1
|
Marchesi N, Allegri M, Bruno GM, Pascale A, Govoni S. Exploring the Potential of Dietary Supplements to Alleviate Pain Due to Long COVID. Nutrients 2025; 17:1287. [PMID: 40219044 PMCID: PMC11990457 DOI: 10.3390/nu17071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Long COVID, characterized by persistent symptoms following COVID-19 infection, significantly impacts individuals' health and daily functioning due to fatigue and pain. Focusing on pain, this review addresses nociplastic and chronic pain conditions. Interventions designed to reduce inflammation, oxidative stress, and enhance vagal activity may offer a promising approach to managing post-pandemic pain. This review presents individual components of food supplements with demonstrated efficacy in one or more pain conditions, focusing on their proposed mechanisms and clinical activity in pain, including their use in post-COVID-19 pain when available. Many of these substances have a long history of safe use and may offer an alternative to long-term analgesic drug treatment, which is often associated with potential side effects. This review also explores the potential for synergistic effects when combining these substances with each other or with conventional analgesics, considering the advantages for both patients and the healthcare system in using these substances as adjunctive or primary therapies for pain symptoms related to long COVID. While preclinical scientific literature provides a mechanistic basis for the action of several food supplements on pain control mechanisms and signaling pathways, clinical experience, particularly in the field of long COVID-associated pain, is still limited. However, the reviewed literature strongly suggests that the use of food supplements in long COVID-associated pain is an attainable goal, provided that rigorous clinical trials are conducted.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
- RedyNeuheart s.r.l., Start-Up, Via Santa Marta 19, 20123 Milan, Italy
| | - Massimo Allegri
- Centre Lémanique de Neuromodulation et Thérapie de la Douleur, Hôpital de Morges, Ensemble Hospitalier de la Côte (EHC), 1110 Morges, Switzerland;
| | - Giacomo Matteo Bruno
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
- Center of Research, SAVE Studi—Health Economics and Outcomes Research, 20123 Milan, Italy
- CEFAT (Center of Pharmaceuticals Economics and Medical Technologies Evaluation), University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
- CEFAT (Center of Pharmaceuticals Economics and Medical Technologies Evaluation), University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Diogo MA, Cabral AGT, de Oliveira RB. Advances in the Search for SARS-CoV-2 M pro and PL pro Inhibitors. Pathogens 2024; 13:825. [PMID: 39452697 PMCID: PMC11510351 DOI: 10.3390/pathogens13100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
SARS-CoV-2 is a spherical, positive-sense, single-stranded RNA virus with a large genome, responsible for encoding both structural proteins, vital for the viral particle's architecture, and non-structural proteins, critical for the virus's replication cycle. Among the non-structural proteins, two cysteine proteases emerge as promising molecular targets for the design of new antiviral compounds. The main protease (Mpro) is a homodimeric enzyme that plays a pivotal role in the formation of the viral replication-transcription complex, associated with the papain-like protease (PLpro), a cysteine protease that modulates host immune signaling by reversing post-translational modifications of ubiquitin and interferon-stimulated gene 15 (ISG15) in host cells. Due to the importance of these molecular targets for the design and development of novel anti-SARS-CoV-2 drugs, the purpose of this review is to address aspects related to the structure, mechanism of action and strategies for the design of inhibitors capable of targeting the Mpro and PLpro. Examples of covalent and non-covalent inhibitors that are currently being evaluated in preclinical and clinical studies or already approved for therapy will be also discussed to show the advances in medicinal chemistry in the search for new molecules to treat COVID-19.
Collapse
Affiliation(s)
| | | | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (M.A.D.); (A.G.T.C.)
