1
|
Parker SAJ, Hough A, Wright T, Lax N, Faruk A, Fofie CK, Simcik RD, Cavanaugh JE, Kolber BJ, Tidgewell KJ. Isolation and Bioassay of Linear Veraguamides from a Marine Cyanobacterium ( Okeania sp.). Molecules 2025; 30:680. [PMID: 39942783 PMCID: PMC11819893 DOI: 10.3390/molecules30030680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Marine cyanobacteria have gained momentum in recent years as a source of novel bioactive small molecules. This paper describes the structure elucidation and pharmacological evaluation of two new (veraguamide O (1) and veraguamide P (2)) and one known (veraguamide C (3)) analogs isolated from a cyanobacterial collection made in the Las Perlas Archipelago of Panama. We hypothesized that these compounds would be cytotoxic in cancer cell lines. The compounds were screened against HEK-293, estrogen receptor positive (MCF-7), and triple-negative breast cancer (MDA-MB-231) cells as well as against a broad panel of membrane-bound receptors. The planar structures were determined based on NMR and MS data along with a comparison to previously isolated veraguamide analogs. Phylogenetic analysis of the collection suggests it to be an Okeania sp., a similar species to the cyanobacterium reported to produce other veraguamides. Veraguamide O shows no cytotoxicity (greater than 100 μM) against ER-positive cells (MCF-7) with 13 μM IC50 against MDA-MB-231 TNBC cells. Interestingly, these compounds show affinity for the sigma2/TMEM-97 receptor, making them potential leads for the development of non-toxic sigma 2 targeting ligands.
Collapse
Affiliation(s)
- Stacy-Ann J. Parker
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA (T.W.); (A.F.); (J.E.C.)
| | - Andrea Hough
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA (T.W.); (A.F.); (J.E.C.)
| | - Thomas Wright
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA (T.W.); (A.F.); (J.E.C.)
| | - Neil Lax
- Department of Neuroscience, Thiel College, Greenville, PA 16125, USA;
| | - Asef Faruk
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA (T.W.); (A.F.); (J.E.C.)
| | - Christian K. Fofie
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (C.K.F.); (R.D.S.); (B.J.K.)
| | - Rebekah D. Simcik
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (C.K.F.); (R.D.S.); (B.J.K.)
| | - Jane E. Cavanaugh
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA (T.W.); (A.F.); (J.E.C.)
| | - Benedict J. Kolber
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (C.K.F.); (R.D.S.); (B.J.K.)
| | - Kevin J. Tidgewell
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA (T.W.); (A.F.); (J.E.C.)
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
2
|
Parker SAJ, Hough A, Wright T, Lax N, Faruk A, Fofie CK, Simcik R, Cavanaugh JE, Kolber BJ, Tidgewell KJ. Isolation and Bioassay of Linear Veraguamides from a Marine Cyanobacterium ( Okeania sp.). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633713. [PMID: 39896503 PMCID: PMC11785078 DOI: 10.1101/2025.01.18.633713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Marine cyanobacteria have gained momentum in recent years as a source of novel bioactive small molecules. This paper describes the structure elucidation and pharmacological evaluation of two new, veraguamide O (1) and veraguamide P (2), and one known, veraguamide C(3), analogs isolated from a cyanobacterial collection made in the Las Perlas Archipelago of Panama. We hypothesized that these compounds would be cytotoxic in cancer cell lines. The compounds were screened against HEK-293, estrogen receptor positive (MCF-7), and triple-negative breast cancer (MDA-MB-231) cells as well as against a broad panel of membrane bound receptors. The planar structures were determined based on NMR and MS data along with comparison to previously isolated veraguamide analogs. Phylogenetic analysis of the collection suggests it to be an Okeania sp., a similar species to the cyanobacterium reported to produce other veraguamides. Veraguamide O shows no cytotoxicity (greater than 100 μM) against ER positive cells (MCF-7) with 13 μM IC50 against MDA-MB-231 TNBC cells. Interestingly, these compounds show affinity for the sigma2/TMEM-97 receptor making them potential leads for development of non-toxic sigma 2 targeting ligands.
