1
|
Guo ZY, Wu X, Zhang SJ, Yang JH, Miao H, Zhao YY. Poria cocos: traditional uses, triterpenoid components and their renoprotective pharmacology. Acta Pharmacol Sin 2025; 46:836-851. [PMID: 39482471 PMCID: PMC11950336 DOI: 10.1038/s41401-024-01404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024]
Abstract
Poria cocos and its surface layer of Poria cocos (Schw.) Wolf (Polyporaceae), are used in traditional Chinese medicine for its diuretic and renoprotective effects. Phytochemical studies have shown that lanostane and 3,4-seco-lanostane tetracyclic triterpenoids are the main components of P. cocos and its surface layer. Accumulating evidence shows that triterpenoid components in P. cocos and its surface layer contribute to their renoprotective effect. The surface layer of P. cocos showed a stronger diuretic effect than P. cocos. The ethanol extract of the surface layer and its components improved acute kidney injury, acute kidney injury-to-chronic kidney disease transition and chronic kidney disease such as diabetic kidney disease, nephrotic syndrome and tubulointerstitial nephropathy, and protected against renal fibrosis. It has been elucidated that P. cocos and its surface layer exert a diuretic effect and improve kidney diseases through a variety of molecular mechanisms such as aberrant pathways TGF-β1/Smad, Wnt/β-catenin, IκB/NF-κB and Keap1/Nrf2 signaling as well as the activation of renin-angiotensin system, matrix metalloproteinases, aryl hydrocarbon receptor and endogenous metabolites. These studies further confirm the renoprotective effect of P. cocos and its surface layer and provide a beneficial basis to its clinical use in traditional medicine.
Collapse
Affiliation(s)
- Zhi-Yuan Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shui-Juan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian-Hua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Clinical Drug Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Hua Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ying-Yong Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Jouriani FH, Rezaie N, Ashrafian F, Aghamohammad S, Rohani M. Native potential probiotics and postbiotics improve the gut-kidney axis by the modulation of autophagy signaling pathway. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01253-9. [PMID: 40072702 DOI: 10.1007/s12223-025-01253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
The gut-kidney axis is the bidirectional relationship between the gut microbiota and the kidney function. Chronic inflammatory responses can impair kidney function and probiotics and postbiotics agents can have positive effects on gut health and kidney function by modulating inflammation through affecting autophagy signaling pathway. The aim of the current study was to evaluate the properties of our probiotic and postbiotics to improve kidney health by focusing the autophagy signaling pathway. The probiotic and postbiotics of four Lactobacillus and two Bifidobacterium strains were selected. Dextran sulfate sodium induced colitis in mice, and probiotics and postbiotics treatments were accomplished in animal experiment. A qPCR assay was performed to assess the gene expression involved in the autophagy process in the kidney. In contrast to the dextran sulfate sodium group, both the probiotic and postbiotics cocktails exhibited the capacity to inhibit colitis-associated indicators. Of note, the postbiotics cocktails demonstrated a greater efficacy in preventing colitis-related indicators and also it could display a more pronounced effect in upregulating autophagy-related genes. Our native potential probiotics and postbiotics can be able to reduce gut inflammation and cope with kidney inflammation by triggering autophagy signaling pathway through the considerable impact on gut-organ axis. There is an encouraging concept about the anti-inflammatory effects of our probiotics and postbiotics cocktails with least side effects as a supplementary treatment not only in the gut, but also in the other organs particularly kidneys.
