1
|
Velu K, Shrestha RG, Shrestha LK, Ariga K. Recent Advancements in Novel Sensing Systems through Nanoarchitectonics. BIOSENSORS 2023; 13:bios13020286. [PMID: 36832052 PMCID: PMC9954764 DOI: 10.3390/bios13020286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 05/28/2023]
Abstract
The fabrication of various sensing devices and the ability to harmonize materials for a higher degree of organization is essential for effective sensing systems. Materials with hierarchically micro- and mesopore structures can enhance the sensitivity of sensors. Nanoarchitectonics allows for atomic/molecular level manipulations that create a higher area-to-volume ratio in nanoscale hierarchical structures for use in ideal sensing applications. Nanoarchitectonics also provides ample opportunities to fabricate materials by tuning pore size, increasing surface area, trapping molecules via host-guest interactions, and other mechanisms. Material characteristics and shape significantly enhance sensing capabilities via intramolecular interactions, molecular recognition, and localized surface plasmon resonance (LSPR). This review highlights the latest advancements in nanoarchitectonics approaches to tailor materials for various sensing applications, including biological micro/macro molecules, volatile organic compounds (VOC), microscopic recognition, and the selective discrimination of microparticles. Furthermore, different sensing devices that utilize the nanoarchitectonics concept to achieve atomic-molecular level discrimination are also discussed.
Collapse
Affiliation(s)
- Karthick Velu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|
2
|
Shrestha LK, Shrestha RG, Shahi S, Gnawali CL, Adhikari MP, Bhadra BN, Ariga K. Biomass Nanoarchitectonics for Supercapacitor Applications. J Oleo Sci 2023; 72:11-32. [PMID: 36624057 DOI: 10.5650/jos.ess22377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nanoarchitectonics integrates nanotechnology with numerous scientific disciplines to create innovative and novel functional materials from nano-units (atoms, molecules, and nanomaterials). The objective of nanoarchitectonics concept is to develop functional materials and systems with rationally architected functional units. This paper explores the progress and potential of this field using biomass nanoarchitectonics for supercapacitor applications as examples of energetic materials and devices. Strategic design of nanoporous carbons that exhibit ultra-high surface area and hierarchically pore architectures comprising micro- and mesopore structure and controlled pore size distributions are of great significance in energy-related applications, including in high-performance supercapacitors, lithium-ion batteries, and fuel cells. Agricultural wastes or natural biomass are lignocellulosic materials and are excellent carbon sources for the preparation of hierarchically porous carbons with an ultra-high surface area that are attractive materials in high-performance supercapacitor applications due to high electrical and ion conduction, extreme porosity, and exceptional chemical and thermal stability. In this review, we will focus on the latest advancements in the fabrication of hierarchical porous carbon materials from different biomass by chemical activation method. Particularly, the importance of biomass-derived ultra-high surface area porous carbons, hierarchical architectures with interconnected pores in high-energy storage, and high-performance supercapacitors applications will be discussed. Finally, the current challenges and outlook for the further improvement of carbon materials derived from biomass or agricultural wastes in the advancements of supercapacitor devices will be discussed.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Sabina Shahi
- Central Department of Chemistry, Tribhuvan University
| | - Chhabi Lal Gnawali
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU)
| | | | - Biswa Nath Bhadra
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
3
|
Shrestha LK, Shahi S, Gnawali CL, Adhikari MP, Rajbhandari R, Pokharel BP, Ma R, Shrestha RG, Ariga K. Phyllanthus emblica Seed-Derived Hierarchically Porous Carbon Materials for High-Performance Supercapacitor Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8335. [PMID: 36499823 PMCID: PMC9739855 DOI: 10.3390/ma15238335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The electrical double-layer supercapacitance performance of the nanoporous carbons prepared from the Phyllanthus emblica (Amala) seed by chemical activation using the potassium hydroxide (KOH) activator is reported. KOH activation was carried out at different temperatures (700-1000 °C) under nitrogen gas atmosphere, and in a three-electrode cell set-up the electrochemical measurements were performed in an aqueous 1 M sulfuric acid (H2SO4) solution. Because