Collapse
Affiliation(s)
- Stacy-Ann J. Parker
- Graduate School of Pharmaceutical Sciences, Duquesne University Pittsburgh, PA
| | - Andrea Hough
- Graduate School of Pharmaceutical Sciences, Duquesne University Pittsburgh, PA
| | - Thomas Wright
- Graduate School of Pharmaceutical Sciences, Duquesne University Pittsburgh, PA
| | - Neil Lax
- Department of Neuroscience, Thiel College, Greenville, PA
| | - Asef Faruk
- Graduate School of Pharmaceutical Sciences, Duquesne University Pittsburgh, PA
| | - Christian K. Fofie
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX
| | - Rebekah Simcik
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX
| | - Jane E. Cavanaugh
- Graduate School of Pharmaceutical Sciences, Duquesne University Pittsburgh, PA
| | - Benedict J. Kolber
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX
| | - Kevin J. Tidgewell
- Graduate School of Pharmaceutical Sciences, Duquesne University Pittsburgh, PA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
3
|
Zhou C, Chen Y, Xue S, Shi Q, Guo L, Yu H, Xue F, Cai M, Wang H, Peng Z. rTMS ameliorates depressive-like behaviors and regulates the gut microbiome and medium- and long-chain fatty acids in mice exposed to chronic unpredictable mild stress. CNS Neurosci Ther 2023; 29:3549-3566. [PMID: 37269082 PMCID: PMC10580350 DOI: 10.1111/cns.14287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) is a clinically useful therapy for depression. However, the effects of rTMS on the metabolism of fatty acids (FAs) and the composition of gut microbiota in depression are not well established. METHODS Mice received rTMS (15 Hz, 1.26 T) for seven consecutive days after exposure to chronic unpredictable mild stress (CUMS). The subsequent depressive-like behaviors, the composition of gut microbiota of stool samples, as well as medium- and long-chain fatty acids (MLCFAs) in the plasma, prefrontal cortex (PFC), and hippocampus (HPC) were evaluated. RESULTS CUMS induced remarkable changes in gut microbiotas and fatty acids, specifically in community diversity of gut microbiotas and PUFAs in the brain. 15 Hz rTMS treatment alleviates depressive-like behaviors and partially normalized CUMS induced alterations of microbiotas and MLCFAs, especially the abundance of Cyanobacteria, Actinobacteriota, and levels of polyunsaturated fatty acids (PUFAs) in the hippocampus and PFC. CONCLUSION These findings revealed that the modulation of gut microbiotas and PUFAs metabolism might partly contribute to the antidepressant effect of rTMS.
Collapse
Affiliation(s)
- Cui‐Hong Zhou
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Yi‐Huan Chen
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Shan‐Shan Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Qing‐Qing Shi
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Lin Guo
- Department of PsychiatryChang'an HospitalXi'anChina
| | - Huan Yu
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Min Cai
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Hua‐Ning Wang
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
4
|
Liu D, Wang Q, Li Y, Yuan Z, Liu Z, Guo J, Li X, Zhang W, Tao Y, Mei J. Fructus gardeniae ameliorates anxiety-like behaviors induced by sleep deprivation via regulating hippocampal metabolomics and gut microbiota. Front Cell Infect Microbiol 2023; 13:1167312. [PMID: 37377643 PMCID: PMC10291143 DOI: 10.3389/fcimb.2023.1167312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Fructus gardeniae (FG) is a traditional Chinese medicine and health food for thousands of years of application throughout Chinese history and is still widely used in clinical Chinese medicine. FG has a beneficial impact on anxiety, depression, insomnia, and psychiatric disorders; however, its mechanism of action requires further investigation. This study aimed to investigate the effects and mechanisms of FG on sleep deprivation (SD)-induced anxiety-like behavior in rats. A model of SD-induced anxiety-like behavior in rats was established by intraperitoneal injection of p-chlorophenylalanine (PCPA). This was accompanied by neuroinflammation and metabolic abnormalities in the hippocampus and disturbance of intestinal microbiota. However reduced SD-induced anxiety-like behavior and decreased levels of pro-inflammatory cytokines including TNF-α and IL-1β were observed in the hippocampus of rats after 7 days of FG intervention. In addition, metabolomic analysis demonstrated that FG was able to modulate levels of phosphatidylserine 18, Phosphatidylinositol 18, sn-glycero-3-phosphocholine, deoxyguanylic acid, xylose, betaine and other metabolites in the hippocampus. The main metabolic pathways of hippocampal metabolites after FG intervention involve carbon metabolism, glycolysis/gluconeogenesis, pentose phosphate, and glycerophospholipid metabolism. 16S rRNA sequencing illustrated that FG ameliorated the dysbiosis of gut microbiota in anxious rats, mainly increased the abundance of Muribaculaceae and Lactobacillus, and decreased the abundance of Lachnospiraceae_NK4A136_group. In addition, the correlation analysis demonstrated that there was a close relationship between hippocampal metabolites and intestinal microbiota. In conclusion, FG improved the anxiety behavior and inhibited of neuroinflammation in sleep-deprived rats, and the mechanism may be related to the FG regulation of hippocampal metabolites and intestinal microflora composition.
