animals.
However, in HAP rats, the level of morphofunctional abnormalities
in the mechanisms responsible for carbohydrate-fat, water-electrolyte
and protein metabolism in the liver testified the prenosological
state of the organ, while further functional loading and resulting
tension of the regulatory systems could lead to homeostatic downregulation.
Meanwhile, the liver of LAP animals was only characterized by insignificant diffuse
changes. Thus, we demonstrate here a link between behavioral changes
and the degree of morphofunctional transformation of the liver.
Collapse
Affiliation(s)
- M. V. Kondashevskaya
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - K. A. Artem’yeva
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - V. V. Aleksankina
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - D. A. Areshidze
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - M. A. Kozlova
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - L. A. Makartseva
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, Moscow, Russia
| |
Collapse
|
4
|
Volgin AD, Bashirzade A, Amstislavskaya TG, Yakovlev OA, Demin KA, Ho YJ, Wang D, Shevyrin VA, Yan D, Tang Z, Wang J, Wang M, Alpyshov ET, Serikuly N, Wappler-Guzzetta EA, Lakstygal AM, Kalueff AV. DARK Classics in Chemical Neuroscience: Arecoline. ACS Chem Neurosci 2019; 10:2176-2185. [PMID: 30664352 DOI: 10.1021/acschemneuro.8b00711] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Arecoline is a naturally occurring psychoactive alkaloid from areca (betel) nuts of the areca palm ( Areca catechu) endemic to South and Southeast Asia. A partial agonist of nicotinic and muscarinic acetylcholine receptors, arecoline evokes multiple effects on the central nervous system (CNS), including stimulation, alertness, elation, and anxiolysis. Like nicotine, arecoline also evokes addiction and withdrawal symptoms (upon discontinuation). The abuse of areca nuts is widespread, with over 600 million users globally. The importance of arecoline is further supported by its being the world's fourth most commonly used human psychoactive substance (after alcohol, nicotine, and caffeine). Here, we discuss neuropharmacology, pharmacokinetics, and metabolism of arecoline, as well as social and historical aspects of its use and abuse. Paralleling clinical findings, we also evaluate its effects in animal models and outline future clinical and preclinical CNS research in this field.
Collapse
Affiliation(s)
- Andrey D. Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russia
| | - Alim Bashirzade
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russia
| | | | - Oleg A. Yakovlev
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg 194156, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Konstantin A. Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg 194156, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | | | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Zhichong Tang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Erik T. Alpyshov
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | | | - Anton M. Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg 197758, Russia
| | - Allan V. Kalueff
- School of Pharmacy, Southwest University, Chongqing 400700, China
- Ural Federal University, Ekaterinburg 620002, Russia
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana 70458, United States
- Anatomy and Physiology Laboratory, Ural Federal University, Ekaterinburg 620002, Russia
- ZENEREI Research Center, Slidell, Louisiana 70458, United States
| |
Collapse
|