1
|
Kwok JJN, Chen MK, Ong CW, Chen L. Antidiabetic Potential of Bananas (Musa spp.): A Systematic Review of Bioactive Compounds and Antihyperglycemic Activities. Curr Nutr Rep 2025; 14:38. [PMID: 40011287 DOI: 10.1007/s13668-025-00629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
PURPOSE OF REVIEW Bananas (Musa spp.), a staple fruit crop in Southeast Asia, are widely recognised for their nutritional value and potential medicinal properties, including the management of diabetes. To address the diabetes pandemic, various studies have explored the efficacy of many natural foods in reducing blood glucose, preventing complications that arise from the chronic illness. However, a comprehensive overview of bioactive compounds and their antidiabetic effects across different banana species in recent years is lacking. This review provides a comprehensive overview of bioactive compounds in various parts of the bananas that have demonstrated antihyperglycemic activities. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a thorough literature search using ScienceDirect, Scopus, and PubMed databases, resulting in the inclusion of 27 relevant articles. RECENT FINDINGS Emerging evidence suggests that different parts of the banana plant contain various bioactive compounds with antihyperglycemic activities, offering promising benefits for diabetes management. The findings reveal that the antihyperglycemic effects of bananas can be attributed to specific bioactive compounds, such as phenols, saponins, alkaloids, sterols, and flavonoids, through mechanisms like inhibition of α-glucosidase, β-glucosidase, α-amylase and sucrase enzymes, glucose uptake assay, and inhibition of formation of advanced glycation end-products. Liver glycogen content and fasting blood glucose in rat models, along with HbA1c measurements in human subjects, were also assessed to evaluate invivo antidiabetic activity, which has yielded positive outcomes. The results support the potential medicinal and pharmaceutical benefits of bananas in clinical diabetes management and suggest that incorporating banana-derived compounds could enhance the cost-effectiveness of antidiabetic treatments.
Collapse
Affiliation(s)
- Jessiree Jie Ning Kwok
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Michelle Kaixuan Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Chi Wei Ong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.
| |
Collapse
|
2
|
Munir H, Yaqoob S, Awan KA, Imtiaz A, Naveed H, Ahmad N, Naeem M, Sultan W, Ma Y. Unveiling the Chemistry of Citrus Peel: Insights into Nutraceutical Potential and Therapeutic Applications. Foods 2024; 13:1681. [PMID: 38890908 PMCID: PMC11172398 DOI: 10.3390/foods13111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The recent millennium has witnessed a notable shift in consumer focus towards natural products for addressing lifestyle-related disorders, driven by their safety and cost-effectiveness. Nutraceuticals and functional foods play an imperative role by meeting nutritional needs and offering medicinal benefits. With increased scientific knowledge and awareness, the significance of a healthy lifestyle, including diet, in reducing disease risk is widely acknowledged, facilitating access to a diverse and safer diet for longevity. Plant-based foods rich in phytochemicals are increasingly popular and effectively utilized in disease management. Agricultural waste from plant-based foods is being recognized as a valuable source of nutraceuticals for dietary interventions. Citrus peels, known for their diverse flavonoids, are emerging as a promising health-promoting ingredient. Globally, citrus production yields approximately 15 million tons of by-products annually, highlighting the substantial potential for utilizing citrus waste in phyto-therapeutic and nutraceutical applications. Citrus peels are a rich source of flavonoids, with concentrations ranging from 2.5 to 5.5 g/100 g dry weight, depending on the citrus variety. The most abundant flavonoids in citrus peel include hesperidin and naringin, as well as essential oils rich in monoterpenes like limonene. The peel extracts exhibit high antioxidant capacity, with DPPH radical scavenging activities ranging from 70 to 90%, comparable to synthetic antioxidants like BHA and BHT. Additionally, the flavonoids present in citrus peel have been found to have antioxidant properties, which can help reduce oxidative stress by 30% and cardiovascular disease by 25%. Potent anti-inflammatory effects have also been demonstrated, reducing inflammatory markers such as IL-6 and TNF-α by up to 40% in cell culture studies. These findings highlight the potential of citrus peel as a valuable source of nutraceuticals in diet-based therapies.