Collapse
Affiliation(s)
- Dong Liu
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Department of Traditional Chinese Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qianfei Wang
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ying Li
- Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhenshuang Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiliang Liu
- Department of Emergency, Hebei Yiling Hospital, Shijiazhang, Hebei, China
| | - Junli Guo
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xin Li
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Weichao Zhang
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yulei Tao
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jianqiang Mei
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Hough A, Criswell C, Faruk A, Cavanaugh JE, Kolber BJ, Tidgewell KJ. Barbamide Displays Affinity for Membrane-Bound Receptors and Impacts Store-Operated Calcium Entry in Mouse Sensory Neurons. Mar Drugs 2023; 21:110. [PMID: 36827151 PMCID: PMC9966578 DOI: 10.3390/md21020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Marine cyanobacteria are a rich source of bio-active metabolites that have been utilized as leads for drug discovery and pharmacological tools for basic science research. Here, we describe the re-isolation of a well-known metabolite, barbamide, from Curaçao on three different occasions and the characterization of barbamide's biological interactions with targets of the mammalian nervous system. Barbamide was originally discovered as a molluscicidal agent from a filamentous marine cyanobacterium. In our hands, we found little evidence of toxicity against mammalian cell cultures. However, barbamide showed several affinities when screened for binding affinity for a panel of 45 receptors and transporters known to be involved in nociception and sensory neuron activity. We found high levels of binding affinity for the dopamine transporter, the kappa opioid receptor, and the sigma receptors (sigma-1 and sigma-2 also known as transmembrane protein 97; TMEM97). We tested barbamide in vitro in isolated sensory neurons from female mice to explore its functional impact on calcium flux in these cells. Barbamide by itself had no observable impact on calcium flux. However, barbamide enhanced the effect of the TRPV1 agonist capsaicin and enhanced store-operated calcium entry (SOCE) responses after depletion of intracellular calcium. Overall, these results demonstrate the biological potential of barbamide at sensory neurons with implications for future drug development projects surrounding this molecule.
Collapse
Affiliation(s)
- Andrea Hough
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Connor Criswell
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Asef Faruk
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jane E. Cavanaugh
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Benedict J. Kolber
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Kevin J. Tidgewell
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
6
|
Song X, Wang W, Ding S, Wang Y, Ye L, Chen X, Ma H. Exploring the potential antidepressant mechanisms of puerarin: Anti-inflammatory response via the gut-brain axis. J Affect Disord 2022; 310:459-471. [PMID: 35568321 DOI: 10.1016/j.jad.2022.05.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Puerarin has been shown to have a good antidepressant effect, and our previous study found that it can remedy stress-induced dysbiosis. However, its gut microbiota-related mechanism has not been fully elucidated. Therefore, this study aimed to investigate the potential link between puerarin on gut microbiota and inflammatory responses in depressed rats. METHODS A chronic unpredictable mild stress (CUMS) rat model of depression was established, open field test (OFT), sucrose preference test (SPT) and forced swimming test (FST) were used to evaluate its antidepressant effect. 16S rRNA sequencing was performed to identify the rat fecal microflora. At the same time, inflammatory cytokines, colonic histopathological changes, and brain-derived neurotrophic factor (BDNF), nuclear factor kappa-B (NF-κB), inhibitor a of NF-κB (IκB-α) protein expression were detected. RESULTS Puerarin attenuated CUMS-induced depressive-like behavior and gut microbiota dysregulation in rats, significantly reducing the abundance of harmful bacteria such as Desulfovibrio, Verrucomicrobiae, and Verrucomicrobia. In addition, puerarin can also reduce the pro-inflammatory factors and increase the level of anti-inflammatory factors in depressed rats, improve the damaged colon tissue, enhance the expression of BDNF and IκB-α in the hippocampus and inhibit the expression of NF-κB. LIMITATIONS Direct evidence that puerarin improves depressive-like behaviors via gut microbiota is lacking. CONCLUSION The underlying mechanism of puerarin's antidepressant-like effect is closely related to the bidirectional communication of the microbiota-gut-brain axis by regulating the inflammatory response.
