1
|
Liu M, Chen X. Human Umbilical Cord-Derived Mesenchymal Stem Cells-Exosomes-Delivered miR-375 Targets HDAC4 to Promote Autophagy and Suppress T Cell Apoptosis in Sepsis-Associated Acute Kidney Injury. Appl Biochem Biotechnol 2024; 196:7954-7973. [PMID: 38668845 DOI: 10.1007/s12010-024-04963-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 12/14/2024]
Abstract
This study sought to elucidate the mechanism of human umbilical cord-derived mesenchymal stem cells (HUCMSCs)-exosomes (Exos) in sepsis-associated acute kidney injury (SAKI). Exos were isolated from HUCMSCs and co-cultured with CD4+ T cells exposed to lipopolysaccharide to detect the effects of HUCMSCs-Exos on CD4+ T cell apoptosis and autophagy. miR-375 expression in CD4+ T cells and HUCMSCs-Exos was examined. The relationship between miR-375 and HDAC4 was analyzed. A mouse model of SAKI was established and injected with HUCMSCs-Exos to verify the function of HUCMSCs-Exos in vivo. HUCMSCs-Exos inhibited lipopolysaccharide-induced apoptosis of CD4+ T cells and promoted autophagy. miR-375 expression was noted to be elevated in the HUCMSCs-Exos. Importantly, HUCMSCs-Exos could deliver miR-375 into CD4+ T cells where miR-375 targeted HDAC4 and negatively regulated its expression. By this mechanism, HUCMSCs-Exos decreased CD4+ T cell apoptosis and augmented autophagy. This finding was further confirmed in an in vivo SAKI model. Collectively, HUCMSCs-Exos can protect against SAKI via delivering miR-375 that promotes autophagy and arrests T cell apoptosis through HDAC4 downregulation. These findings suggest a promising therapeutic potential for HUCMSCs-Exos in the context of SAKI.
Collapse
Affiliation(s)
- Min Liu
- Department of Intensive Care, the First Hospital of Changsha, No. 311 Yingpan Road, Changsha, Hunan, 410005, People's Republic of China
| | - Xiyun Chen
- Department of Gynecology, the First Hospital of Changsha, No. 311 Yingpan Road, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
2
|
Yan R, Yang H, Jiang X, Lai X. Renal Protective Effect of Umbelliferone on Acute Kidney Injury in Rats via Alteration of HO-1/Nrf2 and NF-κB Signaling Pathway. DOKL BIOCHEM BIOPHYS 2024; 518:442-451. [PMID: 39196533 DOI: 10.1134/s160767292460043x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 08/29/2024]
Abstract
Acute kidney injury (AKI), formerly known as acute renal failure, refers to a sudden and often reversible decline in kidney function. Inflammatory reaction and oxidative stress play a crucial role in the expansion of renal disease. In this experimental study, we scrutinized the renal protective effect of umbelliferone against gentamicin induced renal injury in the rats and explore the mechanism. Wistar rats were used in this study and Gentamicin was used for the induction the AKI in the rats and rats were received the oral administration of umbelliferone. The body weight, organ weight, renal, oxidative stress, cytokines, inflammatory parameters were estimated. The mRNA expression caspase-3, Bax, Bcl-2, TNF-α, IL-1β, IL-6, IL-10, HO-1, and Nrf2 were estimated. Umbelliferone remarkably improved the body weight and altered the absolute and relative weight of hepatic and renal tissue. Umbelliferone significantly suppressed the level of BUN, Scr, magnesium, calcium, phosphorus, sodium, and potassium along with altered the level of oxidative stress parameters like CAT, SOD, GSH, LPO, and GPx. Umbelliferone altered the level of cytokines viz., TNF-α, Il-1β, IL-6, IL-10; inflammatory parameters like PGE2, COX-2, TGF-β, NF-κB, respectively. Umbelliferone significantly altered the mRNA expression of caspase-3, Bax, Bcl-2, TNF-α, IL-1β, IL-6, IL-10, HO-1, and Nrf2. The result showed the renal protective effect of umbelliferone against gentamycin induced renal disease via alteration of HO-1/Nrf2 and NF-κB Signaling Pathway.