Collapse
Affiliation(s)
| | - Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Zhu S, Guo Z, Liu L, Gao Y, Bai L, Chen Y, Zha M. Complex Probiotics Relieve Constipation Through Regulation of the Intestinal Microbiota in Kittens. Microorganisms 2025; 13:563. [PMID: 40142456 PMCID: PMC11945230 DOI: 10.3390/microorganisms13030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The early developmental phase is a critical window for feline growth, during which immature digestive systems are susceptible to microbiome imbalances caused by environmental stressors. Our research employed macrogenomic analysis to evaluate how complex probiotic formulations influence growth metrics and gastrointestinal flora in juvenile felines. Two dozen healthy kittens were equally divided into the control group and the probiotics group following a 5-day environmental adaptation phase. Fecal scores were recorded daily for all kittens. Fresh fecal samples were collected on days 1 and 14 for macrogenomic analysis. The results showed a significantly lower rate of constipation in the probiotics group compared to the control group (p < 0.05). However, no significant differences were observed in intestinal microbial diversity or structure between the two groups. Metagenomic analysis revealed a higher relative abundance of Bifidobacterium animalis in the probiotics group compared to the control group (p < 0.05). Additionally, the probiotics group exhibited lower relative abundances of Lachnospiraceae bacterium 2 1 58FAA, Lachnospiraceae bacterium 1 1 57FAA, and Acidaminococcus intestini compared to the control group (p < 0.05). These results suggest that complex probiotics can regulate the intestinal microbiota, improve constipation, and promote intestinal health in kittens.
Collapse
Affiliation(s)
- Shimin Zhu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhengrong Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lu Bai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Musu Zha
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
4
|
Yu X, Hua S, Jin E, Guo R, Huang H. Improving hemodialysis patient depression outcomes with acupuncture: A randomized controlled trial. Acta Psychol (Amst) 2025; 253:104728. [PMID: 39884157 DOI: 10.1016/j.actpsy.2025.104728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE To evaluate the efficacy and safety of acupuncture as a supplementary treatment for mild to moderate depression in hemodialysis patients. METHOD This multicenter, randomized, controlled, single-masked trial included 64 hemodialysis patients aged 18-75 divided into two groups. One group received genuine acupuncture, while the other received sham acupuncture over 12 weeks. The primary outcome measure was Hamilton Depression Scale (HAMD) scores; an inclusion criterion was HAMD scores of 10-23. Secondary outcomes included life quality improvements and changes in biochemical markers, such as serum albumin and hemoglobin levels. To assess the predictive effects of acupuncture treatment and biochemical parameters on depressive symptoms, a multivariable linear regression analysis was conducted. RESULTS Following acupuncture treatment, HAMD scores significantly decreased, quality of life scores improved, and biochemical indicators (serum albumin, hemoglobin, transferrin, and total protein levels) showed some improvement, indicating the effectiveness of acupuncture in alleviating depressive symptoms and enhancing overall health in hemodialysis patients. Multivariable regression analysis showed that acupuncture treatment (P = 0.004) and serum albumin levels (P = 0.03) were significant predictors of improvement in depressive symptoms, with an adjusted R2 of 0.45, indicating that the model explained 45 % of the variance in symptom improvement. Other biochemical indicators, such as hemoglobin, transferrin, and total protein, did not show significant predictive effects (P > 0.05). No serious adverse events were observed during the treatment. CONCLUSION Acupuncture is a safe and effective adjunct therapy for alleviating mild to moderate depression in hemodialysis patients. Acupuncture treatment and certain biochemical indicators (such as serum albumin) have significant predictive value for improving depressive symptoms.
Collapse
Affiliation(s)
- Xijing Yu
- Department of acupuncture and moxibustion, Nanchang Hongdu Hospital of traditional Chinese medicine, China; Jiangxi clinical research center of acupuncture and moxibustion medicine, China; Nanchang mayor Key Laboratory of snake moxibustion effect mechanism and Governor Vessel specificity, China.
