1
|
Yang B, Wang S, Yang Y, Wang Y. Toxicity and safety profile evaluation of Shenfu injection in a murine sepsis model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118903. [PMID: 39384114 DOI: 10.1016/j.jep.2024.118903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
AIM This study aimed to evaluate the preclinical safety of Shenfu injection for the treatment of sepsis. Tests were designed and conducted to determine the acute and long-term toxicity of Shenfu injection in rats, based on the recommended indications and dosage for human use. MATERIALS AND METHODS Rats were administered 22.5 g of raw drug/kg/day via tail vein injection. Toxicity symptoms were monitored for 14 days following the intravenous injection of Shenfu injection, and target organs affected by toxicity were analyzed. To assess long-term toxicity, rats were given 12, 9, or 6 g of raw drug/kg/day by intraperitoneal injection, equivalent to 12, 9, and 6 times the daily clinical dose for adult sepsis patients (3.3 mL of stock solution per 1 g of raw drug/kg/day), for 30 consecutive days. This was followed by a 28-day recovery period after withdrawal of the drug. During the administration and recovery periods, signs of toxicity were observed and compared with those in the control (stromal fluid) group. The aim was to predict potential clinical adverse reactions, including the nature and severity of these reactions, dose-response and time-response relationships, and the reversibility of the effects. Additionally, the study sought to identify the target organs or tissues potentially affected by repeated administration and suggest clinical indicators that should be monitored during the product's use. Furthermore, the safety of co-administration with commonly used chemical medications for the treatment of sepsis was investigated. RESULTS In the acute toxicity test, administration of the maximum dose of Shenfu injection (75 mL of stock solution/22.5 g of raw drug/kg/day) via tail vein injection resulted in transient symptoms, including piloerection (vertical hair response), weight loss, and reduced food intake. In the long-term toxicity experiments, rats received intraperitoneal injections of 0.3 g/mL (stock solution), 0.225 g/mL, and 0.15 g/mL Shenfu injection per day, which corresponded to 12, 9, and 6 times the daily clinical dose for adults with sepsis. The injections were administered twice daily for 30 days, followed by a 28-day drug withdrawal period for recovery. After 28 days, no significant toxicological changes were observed, apart from a hemodilution effect caused by the excessive volume of the drug and a slight increase in alkaline phosphatase and total bilirubin levels. The effects were reversible upon drug discontinuation. CONCLUSIONS A single intravenous injection of 22.5 g of raw drug/kg/day and long-term intraperitoneal administration of up to 12 g of raw drug/kg/day are considered safe doses for rats.
Collapse
Affiliation(s)
- Burui Yang
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Shuting Wang
- Chengdu Baikang Pharmaceutical Industry Research Institute of Pharmacology and Toxicology, Chengdu, China
| | - Yuling Yang
- Chengdu Baikang Pharmaceutical Industry Research Institute of Pharmacology and Toxicology, Chengdu, China
| | - Yong Wang
- Tianjin University of Chinese Medicine, Tianjin, China.
| |
Collapse
|
2
|
Zhang L, Zhu W, Zhang C. Exploring the Effect and Mechanism of DaYuan Yin Against Acute Lung Injury by Network Pharmacology, Molecular Docking, and Experimental Validation. Drug Des Devel Ther 2024; 18:5541-5561. [PMID: 39650849 PMCID: PMC11625185 DOI: 10.2147/dddt.s491521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024] Open
Abstract
Background DaYuan Yin (DYY), a traditional Chinese medicine for lung diseases, requires further study to understand how it improves acute lung injury (ALI). This study seeks to elucidate the material basis and molecular mechanisms underlying the treatment of ALI with DYY through network pharmacology, molecular docking, and experimental validation. Methods DYY's active components and targets were identified using TCMSP and UHPLC-MS/MS, and a herb-component-target network was created with Cytoscape 3.7.2. ALI target genes were sourced from GeneCards, DisGeNET, and DrugBank. A PPI network was built, with core targets analyzed through GO and KEGG enrichment via Metscape. The therapeutic effects and mechanisms of DYY on LPS-induced ALI in rats were explored, and molecular docking evaluated the interactions between Nrf2, HO-1, TLR4, and the components. Results The study identified 95 active compounds, 234 therapeutic targets, and 2529 ALI-related genes, with 111 shared targets between DYY and ALI. KEGG analysis indicates that the PI3K-AKT, MAPK, and oxidative stress pathways are associated with DYY's anti-ALI effects. Network pharmacology and UHPLC-MS/MS analysis revealed active ingredients like quercetin, Magnolol, and Wogonin. Compared with the model group, DYY reduced the lung dry-wet ratio (W/D) of ALI rats from (5.31 ± 0.51) to (4.47 ± 0.73)(P < 0.05). Meanwhile, the contents of IL-6 and TNF-α in bronchoalveolar lavage fluid (BALF) and MDA, NO and ROS in lung tissue were also significantly decreased. Notably, DYY enhances UCP2 mRNA expression, boosts Nrf2 and HO-1 expression, and inhibits TLR4-mediated pro-inflammatory mediators. Molecular docking analysis showed that the main components of DYY had strong binding ability with HO-1. Conclusion DYY can alleviate inflammation, oxidative stress, and ALI-related changes by targeting the Nrf2/HO-1 mediated TLR4 pathway, providing insights for developing effective ALI treatments.