Collapse
Affiliation(s)
- RuiJuan Yan
- Department of Emergency Medicine, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, China
| | - Hui Yang
- Department of Respiratory, Qingdao, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 266042, Qingdao, China
| | - XiaoQi Jiang
- Department of Respiratory, Qingdao, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 266042, Qingdao, China
| | - XiaoDong Lai
- Department of Urology Surgery, Qingdao, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), 266000, Qingdao, China.
| |
Collapse
|
3
|
Elmorsy EA, Youssef ME, Abdel-Hamed MR, Amer MM, Elghandour SR, Alkhamiss AS, Mohamed NB, Khodeir MM, Elsisi HA, Alsaeed TS, Kamal MM, Ellethy AT, Elesawy BH, Saber S. Activation of AMPK/SIRT1/FOXO3a signaling by BMS-477118 (saxagliptin) mitigates chronic colitis in rats: uncovering new anti-inflammatory and antifibrotic roles. Front Pharmacol 2024; 15:1456058. [PMID: 39359253 PMCID: PMC11445602 DOI: 10.3389/fphar.2024.1456058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Ulcerative colitis (UC) is a debilitating chronic disease marked by persistent inflammation and intestinal fibrosis. Despite the availability of various treatments, many patients fail to achieve long-term remission, underscoring a significant unmet therapeutic need. BMS-477118, a reversible inhibitor of dipeptidyl peptidase 4 (DPP4), has demonstrated anti-inflammatory properties in preclinical and clinical studies with minimal adverse effects compared to other antidiabetic agents. However, the potential benefits of BMS-477118 in chronic UC have not yet been explored. In this study, we aimed to investigate the effects of BMS-477118 in rats subjected to chronic dextran sodium sulfate (DSS) administration. Our findings indicate that BMS-477118 activates the interconnected positive feedback loop involving AMPK, SIRT1, and FOXO3a, improving histological appearance in injured rat colons. BMS-477118 also reduced fibrotic changes associated with the chronic nature of the animal model, alleviated macroscopic damage and disease severity, and improved the colon weight-to-length ratio. Additionally, BMS-477118 prevented DSS-induced weight loss and enhanced tight junction proteins. These effects, in conjunction with reduced oxidative stress and its potential anti-inflammatory, antiapoptotic, and autophagy-inducing properties, fostered prolonged survival in rats with chronic UC. To conclude, BMS-477118 has the potential to activate the AMPK/SIRT1/FOXO3a signaling pathway in inflamed colons. These results suggest that the AMPK/SIRT1/FOXO3a pathway could be a new therapeutic target for UC. Further research is mandatory to explore the therapeutic possibilities of this pathway. Additionally, continued studies on the therapeutic potential of BMS-477118 and other DPP4 inhibitors are promising for creating new treatments for various conditions, including UC in diabetic patients.
Collapse
Affiliation(s)
- Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mahmoud E. Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohamed R. Abdel-Hamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha M. Amer
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sahar R. Elghandour
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S. Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Nahla B. Mohamed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mostafa M. Khodeir
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam A. Elsisi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Thamir Saad Alsaeed
- Department of Biology and Immunology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Manal M. Kamal
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Physiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abousree T. Ellethy
- Department of Oral and Medical Basic Sciences, Biochemistry Division, College of Dentistry, Qassim University, Buraidah, Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
4
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Ashour AE, Albekairi NA, Al-Hamamah MA, Alshamrani AA, Bakheet SA. Saxagliptin, a selective dipeptidyl peptidase-4 inhibitor, alleviates somatic cell aneugenicity and clastogenicity in diabetic mice. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 892:503707. [PMID: 37973297 DOI: 10.1016/j.mrgentox.2023.503707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Diabetes-related complications are becoming increasingly common as the global prevalence of diabetes increases. Diabetes is also linked to a high risk of developing cancer. This raises the question of whether cancer vulnerability is caused by diabetes itself or the use of antidiabetic drugs. Chromosomal instability, a source of genetic modification involving either an altered chromosomal number or structure, is a hallmark of cancer. Saxagliptin has been approved by the FDA for diabetes treatment. However, the detailed in vivo effects of prolonged saxagliptin treatment on chromosomal instability have not yet been reported. In this study, streptozotocin was used to induce diabetes in mice, and both diabetic and non-diabetic mice received saxagliptin for five weeks. Fluorescence in situ hybridization was conducted in combination with a bone marrow micronucleus test for measuring chromosomal instability. Our results indicated that saxagliptin is neither mutagenic nor cytotoxic, under the given treatment regimen. Diabetic mice had a much higher incidence of micronuclei formation, and a centromeric DNA probe was present inside the majority of the induced micronuclei, indicating that most of these were caused by chromosome nondisjunction. Conversely, diabetic mice treated with saxagliptin exhibited a significant decrease in micronuclei induction, which were centromeric-positive and centromeric-negative. Diabetes also causes significant biochemical changes indicative of oxidative stress, such as increased lipid peroxidation and decreased reduced/oxidized glutathione ratio, which was reversed by saxagliptin administration. Overall, saxagliptin, the non-mutagenic antidiabetic drug, maintains chromosomal integrity in diabetes and reduces micronuclei formation by restoring redox imbalance, further indicating its usefulness in diabetic patients.