of the hierarchical pore structures with well-defined micro- and mesopores, Phyllanthus emblica seed-derived carbon materials exhibit high specific surface areas in the range of 1360 to 1946 m2 g-1, and the total pore volumes range from 0.664 to 1.328 cm3 g-1. The sample with the best surface area performed admirably as the supercapacitor electrode-material, achieving a high specific capacitance of 272 F g-1 at 1 A g-1. Furthermore, it sustained 60% capacitance at a high current density of 50 A g-1, followed by a remarkably long cycle-life of 98% after 10,000 subsequent charging/discharging cycles, demonstrating the electrode's excellent rate-capability. These results show that the Phyllanthus emblica seed would have significant possibilities as a sustainable carbon-source for the preparing high-surface-area activated-carbons desired in high-energy-storage supercapacitors.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1, Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Sabina Shahi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal
| | - Chhabi Lal Gnawali
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University, Lalitpur, Kathmandu 44700, Nepal
| | | | - Rinita Rajbhandari
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University, Lalitpur, Kathmandu 44700, Nepal
| | - Bhadra P. Pokharel
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University, Lalitpur, Kathmandu 44700, Nepal
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Kashiwa, Japan
| |
Collapse
|
4
|
Shrestha RL, Chaudhary R, Shrestha RG, Shrestha T, Maji S, Ariga K, Shrestha LK. Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ram Lal Shrestha
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Rashma Chaudhary
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
| | - Timila Shrestha
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
| |
Collapse
|
5
|
An efficient nano-biocatalyst for lignocellulosic biomass hydrolysis: Xylanase immobilization on organically modified biogenic mesoporous silica nanoparticles. Int J Biol Macromol 2020; 164:3462-3473. [DOI: 10.1016/j.ijbiomac.2020.08.211] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/11/2023]
|
6
|
Shrestha RL, Chaudhary R, Shrestha T, Tamrakar BM, Shrestha RG, Maji S, Hill JP, Ariga K, Shrestha LK. Nanoarchitectonics of Lotus Seed Derived Nanoporous Carbon Materials for Supercapacitor Applications. MATERIALS 2020; 13:ma13235434. [PMID: 33260344 PMCID: PMC7730822 DOI: 10.3390/ma13235434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022]
Abstract
Of the available environmentally friendly energy storage devices, supercapacitors are the most promising because of their high energy density, ultra-fast charging-discharging rate, outstanding cycle life, cost-effectiveness, and safety. In this work, nanoporous carbon materials were prepared by applying zinc chloride activation of lotus seed powder from 600 °C to 1000 °C and the electrochemical energy storage (supercapacitance) of the resulting materials in aqueous electrolyte (1M H2SO4) are reported. Lotus seed-derived activated carbon materials display hierarchically porous structures comprised of micropore and mesopore architectures, and exhibited excellent supercapacitance performances. The specific surface areas and pore volumes were found in the ranges 1103.0–1316.7 m2 g−1 and 0.741–0.887 cm3 g−1, respectively. The specific capacitance of the optimum sample was ca. 317.5 F g−1 at 5 mV s−1 and 272.9 F g−1 at 1 A g−1 accompanied by high capacitance retention of 70.49% at a high potential sweep rate of 500 mV s−1. The electrode also showed good rate capability of 52.1% upon increasing current density from 1 to 50 A g−1 with exceptional cyclic stability of 99.2% after 10,000 cycles demonstrating the excellent prospects for agricultural waste stuffs, such as lotus seed, in the production of the high performance porous carbon materials required for supercapacitor applications.
Collapse
Affiliation(s)
- Ram Lal Shrestha
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.L.S.); (R.C.); (T.S.)
| | - Rashma Chaudhary
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.L.S.); (R.C.); (T.S.)
| | - Timila Shrestha
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.L.S.); (R.C.); (T.S.)
| | | | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan; (R.G.S.); (S.M.); (J.P.H.)
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan; (R.G.S.); (S.M.); (J.P.H.)
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan; (R.G.S.); (S.M.); (J.P.H.)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan; (R.G.S.); (S.M.); (J.P.H.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Correspondence: (K.A.); (L.K.S.); Tel.: +81-29-860-4597 (K.A.); +81-29-860-4809 (L.K.S.)
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan; (R.G.S.); (S.M.); (J.P.H.)