Collapse
Affiliation(s)
- Hussan Munir
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- University Institute of Food Science and Technology, University of Lahore, Lahore 54590, Pakistan
| | - Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Aysha Imtiaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 03802, Pakistan;
| | - Hiba Naveed
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Waleed Sultan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
| |
Collapse
|
3
|
Wu H, Xu F, Huang X, Li X, Yu P, Zhang L, Yang X, Kong J, Zhen C, Wang X. Lupenone improves type 2 diabetic nephropathy by regulating NF-κB pathway-mediated inflammation and TGF-β1/Smad/CTGF-associated fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154959. [PMID: 37478684 DOI: 10.1016/j.phymed.2023.154959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Type 2 diabetic nephropathy is a common diabetic complication and the main cause of death in patients with diabetes. Research has aimed to find an ideal drug with minimal side effects for treating this disease. Banana peel has been shown to be anti-diabetic, with lupenone isolated from banana peel exhibiting antidiabetic and anti-inflammatory activities; However, the effects of lupenone on type 2 diabetic nephropathy are largely unknown. PURPOSE This study aimed to investigate the ameliorative effect of lupenone on type 2 diabetic nephropathy, and its mechanism from both anti-inflammatory and anti-fibrotic perspectives. METHODS Spontaneous type 2 diabetic nephropathy db/db mouse models were given three levels of lupenone (24 or 12 or 6 mg/kg/d) via intragastric administration for six weeks, and irbesartan treatment was used for the positive control group. We explored the effects and mechanism of lupenone action using enzyme-linked immunosorbent assay, automatic biochemical analyzer, hematoxylin-eosin and Masson staining, real time-PCR, and western blotting. Concurrently, a high-sugar and high-fat diet combined with a low-dose streptozotocin-induced type 2 diabetic nephropathy rat model was used for confirmatory research. RESULTS Lupenone administration maintained the fasting blood glucose; reduced glycosylated hemoglobin, insulin, and 24 h proteinuria levels; and markedly regulated changes in biochemical indicators associated with kidney injury in serum and urine (including 24 h proteinuria, micro-albumin, N-acetyl-β-d-glucosaminidase, α1-micro-globulin, creatinine, urea nitrogen, uric acid, total protein, and albumin) of type 2 diabetic nephropathy mice and rats. Hematoxylin-eosin and Masson staining as well as molecular biology tests revealed that inflammation and fibrosis are the two key processes affected by lupenone treatment. Lupenone protected type 2 diabetic nephropathy kidneys by regulating the NF-κB-mediated inflammatory response and TGF-β1/Smad/CTGF pathway-associated fibrosis. CONCLUSION Lupenone has potential as an innovative drug for preventing and treating diabetic nephropathy. Additionally, it has great value for the utilization of banana peel resources.
Collapse
Affiliation(s)
- Hongmei Wu
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Feng Xu
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xulong Huang
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xiaofen Li
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Piao Yu
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Lingling Zhang
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xiaosong Yang
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Juan Kong
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Cheng Zhen
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xiangpei Wang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025 Guizhou, PR China.
| |
Collapse
|
4
|
Mohamed T, Souiy Z, Achour L, Hamden K. Anti-obesity, anti-hyperglycaemic, anti-antipyretic and analgesic activities of Globularia alypum extracts. Arch Physiol Biochem 2022; 128:1453-1460. [PMID: 32536285 DOI: 10.1080/13813455.2020.1773865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The aim of this study is to evaluate the anti-obesity, anti-hyperglycaemic, analgesic and antipyretic activities of Globularia alypum (GA). MATERIALS AND METHODS GA methanol and water extracts (GAME, GAWE) were administered to high-fat-high-glucose diet (HFFD) rats. RESULTS This study showed that GAME exhibited the highest antioxidant, anti-α-amylase and anti-lipase activities, with half inhibitory concentration (IC50) values 0.067, 1.05 and 2.97 mg/ml respectively. In HFFD rats, the administration of GAME inhibited lipase activity by 36, 37 and 30% in the intestine, pancreas and serum, respectively, reduced body weight by 17.7% and modulated lipid profile. In addition, administration of GAME to HFFD-rats decreased α-amylase activity, improved glucose level and protected liver function. Furthermore, the administration of GA extracts to rats revealed antipyretic (reduction in writhing by 64%) and analgesic (decrease of temperature by 1.11 °C) activities. CONCLUSION This study showed that GA extracts exhibited an anti-obesity, anti-hyperglycaemia, anti-pyretic and analgesic activities.