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammed A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Zuo B, Li T, Liu X, Wang S, Cheng J, Liu X, Cui W, Shi H, Ling C. Dipeptidyl peptidase 4 inhibitor reduces tumor-associated macrophages and enhances anti-PD-L1-mediated tumor suppression in non-small cell lung cancer. Clin Transl Oncol 2023; 25:3188-3202. [PMID: 37115489 PMCID: PMC10514125 DOI: 10.1007/s12094-023-03187-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE The efficacy of immune checkpoint inhibitors such as programmed cell death ligand 1 (PD-L1) antibodies in non-small cell lung cancer (NSCLC) is limited, and combined use with other therapies is recommended. Dipeptidyl peptidase 4 (DPP4) inhibitors, a class of small molecule inhibitors, are highly effective for treating type 2 diabetes. Emerging evidence implicates DPP4 inhibitors as immunomodulators that modify aspects of innate and adaptive immunity. We evaluated the combination of a DPP4 inhibitor (anagliptin) and PD-L1 blockade in an NSCLC mouse model. METHODS The effect of the combination of anti-PD-L1 and anagliptin was evaluated in subcutaneous mouse models of NSCLC. Tumor-infiltrating immune cells were analyzed by flow cytometry. Bone marrow-derived monocytes of C57BL/6 mice were isolated in vitro to examine the underlying mechanism of anagliptin on the differentiation and polarization of macrophage. RESULTS Anagliptin dramatically improved the efficacy of PD-L1 antibody monotherapy by inhibiting macrophage formation and M2 polarization in the tumor microenvironment. Mechanistically, anagliptin suppressed the production of reactive oxygen species in bone marrow monocytes by inhibiting NOX1 and NOX2 expression induced by macrophage colony-stimulating factor, reduced late ERK signaling pathway activation, and inhibited monocyte-macrophage differentiation. However, the inhibitory effect was reactivated by lipopolysaccharide and interferon-gamma interacting with corresponding receptors during M1 macrophage polarization, but not M2. CONCLUSIONS Anagliptin can enhance PD-L1 blockade efficacy in NSCLC by inhibiting macrophage differentiation and M2 macrophage polarization, and combination therapy may be a promising strategy for treating PD-L1 blockade therapy-resistant patients with NSCLC.
Collapse
Affiliation(s)
- Bei Zuo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Tao Li
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Xiaoyun Liu
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shuling Wang
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Jianxiang Cheng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiangqun Liu
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Wenjie Cui
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Hengliang Shi
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Chunhua Ling
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China.
| |
Collapse
|
6
|
Alshamrani AA, Al-Hamamah MA, Albekairi NA, Attia MSM, Ahmad SF, Assiri MA, Ansari MA, Nadeem A, Bakheet SA, Alanazi WA, Attia SM. Impacts of the DPP-4 Inhibitor Saxagliptin and SGLT-2 Inhibitor Dapagliflozin on the Gonads of Diabetic Mice. Biomedicines 2023; 11:2674. [PMID: 37893048 PMCID: PMC10604863 DOI: 10.3390/biomedicines11102674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetes mellitus is a metabolic disease that can cause systemic problems, including testicular dysfunction. Several diabetes medications have demonstrated potential adverse effects on the male reproductive system; however, the effects of saxagliptin and dapagliflozin have not been sufficiently examined. This investigation studied the impacts of saxagliptin and dapagliflozin treatments on the gonads in a male mouse model of diabetes. Testicular disturbances were assessed by sperm DNA damage, diakinesis-metaphase I chromosome examination, and spermiogram analysis. Our results showed more sperm DNA damage, more spermatocyte chromosome aberrations, lower sperm motility/count, and more sperm morphological anomalies in diabetic mice than in the control mice. Dapagliflozin significantly restored all examined measures to the control values in diabetic mice, unlike saxagliptin, which exacerbated the reduction in sperm count and motility. Both drugs significantly restored the gonadal redox imbalances in diabetic mice by decreasing reactive oxygen species accumulation and increasing glutathione levels. In conclusion, our study presents preliminary evidence for the safety and efficacy of dapagliflozin in alleviating testicular abnormalities induced by diabetes, making it a promising candidate drug for patients with diabetes in their reproductive age. As saxagliptin may have negative effects on fertility, its prescription should be avoided in young male diabetic patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.A.A.-H.); (N.A.A.); (M.S.M.A.); (S.F.A.); (M.A.A.); (M.A.A.); (A.N.); (S.A.B.); (W.A.A.)