Collapse
Affiliation(s)
- Xujiao Song
- School of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Weihao Wang
- School of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Shanshan Ding
- School of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Yan Wang
- School of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Lufen Ye
- School of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Xin Chen
- School of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Hao Ma
- School of Aesthetic Medicine, Yichun University, Yichun 336000, China.
| |
Collapse
|
7
|
Lewter LA, Johnson MC, Treat AC, Kassick AJ, Averick S, Kolber BJ. Slow-sustained delivery of naloxone reduces typical naloxone-induced precipitated opioid withdrawal effects in male morphine-dependent mice. J Neurosci Res 2022; 100:339-352. [PMID: 32772457 PMCID: PMC9809991 DOI: 10.1002/jnr.24627] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/31/2020] [Indexed: 01/05/2023]
Abstract
Thousands of individuals die each year from opioid-related overdoses. While naloxone (Narcan®) is currently the most widely employed treatment to reverse opioid toxicity, high or repeated doses of this antidote often lead to precipitated opioid withdrawal (POW). We hypothesized that a slow linear release of naloxone from a nanoparticle would induce fewer POW symptoms compared to high-dose free naloxone. First, we measured the acute impact of covalent naloxone nanoparticles (Nal-cNPs) on morphine-induced antinociception in the hotplate test. We found that Nal-cNP treatment blocked the antinociceptive effect of morphine within 15 min of administration. Next, we tested the impact of Nal-cNPs on POW symptoms in male morphine-dependent mice. To induce morphine dependence, mice were treated with 5 mg/kg morphine (or saline) twice-daily for six consecutive days. On day 7 mice received 5 mg/kg morphine (or saline) injections 2 hr prior to receiving treatment of either unmodified free naloxone, a high or low dose of Nal-cNP, empty nanoparticle (cNP-empty), or saline. Behavior was analyzed for 0-6 hr followed by 24 and 48 hr time points after treatment. As expected, free naloxone induced a significant increase in POW behavior in morphine-dependent mice compared to saline-treated mice upon free naloxone administration. In comparison, reduced POW behavior was observed with both doses of Nal-cNP. Side effects of Nal-cNP on locomotion and fecal boli production were measured and no significant side-effects were observed. Overall, our data show that sustained release of naloxone from a covalent nanoparticle does not induce severe POW symptoms in morphine-dependent mice.