| | - Shuisheng Hua
- Department of pediatric orthopaedic emergency, Nanchang Hongdu Hospital of traditional Chinese medicine, China
| | - Engyu Jin
- Department of acupuncture and moxibustion, Nanchang Hongdu Hospital of traditional Chinese medicine, China; Jiangxi clinical research center of acupuncture and moxibustion medicine, China; Nanchang mayor Key Laboratory of snake moxibustion effect mechanism and Governor Vessel specificity, China
| | - Rong Guo
- Department of acupuncture and moxibustion, Nanchang Hongdu Hospital of traditional Chinese medicine, China; Jiangxi clinical research center of acupuncture and moxibustion medicine, China; Nanchang mayor Key Laboratory of snake moxibustion effect mechanism and Governor Vessel specificity, China
| | - Hui Huang
- Department of acupuncture and moxibustion, Nanchang Hongdu Hospital of traditional Chinese medicine, China; Jiangxi clinical research center of acupuncture and moxibustion medicine, China; Nanchang mayor Key Laboratory of snake moxibustion effect mechanism and Governor Vessel specificity, China
| |
Collapse
|
5
|
Zhao BR, Hu XR, Wang WD, Zhou Y. Cardiorenal syndrome: clinical diagnosis, molecular mechanisms and therapeutic strategies. Acta Pharmacol Sin 2025:10.1038/s41401-025-01476-z. [PMID: 39910210 DOI: 10.1038/s41401-025-01476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025]
Abstract
As the heart and kidneys are closely connected by the circulatory system, primary dysfunction of either organ usually leads to secondary dysfunction or damage to the other organ. These interactions play a major role in the pathogenesis of a clinical entity named cardiorenal syndrome (CRS). The pathophysiology of CRS is complicated and involves multiple body systems. In early studies, CRS was classified into five subtypes according to the organs associated with the vicious cycle and the acuteness and chronicity of CRS. Increasing evidence shows that CRS is associated with a variety of pathological mechanisms, such as haemodynamics, neurohormonal changes, hypervolemia, hypertension, hyperuraemia and hyperuricaemia. In this review, we summarize the classification and currently available diagnostic biomarkers of CRS. We highlight the recently revealed molecular pathogenesis of CRS, such as oxidative stress and inflammation, hyperactive renin‒angiotensin‒aldosterone system, maladaptive Wnt/β-catenin signalling pathway and profibrotic TGF‒β1/Smad signalling pathway, as well as other pathogeneses, such as dysbiosis of the gut microbiota and dysregulation of noncoding RNAs. Targeting these CRS-associated signalling pathways has new therapeutic potential for treating CRS. In addition, various chemical drugs, natural products, complementary therapies, blockers, and agonists that protect against CRS are summarized. Since the molecular mechanisms of CRS remain to be elucidated, no single intervention has been shown to be effective in treating CRS. Pharmacologic therapies designed to block CRS are urgently needed. This review presents a critical therapeutic avenue for targeting CRS and concurrently illuminates challenges and opportunities for discovering novel treatment strategies for CRS.
Collapse
Affiliation(s)
- Bo-Rui Zhao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin-Rong Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Wei-Dong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Li XJ, Shan QY, Wu X, Miao H, Zhao YY. Gut microbiota regulates oxidative stress and inflammation: a double-edged sword in renal fibrosis. Cell Mol Life Sci 2024; 81:480. [PMID: 39636415 PMCID: PMC11621299 DOI: 10.1007/s00018-024-05532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Gut microbiota is a complex and dynamic system that plays critical roles in human health and various disease. Progressive chronic kidney disease (CKD) suggests that patients irreversibly progress to end-stage kidney disease and need renal replacement treatments, including dialysis and transplantation. Ample evidence indicates that local oxidative stress and inflammation play pivotal roles in the pathogenesis and progression of CKD and dysbiosis of gut microbiota. CKD is always accompanied by intestinal inflammation and oxidative stress, which lead to rapid systemic translocation of bacterial-derived uraemic toxins, including indoxyl sulphate, phenyl sulphate and indole-3-acetic acid, and the consequent development and aggravation of renal fibrosis. Although inflammation and oxidative stress have been extensively discussed, there is a paucity of reports on the effects of gut microbiota on renal fibrosis and gut microbiota mediation of oxidative stress and inflammation. This review provides an overview of gut microbiota on inflammation and oxidative stress in renal fibrosis, briefly discusses regulation of the gut flora using microecological preparations and natural products, such as resveratrol, curcumin and emodin as treatments for CKD, and provides a clear pathophysiological rationale for the design of promising therapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Qi-Yuan Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Hua Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
| | - Ying-Yong Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
7
|