- Correspondence: (K.A.); (L.K.S.); Tel.: +81-29-860-4597 (K.A.); +81-29-860-4809 (L.K.S.)
| |
Collapse
|
7
|
Jackfruit Seed-Derived Nanoporous Carbons as the Electrode Material for Supercapacitors. C — JOURNAL OF CARBON RESEARCH 2020. [DOI: 10.3390/c6040073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hierarchically porous activated carbon materials from agro-waste, Jackfruit seeds are prepared by a chemical activation method involving the treatment with zinc chloride (ZnCl2) at different temperatures (600–1000 °C). The electrochemical supercapacitance performances of the prepared materials were studied in an aqueous electrolyte (1 M sulfuric acid, H2SO4) in a three-electrode system. Jackfruit seed carbons display nanoporous structures consisting of both micro- and mesopore architectures and they are amorphous in nature and also contain oxygenated surface functional groups, as confirmed by powder X-ray diffraction (pXRD), Raman scattering, and Fourier-transformed infrared (FTIR) spectroscopy, respectively. The surface areas and pore volumes were found to be 1216.0 to 1340.4 m2·g−1 and 0.804 to 1.144 cm3·g−1, respectively, demonstrating the better surface textural properties compared to the commercial activated carbons. Due to the high surface area, large pore volume, and well developed hierarchical micro- and mesoporosity, the optimal sample achieved a high specific capacitance of 292.2 F·g−1 at 5 mV·s−1 and 261.3 F·g−1 at 1 A·g−1 followed by outstanding high rate capability. The electrode sustained 71.6% capacity retention at a high current density of 20 A·g−1. Furthermore, the electrode displayed exceptional cycling stability with small capacitance loss (0.6%) even after 10,000 charging–discharging cycles, suggesting that Jackfruit seed would have potential in low-cost and scalable production of nanoporous carbon materials for supercapacitors applications.
Collapse
|
8
|
Rodríguez-Abreu C, Kolen'ko YV, Kovnir K, Sanchez-Dominguez M, Shrestha RG, Bairi P, Ariga K, Shrestha LK. 1D materials from ionic self-assembly in mixtures containing chromonic liquid crystal mesogens. Phys Chem Chem Phys 2020; 22:23276-23285. [PMID: 33030486 DOI: 10.1039/d0cp04348f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ionic self-assembly is a simple yet powerful method to obtain robust nanostructures. Herewith, we use mixtures of oppositely-charged porphyrins that can act as mesogens to form chromonic liquid crystals in water, i.e., molecular stacks with orientational (nematic) or positional (hexagonal) order. Electrostatic locking coupled with π-π interactions between aromatic groups within the stacks, together with inter-stack hydrogen bonding induce formation of all-organic crystalline nanofibers with high aspect ratio (a few tenths of nanometers in width but several tenths of micrometers in length) and that display branching. The nanofibers prepared from metal-free porphyrin units feature interesting optical properties, including an absorption spectrum that is different from the simple sum of the individual spectra of the components, which is attributed to a striking aggregation-induced chromism. When in contact with some polar organic solvents the materials become fluorescent, as a result of disaggregation. In a proof-of-concept, the obtained self-assembled one-dimensional (1D) materials were carbonized (yield ca. 60%) to produce nitrogen-doped carbon nanofibers that can be used as active electrode materials for energy storage applications.
Collapse
Affiliation(s)
- Carlos Rodríguez-Abreu
- Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain. and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Yury V Kolen'ko
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Kirill Kovnir
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA and Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
| | - Margarita Sanchez-Dominguez
- Centro de Investigación en Materiales Avanzados (CIMAV, S.C.), Unidad Monterrey, Apodaca, Nuevo León 66628, Mexico
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.
| | - Partha Bairi
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan. and Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.