| |
Collapse
|
3
|
Bolinger AA, Li J, Xie X, Li H, Zhou J. Lessons learnt from broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov 2024; 19:1023-1041. [PMID: 39078037 PMCID: PMC11390334 DOI: 10.1080/17460441.2024.2385598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the most recent SARS-CoV-2 responsible for the COVID-19 pandemic, pose significant threats to human populations over the past two decades. These CoVs have caused a broad spectrum of clinical manifestations ranging from asymptomatic to severe distress syndromes (ARDS), resulting in high morbidity and mortality. AREAS COVERED The accelerated advancements in antiviral drug discovery, spurred by the COVID-19 pandemic, have shed new light on the imperative to develop treatments effective against a broad spectrum of CoVs. This perspective discusses strategies and lessons learnt in targeting viral non-structural proteins, structural proteins, drug repurposing, and combinational approaches for the development of antivirals against CoVs. EXPERT OPINION Drawing lessons from the pandemic, it becomes evident that the absence of efficient broad-spectrum antiviral drugs increases the vulnerability of public health systems to the potential onslaught by highly pathogenic CoVs. The rapid and sustained spread of novel CoVs can have devastating consequences without effective and specifically targeted treatments. Prioritizing the effective development of broad-spectrum antivirals is imperative for bolstering the resilience of public health systems and mitigating the potential impact of future highly pathogenic CoVs.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Preiss A, Bhatia A, Aragon LV, Baratta JM, Baskaran M, Blancero F, Brannock MD, Chew RF, Diaz I, Fitzgerald M, Kelly EP, Zhou AG, Carton TW, Chute CG, Haendel M, Moffitt R, Pfaff E. Effect of Paxlovid Treatment During Acute COVID-19 on Long COVID Onset: An EHR-Based Target Trial Emulation from the N3C and RECOVER Consortia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.20.24301525. [PMID: 38343863 PMCID: PMC10854326 DOI: 10.1101/2024.01.20.24301525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Preventing and treating post-acute sequelae of SARS-CoV-2 infection (PASC), commonly known as Long COVID, has become a public health priority. In this study, we examined whether treatment with Paxlovid in the acute phase of COVID-19 helps prevent the onset of PASC. We used electronic health records from the National Covid Cohort Collaborative (N3C) to define a cohort of 426,352 patients who had COVID-19 since April 1, 2022, and were eligible for Paxlovid treatment due to risk for progression to severe COVID-19. We used the target trial emulation (TTE) framework to estimate the effect of Paxlovid treatment on PASC incidence. We estimated overall PASC incidence using a computable phenotype. We also measured the onset of novel cognitive, fatigue, and respiratory symptoms in the post-acute period. Paxlovid treatment did not have a significant effect on overall PASC incidence (relative risk [RR] = 0.98, 95% confidence interval [CI] 0.95-1.01). However, it had a protective effect on cognitive (RR = 0.90, 95% CI 0.84-0.96) and fatigue (RR = 0.95, 95% CI 0.91-0.98) symptom clusters, which suggests that the etiology of these symptoms may be more closely related to viral load than that of respiratory symptoms.
Collapse
|
5
|
Chung YS, Lam CY, Tan PH, Tsang HF, Wong SCC. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int J Mol Sci 2024; 25:8155. [PMID: 39125722 PMCID: PMC11312261 DOI: 10.3390/ijms25158155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
At present, COVID-19 remains a public health concern due to the ongoing evolution of SARS-CoV-2 and its prevalence in particular countries. This paper provides an updated overview of the epidemiology and pathogenesis of COVID-19, with a focus on the emergence of SARS-CoV-2 variants and the phenomenon known as 'long COVID'. Meanwhile, diagnostic and detection advances will be mentioned. Though many inventions have been made to combat the COVID-19 pandemic, some outstanding ones include multiplex RT-PCR, which can be used for accurate diagnosis of SARS-CoV-2 infection. ELISA-based antigen tests also appear to be potential diagnostic tools to be available in the future. This paper also discusses current treatments, vaccination strategies, as well as emerging cell-based therapies for SARS-CoV-2 infection. The ongoing evolution of SARS-CoV-2 underscores the necessity for us to continuously update scientific understanding and treatments for it.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (Y.-S.C.); (C.-Y.L.); (P.-H.T.); (H.-F.T.)
| |
Collapse
|
6
|
Donald J, Bilasy SE, Yang C, El-Shamy A. Exploring the Complexities of Long COVID. Viruses 2024; 16:1060. [PMID: 39066223 PMCID: PMC11281588 DOI: 10.3390/v16071060] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Since the emergence of the SARS-CoV-2 virus in 2019, nearly 700 million COVID-19 cases and 7 million deaths have been reported globally. Despite most individuals recovering within four weeks, the Center for Disease Control (CDC) estimates that 7.5% to 41% develop post-acute infection syndrome (PAIS), known as 'Long COVID'. This review provides current statistics on Long COVID's prevalence, explores hypotheses concerning epidemiological factors, such as age, gender, comorbidities, initial COVID-19 severity, and vaccine interactions, and delves into potential mechanisms, including immune responses, viral persistence, and gut dysbiosis. Moreover, we conclude that women, advanced age, comorbidities, non-vaccination, and low socioeconomic status all appear to be risk factors. The reasons for these differences are still not fully understood and likely involve a complex relationship between social, genetic, hormonal, and other factors. Furthermore, individuals with Long COVID-19 seem more likely to endure economic hardship due to persistent symptoms. In summary, our findings further illustrate the multifaceted nature of Long COVID and underscore the importance of understanding the epidemiological factors and potential mechanisms needed to develop effective therapeutic strategies and interventions.