Li H, Xu P, Zhang X, Ye N, Xu F, Liang B. Mizhuo Guanchangye enema delays the decline of renal function in rats with chronic kidney disease by intervening in the TLR4/MyD88/NF-κB pathway. Front Med (Lausanne) 2024; 11:1454506. [PMID: 39529796 PMCID: PMC11550938 DOI: 10.3389/fmed.2024.1454506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Background Chronic kidney disease (CKD) is a prevalent chronic condition that poses a significant threat to human health. There is a close connection between the gut and kidneys, jointly influencing the onset and progression of CKD through the "gut-kidney axis." Traditional Chinese medicine has shown potential in CKD treatment, but the specific mechanisms require further investigation. Objectives This study aims to explore the protective effects of Mizhuo Enema (MZGCY) on kidney function in CKD rats by regulating the TLR4/MyD88/NF-κB signaling pathway. Methods The researcher employed a CKD rat model, which was divided into four groups: Control, Model, half-dose Mizhuo Guanchangye (1/2 MZGCY), and full-dose Mizhuo Guanchangye (MZGCY). Post enema administration, assessments were conducted on kidney function indicators, which included blood urea nitrogen (BUN), serum creatinine (SCR), and 24-h urinary protein. Additionally, measurements were taken for intestinal toxic substances such as indoxyl sulfate (IS) and lipopolysaccharide (LPS), as well as inflammatory factors interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Examinations of pathological changes in both the intestines and kidneys were also performed. During this process, immunofluorescence was utilized to detect the expression levels of proteins toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), and nuclear factor kappa B (NF-κB) in the intestinal tissues. Results It was found that after enema treatment, the BUN, SCR, and 24-h urinary protein levels in the MZGCY and 1/2 MZGCY groups significantly decreased, indicating notable improvement in kidney function. Compared to the model group, the IS, LPS, IL-6, and TNF-α levels in the MZGCY and 1/2 MZGCY groups were significantly reduced. Immunofluorescence showed a marked decrease in the expression of TLR4, MyD88, and NF-κB proteins in the intestines of the MZGCY group. Conclusion MZGCY significantly reduces the levels of intestinal toxins and inflammatory factors in the serum of CKD rats by interfering with the TLR4/MyD88/NF-κB signaling pathway, thereby improving intestinal and renal pathological changes and delaying CKD progression. This study demonstrates that MZGCY has significant renal protective effects, providing a new potential approach for CKD treatment.
Collapse
Affiliation(s)
- Han Li
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Peng Xu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Zhang
- Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Xu
- Traditional Chinese Medicine Hospital of Meishan, Meishan, China
| | - Bo Liang
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Lim X, Ooi L, Ding U, Wu HHL, Chinnadurai R. Gut Microbiota in Patients Receiving Dialysis: A Review. Pathogens 2024; 13:801. [PMID: 39338992 PMCID: PMC11434973 DOI: 10.3390/pathogens13090801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The human gut microbiota constitutes a complex community of microorganisms residing within the gastrointestinal tract, encompassing a vast array of species that play crucial roles in health and disease. The disease processes involved in chronic kidney disease (CKD) and end-stage kidney disease (ESKD) are now increasingly established to result in dysregulation of gut microbiota composition and function. Gut microbiota dysbiosis has been associated with poor clinical outcomes and all-cause mortality in patients with ESKD, particularly individuals receiving dialysis. Prior studies highlighted various factors that affect gut microbiota dysbiosis in CKD and ESKD. These include, but are not limited to, uraemic toxin accumulation, chronic inflammation, immune dysfunction, medications, and dietary restrictions and nutritional status. There is a lack of studies at present that focus on the evaluation of gut microbiota dysbiosis in the context of dialysis. Knowledge on gut microbiota changes in this context is important for determining their impact on dialysis-specific and overall outcomes for this patient cohort. More importantly, evaluating gut microbiota composition can provide information into potential targets for therapeutic intervention. Identification of specific microbial signatures may result in further development of personalised treatments to improve patient outcomes and mitigate complications during dialysis. Optimising gut microbiota through various therapeutic approaches, including dietary adjustments, probiotics, prebiotics, medications, and faecal transplantation, have previously demonstrated potential in multiple medical conditions. It remains to be seen whether these therapeutic approaches are effective within the dialysis setting. Our review aims to evaluate evidence relating to alterations in the gut microbiota of patients undergoing dialysis. A growing body of evidence pointing to the complex yet significant relationship which surrounds gut microbiota and kidney health emphasises the importance of gut microbial balance to improve outcomes for individuals receiving dialysis.