| |
Collapse
|
7
|
Protective effect of fatty acid amide hydrolase inhibitor URB597 and monoacylglycerol lipase inhibitor KML29 on renal ischemia-reperfusion injury via toll-like receptor 4/nuclear factor-kappa B pathway. Int Immunopharmacol 2023; 114:109586. [PMID: 36700769 DOI: 10.1016/j.intimp.2022.109586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Arachidonoyl ethanolamide (anandamide, AEA) and 2-arachidonoylglycerol (2-AG) are the most studies endocannabinoids. AEA and 2-AG are degraded by fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) enzymes, respectively. FAAH and MAGL enzymes are widely expressed in many tissues, including kidney. Recent works have depicted that AEA and 2-AG levels are associated with ischemia-reperfusion (IR) injury. In this study, we investigated the effects of MAGL inhibitor KML29 and FAAH inhibitor URB597 against kidney IR injury. METHODS The kidneys of the rats underwent ischemia for 45 min and then reperfusion for 24 h. KML29 and URB597 were administered intraperitoneally with kidney IR to two different treatment groups. RESULTS IR application increased serum blood urea nitrogen (BUN), creatinine (Cre), interleukin-18 (IL-18), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) levels, while these parameters were decreased following KML29 and URB597 administration. KML29 and URB597 administration also reduced the increased toll-like receptor-4 (TRL-4), phosphorylated-NF-κB, phosphorylated-IκB-α, tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), interleukin-6 (IL-6), caspase-3 levels and histopathological damage in kidney tissue. CONCLUSIONS Our results reveal that MAGL inhibitor KML29 and FAAH inhibitor URB597 have a protective effect on kidney IR injury by preventing apoptosis and inflammation. Inhibition of MAGL and FAAH may be a new therapeutic strategy to prevent kidney IR injury.
Collapse
|
8
|
Hosohata K, Harnsirikarn T, Chokesuwattanaskul S. Ferroptosis: A Potential Therapeutic Target in Acute Kidney Injury. Int J Mol Sci 2022; 23:ijms23126583. [PMID: 35743026 PMCID: PMC9223765 DOI: 10.3390/ijms23126583] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a recently recognized form of nonapoptotic cell death that is triggered by reactive oxidative species (ROS) due to iron overload, lipid peroxidation accumulation, or the inhibition of phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4). Recent studies have reported that ferroptosis plays a vital role in the pathophysiological process of multiple systems such as the nervous, renal, and pulmonary systems. In particular, the kidney has higher rates of O2 consumption in its mitochondria than other organs; therefore, it is susceptible to imbalances between ROS and antioxidants. In ischemia/reperfusion (I/R) injury, which is damage caused by the restoring blood flow to ischemic tissues, the release of ROS and reactive nitrogen species is accelerated and contributes to subsequent inflammation and cell death, such as ferroptosis, as well as apoptosis and necrosis being induced. At the same time, I/R injury is one of the major causes of acute kidney injury (AKI), causing significant morbidity and mortality. This review highlights the current knowledge on the involvement of ferroptosis in AKI via oxidative stress.