Collapse
Affiliation(s)
- Lei Zhang
- Pharmacy Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, People’s Republic of China
| | - Wei Zhu
- Pharmacy Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, People’s Republic of China
| | - Cong Zhang
- Pharmacy Department, Kunshan Rehabilitation Hospital, Kunshan, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Zheng Y, Li G, Shi A, Guo J, Xu Y, Cai W. Role of miR-455-3p in the alleviation of LPS-induced acute lung injury by allicin. Heliyon 2024; 10:e39338. [PMID: 39502213 PMCID: PMC11535764 DOI: 10.1016/j.heliyon.2024.e39338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Acute lung injury (ALI) is a type of diffuse lung injury that seriously affects the survival of critically ill patients. MicroRNAs (miRNAs) can serve as promising therapeutic targets or offer insights for the development of potential therapeutic strategies against ALI. In our previous study, we demonstrated the protective effect of allicin in ALI, but the role of miRNAs in the alleviation of ALI by allicin remains unclear. This study aimed to investigate whether miRNAs mediate the effects of allicin on ALI. Cell viability and proliferation were determined using CCK-8 and EdU assays, respectively, while cellular apoptosis was analyzed by flow cytometry. The claudin-4 protein was detected by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting. The binding of miR-455 with claudin-4 was determined by bioinformatics analysis and validated by dual luciferase reporter assays. The lung wet/dry ratio of lipopolysaccharide (LPS)-treated rats was determined by hematoxylin and eosin (HE) and TUNEL staining of the pulmonary tissues. The levels of myeloperoxidase (MPO), interleukin (IL)-2, IL-6, and tumor necrosis factor (TNF)-α were determined by enzyme-linked immunosorbent assay (ELISA). We observed that allicin alleviated LPS-induced injury in A549 cells, and claudin-4 knockdown reversed the protective effect of allicin in ALI. Claudin-4 is a direct target of miR-455-3p, and miR-455-3p overexpression partially reversed the protective effect of allicin in LPS-treated A549 cells. Subsequent in vivo experiments confirmed that allicin protects against LPS-induced ALI by regulating the miR-455-3p/claudin-4 axis. The study revealed that the protective effect of allicin in ALI is mediated via miR-455-3p, which suppresses the expression of claudin-4.