Collapse
Affiliation(s)
- Xintian Lim
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK; (X.L.); (L.O.); (U.D.)
| | - Lijin Ooi
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK; (X.L.); (L.O.); (U.D.)
| | - Uzhe Ding
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK; (X.L.); (L.O.); (U.D.)
| | - Henry H. L. Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW 2065, Australia;
| | - Rajkumar Chinnadurai
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK; (X.L.); (L.O.); (U.D.)
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M1 7HR, UK
| |
Collapse
|
9
|
Li K, Cui Y, Zheng X, Min C, Zhang J, Yan Z, Ji Y, Ge F, Ji H, Zhu F. Jian Gan powder ameliorates immunological liver injury in mice by modulating the gut microbiota and metabolic profiles. Eur J Med Res 2024; 29:240. [PMID: 38641655 PMCID: PMC11031866 DOI: 10.1186/s40001-024-01827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Immunological liver injury (ILI) is a common liver disease associated with the microbiota-gut-liver axis. Jian Gan powder (JGP) exhibits both protective and therapeutic effects on hepatitis virus-induced ILI in the clinic. However, the underlying mechanisms remain elusive. The aim of this study is to investigate the hepatoprotective effects and associated mechanisms of JGP in the context of gut microbiota, utilizing a mouse model of ILI. METHODS The mouse model was established employing Bacillus Calmette-Guérin (BCG) plus lipopolysaccharide (LPS). Following treatment with JGP (7.5, 15, or 30 g/kg), serum, liver, and fresh fecal samples were analyzed. 16S rRNA gene sequencing and untargeted metabolomics profiling were performed to assess the role of JGP on the gut microbiota and its metabolites. RESULTS JGP treatment markedly reduced serum IFN-γ, IL-6, IL-22, and hepatic p-STAT3 (phosphorylated transducer and activator of transcription-3) expression. In contrast, JGP increased the percentage of proliferating cell nuclear antigen-positive liver cells in treated mice. Fecal 16S rRNA gene sequencing revealed that JGP treatment restored the levels of Alloprevotella, Burkholderia-Caballeronia-Paraburkholderia, Muribaculum, Streptococcus, and Stenotrophomonas. Additionally, metabolomics analysis of fecal samples showed that JGP restored the levels of allylestrenol, eplerenone, phosphatidylethanolamine (PE) (P-20:0/0:0), sphingomyelin (SM) d27:1, soyasapogenol C, chrysin, and soyasaponin I. CONCLUSIONS JGP intervention improves ILI by restoring gut microbiota and modifying its metabolic profiles. These results provide a novel insight into the mechanism of JGP in treating ILI and the scientific basis to support its clinical application.