Collapse
Affiliation(s)
- Keiko Hosohata
- Education and Research Center for Clinical Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
- Correspondence: ; Tel.: +81-72-690-1271
| | - Tanisorn Harnsirikarn
- Division of Nephrology, Department of Internal Medicine, Bhumibol Adulyadej Hospital, Royal Thai Air Force, Bangkok 10220, Thailand;
| | | |
Collapse
|
9
|
Azouz AA, Hersi F, Ali FEM, Hussein Elkelawy AMM, Omar HA. Renoprotective effect of vinpocetine against ischemia/reperfusion injury: Modulation of NADPH oxidase/Nrf2, IKKβ/NF-κB p65, and cleaved caspase-3 expressions. J Biochem Mol Toxicol 2022; 36:e23046. [PMID: 35315168 DOI: 10.1002/jbt.23046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 11/08/2022]
Abstract
Ischemia/reperfusion injury (IRI) during kidney transplantation is a serious clinical problem with a high mortality rate and a lack of therapy. Therefore, there is a need to improve the ability of the kidney to tolerate IRI during transplantation. This study aimed to investigate the possible protective effect of vinpocetine; a derivative of vincamine alkaloid; against renal IRI in rats with the elucidation of the involved mechanisms. Vinpocetine (25 mg/kg; i.p.) was administered for 10 successive days before the induction of ischemia by bilateral clamping of both renal pedicles for 45 min followed by 24 h of reperfusion. Blood and renal tissue samples were then collected for biochemical, molecular, and histopathological investigations. Vinpocetine significantly reduced serum creatinine and blood urea nitrogen levels in rats subjected to IRI. It also reduced mRNA expression of NADPH oxidase and renal content of malondialdehyde, while enhanced Nrf2 protein expression and renal content of reduced glutathione. The suppression of the provoked inflammatory response was evident by the downregulation of IKKβ and NF-κB p65 protein expressions, as well as their downstream inflammatory markers; tumor necrosis factor-α, interleukin-6, and myeloperoxidase. In addition, vinpocetine reduced protein expression of the apoptotic executioner cleaved caspase-3. These nephroprotective effects were confirmed by the improvement in histopathological features. Collectively, the protective effect of vinpocetine against IRI could be attributed to modulation of NADPH oxidase/Nrf2, IKKβ/NF-κB p65, and cleaved caspase-3 expressions. Thus, vinpocetine could improve oxidant/antioxidant balance, suppress triggered inflammatory response, and promote renal cell survival after IRI.
Collapse
Affiliation(s)
- Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Hany A Omar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| |
Collapse
|
10
|
Ashour H, Hashem HA, Khowailed AA, Rashed LA, Hassan RM, Soliman AS. Necrostatin-1 mitigates renal ischemia-reperfusion injury - time dependent- via aborting the interacting protein kinase (RIPK-1)-induced inflammatory immune response. Clin Exp Pharmacol Physiol 2022; 49:501-514. [PMID: 35090059 DOI: 10.1111/1440-1681.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/13/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
The recently defined necroptosis process participates in the pathophysiology of several tissue injuries. Targeting the necroptosis mediator receptor-interacting protein kinase (RIPK1) by necrostatin-1 in different phases of ischemia-reperfusion injury (IRI) may provide new insight into the protection against renal IRI. The rat groups included (n= 8 in each group); 1) Sham, 2) Renal IRI, 3) Necrostatin-1 treatment 20 min before ischemia induction in a dose of 1.65 mg/kg/intravenous. 4) Necrostatin-1 injection just before reperfusion, 5) Necrostatin-1 injection 20 min after reperfusion establishment, and 6) drug injection at both the pre-ischemia and at reperfusion time in the same dose. Timing dependent, necrostatin-1 diminished RIPK1 (P < 0.001), and aborted the necroptosis induced renal cell injury. Necrostatin-1 decreased the renal chemokine (CXCL1), interleukin-6, intercellular adhesion molecule (ICAM-1), myeloperoxidase, and the nuclear factor (NFκB), concomitant with reduced inducible nitric oxide synthase (iNOS), inflammatory cell infiltration, and diminished cell death represented by apoptotic cell count and the BAX/Bcl2 protein ratio. In group six, the cell injury was minimum and the renal functions (creatinine, BUN, and creatinine clearance) were almost normalized. The inflammatory markers were diminished (P < 0.001) compared to the IRI group. The results were confirmed by histopathological examination. In conclusion, RIPK1 inhibition ameliorates the inflammatory immune response induced by renal IRI. The use of two doses was more beneficial as the pathophysiology of cell injury is characterized.