Collapse
Affiliation(s)
- Lakeisha A. Lewter
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| | - Marisa C. Johnson
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| | - Anny C. Treat
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| | - Andrew J. Kassick
- Neuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA,Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Saadyah Averick
- Neuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA,Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Benedict J. Kolber
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Yu B, Qiu H, Cheng S, Ye F, Li J, Chen S, Zhou L, Yang Y, Zhong C, Li J. Profile of gut microbiota in patients with traumatic thoracic spinal cord injury and its clinical implications: a case-control study in a rehabilitation setting. Bioengineered 2021; 12:4489-4499. [PMID: 34311653 PMCID: PMC8806552 DOI: 10.1080/21655979.2021.1955543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gut microbiota are the candidate biomarkers for neurogenic bowel dysfunction (NBD) in patients with spinal cord injury (SCI). We aimed to identify the common features between patients with varying degree of thoracic SCI and healthy individuals and subpopulations of microbiota correlated with the serum biomarkers. Twenty-one patients with complete thoracic SCI (CTSCI), 24 with incomplete thoracic SCI (ITSCI), and 24 healthy individuals (HC) were enrolled in this study. Fresh stool samples and clinical data were collected from all participants, and their bowel functions with SCI were assessed. Microbial diversity and composition were analyzed by sequencing the 16S rRNA gene. The features of gut microbiota correlated with the serum biomarkers and their functions were investigated. The mean NBD score of patients with CTSCI was higher than that of patients with ITSCI. Diversity of the gut microbiota in SCI group was reduced, and with an increase in the degree of damage, alpha diversity had decreased gradually. The composition of gut microbiota in patients with SCI was distinct from that in healthy individuals, and CTSCI group exhibited further deviation than ITSCI group compared to healthy individuals. Four serum biomarkers were found to be correlated with most differential genera. Patients with thoracic SCI present gut dysbiosis, which is more pronounced in patients with CTSCI than in those with ITSCI. Therefore, the gut microbiota profile may serve as the signatures for bowel and motor functions in patients with thoracic SCI.
Collapse
Affiliation(s)
- Binbin Yu
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Huaide Qiu
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shupeng Cheng
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Feng Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University
| | - Jiahui Li
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sijing Chen
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhou
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yumei Yang
- Spinal Cord Injury Ward, Jiangsu Zhongshan Geriatric Rehabilitation Hospital, Nanjing, China
| | - Caiyun Zhong
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jianan Li
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
9
|
Li X, Khan I, Xia W, Huang G, Liu L, Law BYK, Yin L, Liao W, Leong W, Han R, Wong VKW, Xia C, Guo X, Hsiao WLW. Icariin enhances youth-like features by attenuating the declined gut microbiota in the aged mice. Pharmacol Res 2021; 168:105587. [PMID: 33798737 DOI: 10.1016/j.phrs.2021.105587] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022]
Abstract
We previously reported the neuroprotective effects of icariin in rat cortical neurons. Here, we present a study on icariin's anti-aging effect in 24-month aged mice by treating them with a single daily dose of 100 mg/kg of icariin for 15 consecutive days. Icariin treatment improved motor coordination and learning skills while lowered oxidative stress biomarkers in the serum, brain, kidney, and liver of the aged mice. In addition, icariin improved the intestinal integrity of the aged mice by upregulating tight junction adhesion molecules and the Paneth and goblet cells, along with the reduction of iNOS and pro-inflammatory cytokines (IL-1β, TNF-α, IL-2 and IL-6, and IL-12). Icariin treatments also significantly upregulated aging-related signaling molecules, Sirt 1, 3 & 6, Pot1α, BUB1b, FOXO1, Ep300, ANXA3, Calb1, SNAP25, and BDNF in old mice. Through gut microbiota (GM) analysis, we observed icariin-associated improvements in GM composition of aged mice by reinstating bacteria found in the young mice, while suppressing some bacteria found in the untreated old mice. To clarify whether icariin's anti-aging effect is rooted in the GM, we performed fecal microbiota transfer (FMT) from icariin-treated old mice to the old mice. FMT-recipients exhibited similar improvements in the rotarod score and age-related biomarkers as observed in the icariin-treated old mice. Equal or better improvement on the youth-like features was noticed when aged mice were FMT with feces from young mice. Our study shows that both direct treatments with icariin and fecal transplant from the icariin-treated aged mice produce similar anti-aging phenotypes in the aged mice. We prove that GM plays a pivotal role in the healing abilities of icariin. Icariin has the potentials to be developed as a medicine for the wellness of the aged adults.
Collapse
Affiliation(s)
- Xiaoang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Wenrui Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Lin Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Weilin Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Waikit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Ruixuan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Chenglai Xia
- Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan 528000, China.
| | - Xiaoling Guo
- Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan 528000, China.