Collapse
Affiliation(s)
- Kun Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Building 9, Nanjing, 210046, Jiangsu, People's Republic of China
- Department of Gastroenterology, Hai'an Hospital of Traditional Chinese Medicine Affiliated to Medical College of Yangzhou University, Nantong, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Yadong Cui
- College of Pharmaceutical Science, Soochow University, Suzhou, People's Republic of China
| | - Xue Zheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Building 9, Nanjing, 210046, Jiangsu, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Chunyan Min
- Suzhou Institute for Drug Control, Suzhou, People's Republic of China
| | - Jian Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou, People's Republic of China
| | - Zhanpeng Yan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Building 9, Nanjing, 210046, Jiangsu, People's Republic of China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Yu Ji
- Department of Gastroenterology, Hai'an Hospital of Traditional Chinese Medicine Affiliated to Medical College of Yangzhou University, Nantong, People's Republic of China
| | - Fei Ge
- Department of Gastroenterology, Hai'an Hospital of Traditional Chinese Medicine Affiliated to Medical College of Yangzhou University, Nantong, People's Republic of China
| | - Hualiang Ji
- Department of Gastroenterology, Affiliated Haian People's Hospital of Nantong University, 17 Zhong Ba Zhong Road, Hai'an, 226600, Jiangsu, People's Republic of China.
| | - Fangshi Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Building 9, Nanjing, 210046, Jiangsu, People's Republic of China.
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China.
| |
Collapse
|
10
|
Midya V, Lane JM, Gennings C, Torres-Olascoaga LA, Gregory JK, Wright RO, Arora M, Téllez-Rojo MM, Eggers S. Prenatal Lead Exposure Is Associated with Reduced Abundance of Beneficial Gut Microbial Cliques in Late Childhood: An Investigation Using Microbial Co-Occurrence Analysis (MiCA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16800-16810. [PMID: 37878664 PMCID: PMC10634322 DOI: 10.1021/acs.est.3c04346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023]
Abstract
Many analytical methods used in gut microbiome research focus on either single bacterial taxa or the whole microbiome, ignoring multibacteria relationships (microbial cliques). We present a novel analytical approach to identify microbial cliques within the gut microbiome of children at 9-11 years associated with prenatal lead (Pb) exposure. Data came from a subset of participants (n = 123) in the Programming Research in Obesity, Growth, Environment and Social Stressors cohort. Pb concentrations were measured in maternal whole blood from the second and third trimesters of pregnancy. Stool samples collected at 9-11 years old underwent metagenomic sequencing to assess the gut microbiome. Using a novel analytical approach, Microbial Co-occurrence Analysis (MiCA), we paired a machine learning algorithm with randomization-based inference to first identify microbial cliques that were predictive of prenatal Pb exposure and then estimate the association between prenatal Pb exposure and microbial clique abundance. With second-trimester Pb exposure, we identified a two-taxa microbial clique that included Bifidobacterium adolescentis and Ruminococcus callidus and a three-taxa clique that also included Prevotella clara. Increasing second-trimester Pb exposure was associated with significantly increased odds of having the two-taxa microbial clique below the median relative abundance (odds ratio (OR) = 1.03, 95% confidence interval (CI) [1.01-1.05]). Using a novel combination of machine learning and causal inference, MiCA identified a significant association between second-trimester Pb exposure and the reduced abundance of a probiotic microbial clique within the gut microbiome in late childhood.
Collapse
Affiliation(s)
- Vishal Midya
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jamil M. Lane
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chris Gennings
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Libni A. Torres-Olascoaga
- Center
for Research on Nutrition and Health, National
Institute of Public Health, Cuernavaca 62100, Mexico
| | - Jill K. Gregory
- Instructional
Technology Group, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| | - Robert O. Wright
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Manish Arora
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Martha Maria Téllez-Rojo
- Center
for Research on Nutrition and Health, National
Institute of Public Health, Cuernavaca 62100, Mexico
| | - Shoshannah Eggers
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Epidemiology, University of Iowa College
of Public Health, Iowa City, Iowa 52242, United States
| |
Collapse
|
11
|