Collapse
Affiliation(s)
- Hend Ashour
- Department of Medical Physiology, Faculty of Medicine, King Khalid University, Abha, KSA.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Heba A Hashem
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Akef A Khowailed
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Egypt
| | - Randa M Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Ayman S Soliman
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Egypt
| |
Collapse
|
11
|
SCM-198 Can Regulate Autophagy Through the Bax/Bcl-2/TLR4 Pathway to Alleviate Renal Ischemia-Reperfusion Injury. THE EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Renal ischemia-reperfusion (I/R) injury is frequently observed in several clinical cases. In this study, we want to investigate that SCM-198 attenuates renal injury in the renal I/R model and find out the possible mechanisms. Wistar albino 40 male rats were classified into four groups (n=10): control, DMSO, I/R, and SCM-198 30 mg/kg. In the group 4, SCM-198 was administered intraperitoneally once at the doses of 30 mg/kg following the reperfusion. Glomerular associated proteins (PCX), tubular damage factors (NGAL, KIM-1), blood urea nitrogen (BUN), serum creatinine, inflammatory cytokines (IL-1β, IL-18, and TNF-α), Bax/Bcl-2, TLR4, LC3B, and Beclin-1 were evaluated. SCM-198 played an essential role in mitigating kidney damage. SCM-198 alleviated tubular damage and decreased IL-1β, IL-18, and TNF-α levels. SCM-198 reduced the apoptosis marker Bax/Bcl-2 ratio, immune system protein TLR4, and autophagy proteins LC3B and Beclin-1. In brief, our results support the notion that SCM-198 has protective effects on I/R-induced renal injury. SCM-198 therapy may be a new alternative for the prevention and treatment of renal I/R injury.
Collapse
|
12
|
A New Clinical Utility For Tubular Markers To Identify Kidney Responders To Saxagliptin Treatment In Patients With Diabetic Nephropathy. Can J Diabetes 2021; 46:134-141.e2. [DOI: 10.1016/j.jcjd.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022]
|
13
|
Zhang Y, Li K, Li Y, Zhao W, Wang L, Chen Z, Ma X, Yao T, Wang J, Dong W, Li X, Tian X, Fu R. Profibrotic mechanisms of DPP8 and DPP9 highly expressed in the proximal renal tubule epithelial cells. Pharmacol Res 2021; 169:105630. [PMID: 33932609 DOI: 10.1016/j.phrs.2021.105630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND DPP8 and DPP9 have been demonstrated to play important roles in multiple diseases. Evidence for increased gene expression of DPP8 and DPP9 in tubulointerstitium was found to be associated with the decline of kidney function in chronic kidney disease (CKD) patients, which was observed in the Nephroseq human database. To examine the role of DPP8 and DPP9 in the tubulointerstitial injury, we determined the efficacy of DPP8 and DPP9 on epithelial-to-mesenchymal transition (EMT) and tubulointerstitial fibrosis (TIF) as well as the underlying mechanisms. METHODS We conducted the immunofluorescence of DPP8 and DPP9 in kidney biopsy specimens of CKD patients, established unilateral ureteral obstruction (UUO) animal model, treated with TC-E5007 (a specific inhibitor of both DPP8 and DPP9) or Saxagliptin (positive control) or saline, and HK-2 cells model. RESULTS We observed the significantly increased expression of DPP8 and DPP9 in the renal proximal tubule epithelial cells of CKD patients compared to the healthy control subjects. DPP8/DPP9 inhibitor TC-E5007 could significantly attenuate the EMT and extracellular matrix (ECM) synthesis in UUO mice, all these effects were mediated via interfering with the TGF-β1/Smad signaling. TC-E5007 treatment also presented reduced renal inflammation and improved renal function in the UUO mice compared to the placebo-treated UUO group. Furthermore, the siRNA for DPP8 and DPP9, and TC-E5007 treatment decreased EMT- and ECM-related proteins in TGF-β1-treated HK-2 cells respectively, which could be reversed significantly by transduction with lentivirus-DPP8 and lentivirus-DPP9. CONCLUSION These data obtained provide evidence that the DPP8 and DPP9 could be potential therapeutic targets against TIF.
Collapse
Affiliation(s)
- Yuzhan Zhang
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Ke Li
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Yan Li
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Weihao Zhao
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Li Wang
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Zhao Chen
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Xiaotao Ma
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Tian Yao
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Jinhua Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Wei Dong
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China
| | - Xiancheng Li
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi 710003, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710005, China.
| |
Collapse
|