1
|
Gonda K, Hai T, Suzuki K, Ozaki A, Shibusa T, Takenoshita S, Maejima Y, Shimomura K. Effect of Ficus pumila L. on Improving Insulin Secretory Capacity and Resistance in Elderly Patients Aged 80 Years Old or Older Who Develop Diabetes After COVID-19 Infection. Nutrients 2025; 17:290. [PMID: 39861420 PMCID: PMC11767592 DOI: 10.3390/nu17020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
(1) Background: It has been reported that people affected by COVID-19, an infectious disease caused by SARS-CoV-2, suffer from various diseases, after infection. One of the most serious problems is the increased risk of developing diabetes after COVID-19 infection. However, a treatment for post-COVID-19 infection diabetes has not yet been established. In this study, we investigated the effects of Ficus pumila L. extract, which has traditionally been used to reduce blood glucose levels in Okinawa, on patients who developed diabetes after COVID-19 infection. (2) Methods: In total, 128 rehabilitation patients aged 80 years old or older who developed diabetes after COVID-19 infection were included. The HOMA-β (Homeostatic model assessment of β-cell function) and HOMA-IR (Homeostatic model assessment of insulin resistance) were assessed to evaluate the glucose tolerance. (3) Results: The HOMA-β decreased and HOMA-IR increased in patients who developed after diabetes after COVID-19 infection. Subsequently, 59 patients were given Ficus pumila L. extract and their HOMA-β and HOMA-IR improved after ingestion. On the other hand, the control group of patients who did not consume Ficus pumila L. showed no improvement in both HOMA-β and HOMA-IR. (4) Conclusions: Ficus pumila L. extract, ingested by patients who developed diabetes after COVID-19 infection, stimulated insulin secretion capacity and improved insulin resistance.
Collapse
Affiliation(s)
- Kenji Gonda
- Department of Breast and Thyroid Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki City 972-8322, Fukushima, Japan;
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan; (K.S.); (Y.M.); (K.S.)
| | - Takeshi Hai
- Department of Internal Medicine, Daido Central Hospital, 1-1-37 Asato, Naha City 902-0067, Okinawa, Japan;
| | - Kouichi Suzuki
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan; (K.S.); (Y.M.); (K.S.)
- Department of Internal Medicine, Daido Central Hospital, 1-1-37 Asato, Naha City 902-0067, Okinawa, Japan;
| | - Akihiko Ozaki
- Department of Breast and Thyroid Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki City 972-8322, Fukushima, Japan;
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan
| | - Takashi Shibusa
- Department of Internal Medicine, Jyoban Hospital of Tokiwa Foundation, Iwaki City 972-8322, Fukushima, Japan;
| | - Seiichi Takenoshita
- Department of Drug Research for Astatine-221 Targeted Alfa Therapy, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan;
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan; (K.S.); (Y.M.); (K.S.)
| | - Kenjyu Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan; (K.S.); (Y.M.); (K.S.)
| |
Collapse
|
2
|
Zhang R, Qiu X, He C, Deng R, Huo C, Fang B. From Life's Essential 8 to metabolic syndrome: insights from NHANES database and network pharmacology analysis of quercetin. Front Nutr 2024; 11:1452374. [PMID: 39434897 PMCID: PMC11491958 DOI: 10.3389/fnut.2024.1452374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Background Metabolic syndrome (MetS), or syndrome X, is a collection of metabolic illnesses that affect the body's health, particularly insulin resistance and obesity. The prevalence of MetS is on the rise, particularly among younger individuals. Quercetin, a natural flavonoid found in many traditional Chinese medicines, can impact various pathways to disrupt the pathological advancement of MetS with few negative effects. The American Heart Association recently introduced a cardiovascular health assessment termed Life's Essential 8 (LE8), which might impact the treatment of MetS. Methods Quercetin targets and their functions in MetS pathways were identified using a network pharmacology method and molecular docking techniques. The study examined quercetin's direct and indirect interactions with proteins linked to the pathogenic processes of MetS. Data were collected regarding the American Heart Association's LE8 cardiovascular health indicators, which include health behaviors (diet, physical activity, nicotine exposure, and sleep) and health factors (body mass index, non-high-density lipoprotein cholesterol, blood glucose, and blood pressure). The study assessed the connection between LE8 and the occurrence of MetS, taking into account dietary quercetin consumption as a variable of interest. Results The negative correlation between MetS and LE8 indicates that individuals with higher LE8 scores are less likely to develop MetS. Individuals in the fully adjusted highest group (LE8 ≥ 80) demonstrated a 79% lower likelihood of developing MetS than those in the lowest group (OR = 0.21; 95% CI, 0.17-0.26, p < 0.0001). Network pharmacology and molecular docking results show that quercetin may exert its therapeutic effects by modulating various biological response processes, including those related to xenobiotic stimuli, bacterial molecules, lipopolysaccharides, and oxidative stimuli. These processes involve key pathways associated with diabetic complications, such as the AGE-RAGE signaling pathway, pathways related to diabetic complications, and pathways involved in lipids and atherosclerosis. Therefore, quercetin may reduce cardiovascular risk, improve glucose-lipid metabolism, and alleviate insulin resistance and other biological processes by influencing multiple aspects of the lipid profile, blood glucose, and insulin resistance, ultimately impacting the links between LE8 score and MetS. Conclusion This study discovered that an optimal LE8 score is a marker of adopting a lifestyle of wellness and is connected with a reduced likelihood of developing MetS. Quercetin acts on core targets such as IL6, BCL2, TP53, IL1B, MAPK1, and CCL2, and then plays a therapeutic role in regulating lipid metabolism, anti-inflammation, immunomodulation, autophagy, etc., through the pathways of diabetic complications, lipids, atherosclerosis, etc., and has the characteristics of multi-targets, multi-pathways, and multi-functions in regulating interventions for MetS.