Huang Y, Guo Y, Li X, Xiao Y, Wang Z, Song L, Ren Z. Effects of Lactiplantibacillus plantarum GUANKE on Diphenoxylate-Induced Slow Transit Constipation and Gut Microbiota in Mice. Nutrients 2023; 15:3741. [PMID: 37686774 PMCID: PMC10490327 DOI: 10.3390/nu15173741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Slow transit constipation (STC) is a prevalent gastrointestinal condition with slow transit, and some probiotics can effectively relieve constipation, but the exact mechanisms have not been fully understood. In this study, we evaluate the impact of Lactiplantibacillus plantarum GUANKE (GUANKE) on diphenoxylate-induced slow transit constipation and speculate on the underlying mechanisms in a mouse model. Administration of L. plantarum GUANKE alleviated constipation indexes, including defecation time, fecal output and water content, and gastrointestinal transit ratio. In addition, GUANKE restored the protein expression of constipation-related intestinal factors (aquaporins (AQPs) and interstitial Cajal cells (ICCs)) in colon tissues measured using immunofluorescence staining; regulated the neurotransmitters and hormones, such as increased levels of 5-hydroxytryptamine, substance P, and motilin; and decreased levels of vasoactive intestinal peptide and nitric oxide in serum, as measured by an ELISA. 16S rRNA and correlation analysis of feces indicated that GUANKE administration effectively reduced constipation-induced Prevotella enrichment and suggested a potential contribution of Prevotella to diphenoxylate-induced STC in mice. GUANKE had no effect on short-chain fatty acids (SCFAs) in cecum content. This study revealed that GUANKE may alleviate constipation in mice through regulating intestinal neurotransmitter and hormone release and altering specific bacterial taxa, rather than by affecting SCFAs and the diversity of microbiota in the gut. Further research is needed to confirm if the findings observed in this study will be consistent in other animal studies or clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Liqiong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.H.); (Y.G.); (X.L.); (Y.X.); (Z.W.)
| | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.H.); (Y.G.); (X.L.); (Y.X.); (Z.W.)
| |
Collapse
|
12
|
Midya V, Lane JM, Gennings C, Torres-Olascoaga LA, Wright RO, Arora M, Téllez-Rojo MM, Eggers S. Prenatal Pb exposure is associated with reduced abundance of beneficial gut microbial cliques in late childhood: an investigation using Microbial Co-occurrence Analysis (MiCA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.18.23290127. [PMID: 37293091 PMCID: PMC10246125 DOI: 10.1101/2023.05.18.23290127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Many analytical methods used in gut microbiome research focus on either single bacterial taxa or the whole microbiome, ignoring multi-bacteria relationships (microbial cliques). We present a novel analytical approach to identify multiple bacterial taxa within the gut microbiome of children at 9-11 years associated with prenatal Pb exposure. Methods Data came from a subset of participants (n=123) in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort. Pb concentrations were measured in maternal whole blood from the second and third trimesters of pregnancy. Stool samples collected at 9-11 years old underwent metagenomic sequencing to assess the gut microbiome. Using a novel analytical approach, Microbial Co-occurrence Analysis (MiCA), we paired a machine-learning algorithm with randomization-based inference to first identify microbial cliques that were predictive of prenatal Pb exposure and then estimate the association between prenatal Pb exposure and microbial clique abundance. Results With second-trimester Pb exposure, we identified a 2-taxa microbial clique that included Bifidobacterium adolescentis and Ruminococcus callidus, and a 3-taxa clique that added Prevotella clara. Increasing second-trimester Pb exposure was associated with significantly increased odds of having the 2-taxa microbial clique below the 50th percentile relative abundance (OR=1.03,95%CI[1.01-1.05]). In an analysis of Pb concentration at or above vs. below the United States and Mexico guidelines for child Pb exposure, odds of the 2-taxa clique in low abundance were 3.36(95%CI[1.32-8.51]) and 6.11(95%CI[1.87-19.93]), respectively. Trends were similar with the 3-taxa clique but not statistically significant. Discussion Using a novel combination of machine-learning and causal-inference, MiCA identified a significant association between second-trimester Pb exposure and reduced abundance of a probiotic microbial clique within the gut microbiome in late childhood. Pb exposure levels at the guidelines for child Pb poisoning in the United States, and Mexico are not sufficient to protect against the potential loss of probiotic benefits.
Collapse
Affiliation(s)
- V Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - J M Lane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - C Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - L A Torres-Olascoaga
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - R O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - S Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, Iowa, USA
| |
Collapse
|