Collapse
Affiliation(s)
- Yueliang Zheng
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Gaoxiang Li
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aili Shi
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junping Guo
- Rainbowfish Rehabilitation & Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang, China
| | - Yingge Xu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenwei Cai
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Ji C, Hao X, Li Z, Liu J, Yan H, Ma K, Li L, Zhang L. Phillyrin prevents sepsis-induced acute lung injury through inhibiting the NLRP3/caspase-1/GSDMD-dependent pyroptosis signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 57:447-462. [PMID: 39394820 PMCID: PMC11986443 DOI: 10.3724/abbs.2024161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/03/2024] [Indexed: 10/14/2024] Open
Abstract
Acute lung injury (ALI) is a severe pulmonary disorder of sepsis with high clinical incidence and mortality. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)-cysteinyl aspartate specific proteinase 1-gasdermin D (GSDMD)-dependent pyroptosis of alveolar epithelial cells (AECs) has emerged as a crucial contributor to ALI during sepsis. Phillyrin (PHI), a natural lignan isolated from the traditional Chinese herbal medicine Forsythia suspensa, has been shown to have anti-inflammatory, antioxidant and antiviral properties. However, little is known about the protective role and potential mechanism of PHI in sepsis-induced ALI, and it is uncertain whether the protective effect of PHI in sepsis-induced ALI is connected to pyroptosis. This study aims to examine the preventive effects of PHI on sepsis-induced ALI via the inhibition of NLRP3/caspase-1/GSDMD-mediated pyroptosis in AECs. Our findings demonstrate that preadministration of PHI successfully reduces sepsis-induced pulmonary edema, systemic/pulmonary inflammation, and pulmonary histological damage in lung tissues, bronchoalveolar lavage fluid, and the serum of septic mice. Intriguingly, PHI preadministration suppresses sepsis-induced protein expressions of pyroptosis-specific markers, especially their active forms. In vitro assays show that PHI pretreatment also protects type II AECs (MLE-12) from lipopolysaccharide-induced pyroptosis by preventing the activation of the pyroptosis signaling pathway. The results from molecular docking and surface plasmon resonance reveal that PHI has a significant affinity for direct binding to the GSDMD protein, suggesting that GSDMD is a potential pharmacological target for PHI. In conclusion, PHI can prevent sepsis-triggered ALI by effectively suppressing the activation of the canonical pyroptosis signaling pathway and pyroptosis of AECs.
Collapse
Affiliation(s)
- Chen Ji
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
| | - Xiaoyan Hao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
| | - Zhiyi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
| | - Jiaxing Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
| | - Hanyu Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseasesthe first Affiliated HospitalShihezi UniversityShihezi832008China
| | - Ling Li
- Medical Teaching Experimental CenterSchool of MedicineShihezi UniversityShihezi832003China
| | - Liang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseasesthe first Affiliated HospitalShihezi UniversityShihezi832008China
| |
Collapse
|
5
|
Xu FF, Xie XF, Hu HY, Tong RS, Peng C. Shenfu injection: a review of pharmacological effects on cardiovascular diseases. Front Pharmacol 2024; 15:1279584. [PMID: 38420190 PMCID: PMC10899515 DOI: 10.3389/fphar.2024.1279584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Shenfu injection (SFI), composed of ginseng and aconite, is a Chinese patent developed from the classic traditional prescription Shenfu Decoction created more than 700 years ago. SFI has been widely used in China for over 30 years for treating cardiovascular diseases. The main components in it include ginsenosides and aconitum alkaloids. In recent years, the role of SFI in the treatment of cardiovascular diseases has attracted much attention. The pharmacological effects and therapeutic applications of SFI in cardiovascular diseases are summarized here, highlighting pharmacological features and potential mechanisms developments, confirming that SFI can play a role in multiple ways and is a promising drug for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Fei-Fei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Fang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Yan Hu
- Sichuan Nursing Vocational College, Chengdu, China
| | - Rong-Sheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Xu H, Guo NN, Zhu CY, Ye LY, Yan XY, Liu YQ, Zhang ZY, Zhang G, Hussain L. Diterpenoid Tanshinones Can Inhibit Lung Cancer Progression by Improving the Tumor Microenvironment and Downregulation of NF-κB Expression. ACS OMEGA 2024; 9:7230-7238. [PMID: 38371808 PMCID: PMC10870295 DOI: 10.1021/acsomega.3c09667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Diterpenoid tanshinones (DTs) are a bioactive fraction extracted from Salvia miltiorrhiza. High-performance liquid chromatography analysis revealed the presence of four compounds, namely, tanshinone IIA, tanshinone I, cryptotanshinone, and dihydrotanshinone. In this study, we aimed to propose a possible mechanism for the anti-lung cancer effect of DT. To do so, we utilized a lung cancer nude mice model and a lung cancer cell line (PC9) to investigate the effect of DT on lung cancer. We employed immunohistochemistry, enzyme-linked immunosorbent assay, hematoxylin and eosin staining, and immunofluorescence to analyze the pharmacological role of DT in the inhibition of lung cancer growth. The results showed that DT inhibited tumor growth, induced apoptosis in the nude mice model, and reduced inflammatory cell infiltration. Additionally, DT inhibited PC9 lung cancer cells, growth, proliferation, and migration. The mechanism of action of DT involves not only directly inhibiting cell proliferation and migration but also improving the tumor microenvironment. DT significantly increased the expression of important intestinal gap junction proteins, such as zonula occludens 1 (ZO-1) and occludin I. This upregulation contributes to the reinforcement of the intestinal mucosal barrier, thereby reducing the paracellular transport of lipopolysaccharides (LPS) through the intestine. Consequently, the decreased LPS levels lead to the inhibition of NF-κB expression and downregulation of macrophage polarization, as indicated by the decreased expression of CD68. In conclusion, this study has confirmed that DT has anti-lung cancer properties by improving the inflammatory tumor microenvironment via regulating macrophage polarization and inhibiting LPS-associated immune response. These results provide new insights into the mechanism of DT action against lung cancer.