Collapse
Affiliation(s)
- Runze Zhang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiuxiu Qiu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenming He
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rou Deng
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenxing Huo
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Santos RM, Tavares CA, Santos TMR, Rasouli H, Ramalho TC. MD Simulations to Calculate NMR Relaxation Parameters of Vanadium(IV) Complexes: A Promising Diagnostic Tool for Cancer and Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1653. [PMID: 38139780 PMCID: PMC10747690 DOI: 10.3390/ph16121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Early phase diagnosis of human diseases has still been a challenge in the medicinal field, and one of the efficient non-invasive techniques that is vastly used for this purpose is magnetic resonance imaging (MRI). MRI is able to detect a wide range of diseases and conditions, including nervous system disorders and cancer, and uses the principles of NMR relaxation to generate detailed internal images of the body. For such investigation, different metal complexes have been studied as potential MRI contrast agents. With this in mind, this work aims to investigate two systems containing the vanadium complexes [VO(metf)2]·H2O (VC1) and [VO(bpy)2Cl]+ (VC2), being metformin and bipyridine ligands of the respective complexes, with the biological targets AMPK and ULK1. These biomolecules are involved in the progression of Alzheimer's disease and triple-negative breast cancer, respectively, and may act as promising spectroscopic probes for detection of these diseases. To initially evaluate the behavior of the studied ligands within the aforementioned protein active sites and aqueous environment, four classical molecular dynamics (MD) simulations including VC1 + H2O (1), VC2 + H2O (2), VC1 + AMPK + H2O (3), and VC2 + ULK1 + H2O (4) were performed. From this, it was obtained that for both systems containing VCs and water only, the theoretical calculations implied a higher efficiency when compared with DOTAREM, a famous commercially available contrast agent for MRI. This result is maintained when evaluating the system containing VC1 + AMPK + H2O. Nevertheless, for the system VC2 + ULK1 + H2O, there was observed a decrease in the vanadium complex efficiency due to the presence of a relevant steric hindrance. Despite that, due to the nature of the interaction between VC2 and ULK1, and the nature of its ligands, the study gives an insight that some modifications on VC2 structure might improve its efficiency as an MRI probe.
Collapse
Affiliation(s)
- Rodrigo Mancini Santos
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (R.M.S.); (T.M.R.S.); (H.R.)
| | - Camila Assis Tavares
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (R.M.S.); (T.M.R.S.); (H.R.)
| | - Taináh Martins Resende Santos
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (R.M.S.); (T.M.R.S.); (H.R.)
| | - Hassan Rasouli
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (R.M.S.); (T.M.R.S.); (H.R.)
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah 6714414971, Iran
| | - Teodorico Castro Ramalho
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (R.M.S.); (T.M.R.S.); (H.R.)
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Tavares CA, Santos TMR, da Cunha EFF, Ramalho TC. Molecular Dynamics-Assisted Interaction of Vanadium Complex-AMPK: From Force Field Development to Biological Application for Alzheimer's Treatment. J Phys Chem B 2023; 127:495-504. [PMID: 36603208 DOI: 10.1021/acs.jpcb.2c07147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A large part of the world's population is affected by Alzheimer's disease (AD) and diabetes mellitus type 2, which cause both social and economic impacts. These two conditions are associated with one protein, AMPK. Studies have shown that vanadium complexes, such as bis(N',N'-dimethylbiguanidato)-oxovanadium(IV), VO(metf)2·H2O, are potential agents against AD. A crucial step in drug design studies is obtaining information about the structure and interaction of these complexes with the biological targets involved in the process through molecular dynamics (MD) simulations. However, MD simulations depend on the choice of a good force field that could present reliable results. Moreover, general force fields are not efficient for describing the properties of metal complexes, and a VO(metf)2·H2O-specific force field does not yet exist; thus, the proper development of a parameter set is necessary. Furthermore, this investigation is essential and relevant given the importance for both the scientific community and the population that is affected by this neurodegenerative disease. Therefore, the present work aims to develop and validate the AMBER force field parameters for VO(metf)2·H2O since the literature lacks such information on metal complexes and investigate through classical molecular dynamics the interactions made by the complex with the protein. The proposed force field proved to be effective for describing the vanadium complex (VC), supported by different analyses and validations. Moreover, it had a great performance when compared to the general AMBER force field. Beyond that, MD findings provided an in-depth perspective of vanadium complex-protein interactions that should be taken into consideration in future studies.
Collapse
Affiliation(s)
- Camila A Tavares
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras37200-000, MG, Brazil
| | - Taináh M R Santos
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras37200-000, MG, Brazil
| | - Elaine F F da Cunha
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras37200-000, MG, Brazil
| | - Teodorico C Ramalho
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras37200-000, MG, Brazil.,Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové500 03, Czech Republic
| |
Collapse
|