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
10
|
Chi L, Khan I, Lin Z, Zhang J, Lee MYS, Leong W, Hsiao WLW, Zheng Y. Fructo-oligosaccharides from Morinda officinalis remodeled gut microbiota and alleviated depression features in a stress rat model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153157. [PMID: 31896054 DOI: 10.1016/j.phymed.2019.153157] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/17/2019] [Accepted: 12/21/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Inulin-type fructo-oligosaccharides (FOSs) purified from Morinda officinalis How., an effective oral antidepressant for mild to moderate depression, have a largely unknown efficacy and poor bioavailability. PURPOSE Therefore, the microbiota-gut-brain axis was used to investigate the antidepressive properties of FOSs at the interface of the gut microbiota (GM). STUDY DESIGN AND METHODS FOSs was introduced via intragastric gavage to rats exposed to chronic unpredictable mild stress (CUMS), and the antidepressive effects were investigated through behavioral tests, intestinal morphology and corticosterone levels. Bacterial genomic DNA was extracted from feces, and the GM was profiled for using enterobacterial repetitive intergenic consensus (ERIC)-PCR analysis, partial least squares-discriminant analysis (PLS-DA) and 16S rRNA gene pyrosequencing. RESULTS It was observed that FOSs alleviated depression-like behaviors and repaired intestinal epithelia damages. FOSs treatment lowered corticosterone levels in the plasma and urine of the model rats. Moreover, the GM compositions of normal and model rats were distantly clustered and were mainly related to the disappearance of beneficial bacteria (e.g., Acinetobacter, Barnesiella, Coprococcus, Dialister, Lactobacillus, and Paenibacillus) and appearance of depression-associated bacteria (e.g., Anaerostipes, Oscillibacter, Proteobacteria, and Streptococcus) in depressive rats. Interestingly, the dysbiosis in depressive rats' gut was reinstated with FOSs treatments. Notably, FOSs promoted the abundance of the bacterial phylum Cyanobacteria, a group of bacteria known for the secretion of pharmacologically important metabolites, such as H2S, that exhibit antidepressant-like properties. Apparently, FOSs-induced modulation of GM was more antidepressive compared to a component of FOSs, degrees of polymerization (DP) 5, and fluoxetine, the standard antidepressant drug. CONCLUSION In conclusion, this study implied that antidepressant efficacy of FOSs was inseparable from and strongly associated with the modulation of the host' s GM.
Collapse
Affiliation(s)
- Liandi Chi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Zibei Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiwen Zhang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, China
| | - M Y Simon Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Waikit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
11
|
Manogar P, Vijayakumar S, Rajalakshmi S, Pugazhenthi M, Praseetha P, Jayanthi S. In silico studies on CNR1 receptor and effective cyanobacterial drugs: Homology modelling, molecular docking and molecular dynamic simulations. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Evaluating Marine Cyanobacteria as a Source for CNS Receptor Ligands. Molecules 2018; 23:molecules23102665. [PMID: 30336553 PMCID: PMC6222545 DOI: 10.3390/molecules23102665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Natural products have a long history as a source of psychoactive agents and pharmacological tools for understanding the brain and its circuitry. In the last two decades, marine cyanobacteria have become a standard source of natural product ligands with cytotoxic properties. The study of cyanobacterial metabolites as CNS modulatory agents has remained largely untapped, despite the need for new molecules to treat and understand CNS disorders. We have generated a library of 301 fractions from 37 field collected cyanobacterial samples and screened these fractions against a panel of CNS receptors using radiolabeled ligand competitive-binding assays. Herein we present an analysis of the screening data collected to date, which show that cyanobacteria are prolific producers of compounds which bind to important CNS receptors, including those for 5-HT, DA, monoamine transporters, adrenergic, sigma, and cannabinoid receptors. In addition to the analysis of our screening efforts, we will also present the isolation of five compounds from the same cyanobacterial collection to illustrate how pre-fractionation followed by radioligand screening can lead to rapid identification of selective CNS agents. The systematic screening of natural products sources, specifically filamentous marine cyanobacteria, will yield a number of lead compounds for further development as pharmacological tools and therapeutics.