Collapse
Affiliation(s)
- Hao Xu
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, P. R. China
| | - Ning Ning Guo
- Inner
Mongolia Medical University, Inner Mongolia, Hohhot 010110, P. R. China
| | - Chen Ying Zhu
- Department
of Public Health, Zhejiang University School
of Medicine, Hangzhou 310058, P. R. China
| | - Lin Yan Ye
- Department
of Public Health, Zhejiang University School
of Medicine, Hangzhou 310058, P. R. China
| | - Xing Yi Yan
- Department
of Public Health, Zhejiang University School
of Medicine, Hangzhou 310058, P. R. China
| | - Yong Qin Liu
- Department
of Public Health, Zhejiang University School
of Medicine, Hangzhou 310058, P. R. China
| | - Ze Yan Zhang
- Department
of Public Health, Zhejiang University School
of Medicine, Hangzhou 310058, P. R. China
| | - Guangji Zhang
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, P. R. China
| | - Liaqat Hussain
- Department
of Pharmacology, Faculty of Pharmaceutical Science, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Choi NR, Jung D, Kim SC, Park JW, Choi WG, Kim BJ. Analysis of Network Pharmacological Efficacy and Therapeutic Effectiveness in Animal Models for Functional Dyspepsia of Foeniculi fructus. Nutrients 2023; 15:2644. [PMID: 37375548 PMCID: PMC10301275 DOI: 10.3390/nu15122644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
For centuries, Foeniculi fructus (F. fructus) has been used as a traditional herbal medicine in China and Europe and is widely used as a natural therapy for digestive disorders, including indigestion, flatulence, and bloating. The mechanism of F. fructus that alleviates functional dyspepsia was analyzed through network pharmacology, and its therapeutic effect on an animal model of functional dyspepsia were investigated. The traditional Chinese medicine systems pharmacology (TCMSP) database was used to investigate the compounds, targets, and associated diseases of F. fructus. Information on the target genes was classified using the UniProtdatabase. Using the Cytoscape 3.9.1 software, a network was constructed, and the Cytoscape string application was employed to examine genes associated with functional dyspepsia. The efficacy of F. fructus on functional dyspepsia was confirmed by treatment with its extract in a mouse model of loperamide-induced functional dyspepsia. Seven compounds targeted twelve functional dyspepsia-associated genes. When compared to the control group, F. fructus exhibited significant suppression of symptoms in a mouse model of functional dyspepsia. The results of our animal studies indicated a close association between the mechanism of action of F. fructus and gastrointestinal motility. Based on animal experimental results, the results showed that F. fructus provided a potential means to treat functional dyspepsia, suggesting that its medical mechanism for functional dyspepsia could be described by the relationship between seven key compounds of F. fructus, including oleic acid, β-sitosterol, and 12 functional dyspepsia-related genes.
Collapse
Affiliation(s)
- Na-Ri Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea;
| | - Daehwa Jung
- Department of Pharmaceutical Engineering, Daegu Hanny University, Gyeongsan 38610, Republic of Korea;
| | - Sang-Chan Kim
- College of Oriental Medicine, Daegu Hanny University, Gyeongsan 38610, Republic of Korea;
| | - Jae-Woo Park
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea;
| | - Byung-Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea;
| |
Collapse
|