Collapse
Affiliation(s)
- Tiss Mohamed
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Zoubeida Souiy
- Higher Institute of Technological Studies, Monastir, Tunisia
| | - Lotfi Achour
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
5
|
Zahid B, Tufail T, Imran M, Shehzad Muzammil H, Batool Qaisrani T, Zil-e-huma S, Shehzad K, Junaid Anwar M, Chaudhry S. Antioxidants Activity Assessment and Utilization of Banana Peels to Attenuate the Diabetes Mellitus. PAKISTAN BIOMEDICAL JOURNAL 2022:327-333. [DOI: 10.54393/pbmj.v5i7.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Diabetes is the primary metabolic disorder listed among the top 10 death-causing diseases. The complete cure of diabetes is impossible, but the prevention and maintenance of glucose levels can reduce the diabetes severity. Objectives: To utilize the banana peel extracts to evaluate their antioxidant attributes and capability to attenuate diabetes. Methods: The antioxidant properties were assessed by measuring the DPPH, total phenolic contents (TPC), and total flavonoid contents (TFC) in ethanol, methanol, and acetone solutions. Moreover, the renal functional tests (Serum creatinine, serum urea, and BUN) and liver function tests (ALT, ASP, Serum Albumin, and total proteins) were also conducted during the 21 days experimental study in diabetes-induced (via Streptozotocin: 350 mg/kg) male Albino Wister rats. Results: The results indicated that the DPPH, TPC, and TFC contents were higher in methanol solution, i.e., 74.20±0.98%, 54.78±0.69mg GAE/g, and 39.48±0.37mg GAE/g respectively. Moreover, the results indicated that the unripe, ripe, and overripe significantly reduced liver and renal function parameters in diabetic rats. Conclusions: Banana peels have prominent potential to prevent diabetes-linked variables due to their higher antioxidant activity.
Collapse
|
6
|
Pai S, Hebbar A, Selvaraj S. A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35518-35541. [PMID: 35233673 PMCID: PMC9079019 DOI: 10.1007/s11356-022-19423-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 05/27/2023]
Abstract
Bioactive compounds refer to secondary metabolites extracted from plants, fungi, microbes, or animals. Besides having pharmacological or toxicological effects on organisms leading to utilization in food and pharmaceutical industries, the discovery of novel properties of such compounds has led to the diversification of their applications, ranging from cosmetics and functionalized biomaterials to bioremediation and alternate fuels. Conventional time-consuming and solvent-intensive methods of extraction are increasingly being replaced by green solvents such as ionic liquids, supercritical fluids, and deep eutectic solvents, as well as non-conventional methods of extraction assisted by microwaves, pulse electric fields, enzymes, ultrasound, or pressure. These methods, along with advances in characterization and optimization strategies, have boosted the commercial viability of extraction especially from agrowastes and organic residues, promoting a sustainable circular economy. Further development of microfluidics, optimization models, nanoencapsulation, and metabolic engineering are expected to overcome certain limitations that restrict the growth of this field, in the context of improving screening, extraction, and economy of processes, as well as retaining biodiversity and enhancing the stability and functionality of such compounds. This review is a compilation of the various extraction and characterization methods employed for bioactive compounds and covers major applications in food, pharmacy, chemicals, energy, and bioremediation. Major limitations and scope of improvement are also discussed.
Collapse
Affiliation(s)
- Sanidhya Pai
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Subbalaxmi Selvaraj
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
| |
Collapse
|