Collapse
Affiliation(s)
- Jackson Donald
- College of Graduate Studies, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA; (J.D.); (C.Y.)
| | - Shymaa E. Bilasy
- College of Dental Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA;
| | - Catherine Yang
- College of Graduate Studies, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA; (J.D.); (C.Y.)
| | - Ahmed El-Shamy
- College of Graduate Studies, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA; (J.D.); (C.Y.)
| |
Collapse
|
7
|
Li Y, Lu SM, Wang JL, Yao HP, Liang LG. Progress in SARS-CoV-2, diagnostic and clinical treatment of COVID-19. Heliyon 2024; 10:e33179. [PMID: 39021908 PMCID: PMC11253070 DOI: 10.1016/j.heliyon.2024.e33179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background Corona Virus Disease 2019(COVID-19)is a global pandemic novel coronavirus infection disease caused by Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Although rapid, large-scale testing plays an important role in patient management and slowing the spread of the disease. However, there has been no good and widely used drug treatment for infection and transmission of SARS-CoV-2. Key findings Therefore, this review updates the body of knowledge on viral structure, infection routes, detection methods, and clinical treatment, with the aim of responding to the large-section caused by SARS-CoV-2. This paper focuses on the structure of SARS-CoV-2 viral protease, RNA polymerase, serine protease and main proteinase-like protease as well as targeted antiviral drugs. Conclusion In vitro or clinical trials have been carried out to provide deeper thinking for the pathogenesis, clinical diagnosis, vaccine development and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Si-Ming Lu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Clinical in Vitro Diagnostic Techniques, Hangzhou, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Long Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Guo Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Dietz TK, Brondstater KN. Long COVID management: a mini review of current recommendations and underutilized modalities. Front Med (Lausanne) 2024; 11:1430444. [PMID: 38947233 PMCID: PMC11211541 DOI: 10.3389/fmed.2024.1430444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Long COVID is a condition that develops in a subset of patients after COVID-19 infection comprising of symptoms of varying severity encompassing multiple organ systems. Currently, long COVID is without consensus on a formal definition, identifiable biomarkers, and validated treatment. Long COVID is expected to be a long-term chronic condition for a subset of patients and is associated with suffering and incapacity. There is an urgent need for clear management guidelines for the primary care provider, who is essential in bridging the gap with more specialized care to improve quality of life and functionality in their patients living with long COVID. The purpose of this mini review is to provide primary care providers with the latest highlights from existing literature regarding the most common long COVID symptoms and current management recommendations. This review also highlights the underutilized interventions of stellate ganglion blocks and low-dose naltrexone, both with well-established safety profiles demonstrated to improve quality of life and functionality for patients suffering with some symptoms of long COVID, and encourages prompt referral to interventional pain management.
Collapse
Affiliation(s)
- Tiffany K. Dietz
- School of Health Professions, Shenandoah University, Winchester, VA, United States
| | | |
Collapse
|
9
|
Hamlin RE, Blish CA. Challenges and opportunities in long COVID research. Immunity 2024; 57:1195-1214. [PMID: 38865966 PMCID: PMC11210969 DOI: 10.1016/j.immuni.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
Long COVID (LC) is a condition in which patients do not fully recover from the initial SARS-CoV-2 infection but rather have persistent or new symptoms for months to years following the infection. Ongoing research efforts are investigating the pathophysiologic mechanisms of LC and exploring preventative and therapeutic treatment approaches for patients. As a burgeoning area of investigation, LC research can be structured to be more inclusive, innovative, and effective. In this perspective, we highlight opportunities for patient engagement and diverse research expertise, as well as the challenges of developing definitions and reproducible studies. Our intention is to provide a foundation for collaboration and progress in understanding the biomarkers and mechanisms driving LC.
Collapse
Affiliation(s)
| | - Catherine A Blish
- Department of Medicine, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
10
|
Adler BL, Chung T, Rowe PC, Aucott J. Dysautonomia following Lyme disease: a key component of post-treatment Lyme disease syndrome? Front Neurol 2024; 15:1344862. [PMID: 38390594 PMCID: PMC10883079 DOI: 10.3389/fneur.2024.1344862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Dysautonomia, or dysfunction of the autonomic nervous system (ANS), may occur following an infectious insult and can result in a variety of debilitating, widespread, and often poorly recognized symptoms. Dysautonomia is now widely accepted as a complication of COVID-19 and is an important component of Post-Acute Sequelae of COVID-19 (PASC or long COVID). PASC shares many overlapping clinical features with other infection-associated chronic illnesses including Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Post-Treatment Lyme Disease Syndrome (PTLDS), suggesting that they may share common underlying mechanisms including autonomic dysfunction. Despite the recognition of this complication of Lyme disease in the care of patients with PTLD, there has been a scarcity of research in this field and dysautonomia has not yet been established as a complication of Lyme disease in the medical literature. In this review, we discuss the evidence implicating Borrelia burgdorferi as a cause of dysautonomia and the related symptoms, propose potential pathogenic mechanisms given our knowledge of Lyme disease and mechanisms of PASC and ME/CFS, and discuss the diagnostic evaluation and treatments of dysautonomia. We also outline gaps in the literature and priorities for future research.
Collapse
Affiliation(s)
- Brittany L Adler
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, United States
| | - Tae Chung
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, United States
| | - Peter C Rowe
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| | - John Aucott
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|