Collapse
|
13
|
Lax NC, Parker SAJ, Hilton EJ, Seliman Y, Tidgewell KJ, Kolber BJ. Cyanobacterial extract with serotonin receptor subtype 7 (5-HT 7 R) affinity modulates depression and anxiety-like behavior in mice. Synapse 2018; 72:e22059. [PMID: 29992647 DOI: 10.1002/syn.22059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/15/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Abstract
Marine cyanobacteria represent a unique source in the field of drug discovery due to the secondary metabolites they produce and the structural similarity these compounds have to endogenous mammalian receptor ligands. A series of cyanobacteria were subjected to extraction, fractionation by column chromatography and screened for affinity against CNS targets with a focus on serotonin receptors (5-HTRs). Out of 276 fractions screened, 21% had activity at 5-HTRs and/or the 5-HT transporter (SERT). One sample, a cyanobacterium identified by 16S rRNA sequencing as Leptolyngbya from Las Perlas archipelago in Panama, contained a fraction with noted affinity for the 5-HT7 receptor (5-HT7 R). This fraction (DUQ0002I) was screened via intracerebroventricular (ICV) injections in mice using depression and anxiety assays including the forced swim, tail suspension, elevated zero maze, and light-dark preference tests. DUQ0002I decreased depression and anxiety-like behaviors in males and did not have effects in 5-HT7 R knockout or female mice. Administration of DUQ0002I to the CA1 of the hippocampus induced antidepression-like, but not anxiolytic-like behaviors. Testing of further purified materials showed no behavioral effects, leading us to hypothesize that the behavioral effects are likely caused by a synergistic effect between multiple compounds in the fraction. Finally, DUQ0002I was used in a model of neuropathic pain with comorbid depression (spared nerve injury-SNI). DUQ0002I had a similar antidepressant effect in animals with SNI, suggesting a role for the 5-HT7 R in the development of comorbid pain and depression. These results demonstrate the potential that cyanobacterial metabolites have in the field of neuropharmacognosy.
Collapse
Affiliation(s)
- Neil C Lax
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania
| | - Stacy-Ann J Parker
- Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania
| | - Edward J Hilton
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania
| | - Youstina Seliman
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania
| | - Kevin J Tidgewell
- Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania
| | - Benedict J Kolber
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Al-Awadhi FH, Gao B, Rezaei MA, Kwan JC, Li C, Ye T, Paul VJ, Luesch H. Discovery, Synthesis, Pharmacological Profiling, and Biological Characterization of Brintonamides A-E, Novel Dual Protease and GPCR Modulators from a Marine Cyanobacterium. J Med Chem 2018; 61:6364-6378. [PMID: 30015488 PMCID: PMC7341966 DOI: 10.1021/acs.jmedchem.8b00885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Five novel modified linear peptides named brintonamides A-E (1-5) were discovered from a marine cyanobacterial sample collected from Brinton Channel, Florida Keys. The total synthesis of 1-5 in addition to two other structurally related analogues (6 and 7) was achieved, which provided more material to allow rigorous biological evaluation and SAR studies. Compounds were subjected to cancer-focused phenotypic cell viability and migration assays and orthogonal target-based pharmacological screening platforms to identify their protease and GPCR modulatory activity profiles. The cancer related serine protease kallikrein 7 (KLK7) was inhibited to similar extents with an IC50 near 20 μM by both representative members 1 and 4, which differed in the presence or lack of the N-terminal unit. In contrast to the biochemical protease profiling study, clear SAR was observed in the functional GPCR screens, where five GPCRs in antagonist mode (CCR10, OXTR, SSTR3, TACR2) and agonist mode (CXCR7) were modulated by compounds 1-7 to varying extents. Chemokine receptor type 10 (CCR10) was potently modulated by brintonamide D (4) with an IC50 of 0.44 μM. We performed in silico modeling to understand the structural basis underlying the differences in the antagonistic activity among brintonamides toward CCR10. Because of the significance of KLK7 and CCR10 in cancer progression and metastasis, we demonstrated the ability of brintonamide D (4) at 10 μM to significantly target downstream cellular substrates of KLK7 (Dsg-2 and E-cad) in vitro and to inhibit CCL27-induced CCR10-mediated proliferation and the migration of highly invasive breast cancer cells.
Collapse
Affiliation(s)
- Fatma H. Al-Awadhi
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Bowen Gao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Mohammad A. Rezaei
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jason C. Kwan
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Valerie J. Paul
- Smithsonian Marine Station, Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|