| |
Collapse
|
9
|
Shrestha RL, Shrestha T, Tamrakar BM, Shrestha RG, Maji S, Ariga K, Shrestha LK. Nanoporous Carbon Materials Derived from Washnut Seed with Enhanced Supercapacitance. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2371. [PMID: 32455649 PMCID: PMC7287766 DOI: 10.3390/ma13102371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Nanoporous activated carbons-derived from agro-waste have been useful as suitable and scalable low-cost electrode materials in supercapacitors applications because of their better surface area and porosity compared to the commercial activated carbons. In this paper, the production of nanoporous carbons by zinc chloride activation of Washnut seed at different temperatures (400-1000 °C) and their electrochemical supercapacitance performances in aqueous electrolyte (1 M H2SO4) are reported. The prepared nanoporous carbon materials exhibit hierarchical micro- and meso-pore architectures. The surface area and porosity increase with the carbonization temperature and achieved the highest values at 800 °C. The surface area was found in the range of 922-1309 m2 g-1. Similarly, pore volume was found in the range of 0.577-0.789 cm3 g-1. The optimal sample obtained at 800 °C showed excellent electrochemical energy storage supercapacitance performance. Specific capacitance of the electrode was calculated 225.1 F g-1 at a low current density of 1 A g-1. An observed 69.6% capacitance retention at 20 A g-1 indicates a high-rate capability of the electrode materials. The cycling stability test up to 10,000 cycles revealed the outstanding stability of 98%. The fascinating surface textural properties with outstanding electrochemical performance reveal that Washnut seed would be a feasible agro-waste precursor to prepare nanoporous carbon materials as a low-cost and scalable supercapacitor electrode.
Collapse
Affiliation(s)
- Ram Lal Shrestha
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.L.S.); (T.S.)
| | - Timila Shrestha
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.L.S.); (T.S.)
| | - Birendra Man Tamrakar
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44600, Nepal;
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan; (S.M.); (K.A.)
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan; (S.M.); (K.A.)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan; (S.M.); (K.A.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan; (S.M.); (K.A.)
| |
Collapse
|
10
|
Shrestha LK, Shrestha RG, Maji S, Pokharel BP, Rajbhandari R, Shrestha RL, Pradhananga RR, Hill JP, Ariga K. High Surface Area Nanoporous Graphitic Carbon Materials Derived from Lapsi Seed with Enhanced Supercapacitance. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E728. [PMID: 32290435 PMCID: PMC7221556 DOI: 10.3390/nano10040728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 01/28/2023]
Abstract
Nanoporous activated carbon materials derived from agro-wastes could be suitable low-cost electrode materials for high-rate performance electrochemical supercapacitors. Here we report high surface area nanoporous carbon materials derived from Lapsi seed agro-waste prepared by zinc chloride (ZnCl2) activation at 700 °C. Powder X-ray diffraction (pXRD) and Raman scattering confirmed the amorphous structure of the resulting carboniferous materials, which also incorporate oxygen-containing functional groups as confirmed by Fourier transform infrared (FTIR) spectroscopy. Scanning and transmission electron microscopy (SEM and TEM) analyses revealed the granular, nanoporous structures of the materials. High-resolution TEM (HR-TEM) confirmed a graphitic carbon structure containing interconnected mesopores. Surface areas and pore volumes of the materials were found, respectively, in the ranges from 931 to 2272 m2 g-1 and 0.998 to 2.845 cm3 g-1, and are thus superior to commercially available activated carbons. High surface areas, large pore volumes and interconnected mesopore structures of these Lapsi seed-derived nanoporous carbon materials lead to their excellent electrochemical supercapacitance performance in aqueous electrolyte (1 M H2SO4) with a maximum specific capacitance of 284 F g-1 at a current density of 1 A g-1. Furthermore, the electrodes showed high-rate capability sustaining 67.7% capacity retention even at high current density of 20 A g-1 with excellent cycle stability achieving 99% capacitance retention even after 10,000 charge-discharge cycles demonstrating the potential of Lapsi seed derived nanoporous carbons as suitable electrode materials in high-performance supercapacitor devices.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; (S.M.); (J.P.H.); (K.A.)
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; (S.M.); (J.P.H.); (K.A.)
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; (S.M.); (J.P.H.); (K.A.)
| | - Bhadra P. Pokharel
- Materials Science and Engineering Program, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU), Lalitpur, Kathmandu 44700, Nepal; (B.P.P.); (R.R.)
| | - Rinita Rajbhandari
- Materials Science and Engineering Program, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU), Lalitpur, Kathmandu 44700, Nepal; (B.P.P.); (R.R.)
| | - Ram Lal Shrestha
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.L.S.); (R.R.P.)
| | | | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; (S.M.); (J.P.H.); (K.A.)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; (S.M.); (J.P.H.); (K.A.)
- Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
11
|
Shrestha RG, Maji S, Shrestha LK, Ariga K. Nanoarchitectonics of Nanoporous Carbon Materials in Supercapacitors Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E639. [PMID: 32235393 PMCID: PMC7221662 DOI: 10.3390/nano10040639] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/23/2023]
Abstract
High surface area and large pore volume carbon materials having hierarchical nanoporous structure are required in high performance supercapacitors. Such nanoporous carbon materials can be fabricated from organic precursors with high carbon content, such as synthetic biomass or agricultural wastes containing cellulose, hemicellulose, and lignin. Using recently developed unique concept of materials nanoarchitectonics, high performance porous carbons with controllable surface area, pore size distribution, and hierarchy in nanoporous structure can be fabricated. In this review, we will overview the recent trends and advancements on the synthetic methods for the production of hierarchical porous carbons with one- to three-dimensional network structure with superior performance in supercapacitors applications. We highlight the promising scope of accessing nanoporous graphitic carbon materials from: (i) direct conversion of single crystalline self-assembled fullerene nanomaterials and metal organic frameworks, (ii) hard- and soft-templating routes, and (iii) the direct carbonization and/or activation of biomass or agricultural wastes as non-templating routes. We discuss the appealing points of the different synthetic carbon sources and natural precursor raw-materials derived nanoporous carbon materials in supercapacitors applications.
Collapse
Affiliation(s)
- Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277−8561, Japan
| |
Collapse
|
12
|
Waribam P, Ngo SD, Tran TTV, Kongparakul S, Reubroycharoen P, Chanlek N, Wei L, Zhang H, Guan G, Samart C. Waste biomass valorization through production of xylose-based porous carbon microspheres for supercapacitor applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 105:492-500. [PMID: 32143145 DOI: 10.1016/j.wasman.2020.02.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Sequential potassium hydroxide (KOH)-phosphoric acid (H3PO4) activation was applied to biomass waste to fabricate activated carbon microspheres (mCMs) with a controllable porous structure. Carbon microspheres (CMs) were first synthesized from xylose using a bottom-up approach of hydrothermal carbonization. Sequential KOH and H3PO4 activation was applied to the CMs in a KOH-carbon solid reaction. This created pores, which were further enlarged by adsorption of H3PO4. The KOH:carbon (C) and H3PO4:C molar ratios, and the H3PO4 heating rate and activation time, were varied to investigate the effect on average pore size and pore distribution. A uniform porous structure was formed without destruction of the spherical shape, and an almost 700-fold increase in surface area was obtained over the non-activated CMs. Following activation with H3PO4, phosphorous groups were found to be present at the surface of the carbon microspheres. The mCM was tested as a supercapacitor electrode and was shown to have a maximum specific capacitance of up to 277F g-1. A Ragone plot showed the maximum power density to be 173.88 W Kg-1. This increased specific capacitance was attributed to the increase in surface area and the presence of phosphorous-containing acid sites on the material surface.
Collapse
Affiliation(s)
- Preeti Waribam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Sang Dinh Ngo
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Thi Tuong Vi Tran
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Suwadee Kongparakul
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Prasert Reubroycharoen
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narong Chanlek
- Synchrotron Light Research Institute (SLRI), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Lu Wei
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haibo Zhang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Guoqing Guan
- Institute of Regional Innovation, Hirosaki University, Aomori 030-0813 Japan
| | - Chanatip Samart
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand.
| |
Collapse
|
13
|
Rice Husk-Derived High Surface Area Nanoporous Carbon Materials with Excellent Iodine and Methylene Blue Adsorption Properties. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5010010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Iodine and methylene blue adsorption properties of the high surface area nanoporous carbon materials derived from agro-waste and rice husk is reported. Rice husk was pre-carbonized at 300 °C in air followed by leaching out the silica nanoparticles by extraction with sodium hydroxide solution. The silica-free rice husk char was mixed with chemical activating agents sodium hydroxide (NaOH), zinc chloride (ZnCl2), and potassium hydroxide (KOH) separately at a mixing ratio of 1:1 (wt%) and carbonized at 900 °C under a constant flow of nitrogen. The prepared carbon materials were characterized by scanning electron microscopy (SEM), Fourier transformed-infrared spectroscopy (FT-IR), powder X-ray diffraction (pXRD), and Raman scattering. Due to the presence of bimodal micro- and mesopore structures, KOH activated samples showed high specific surface area ca. 2342 m2/g and large pore volume ca. 2.94 cm3/g. Oxygenated surface functional groups (hydroxyl, carbonyl, and carboxyl) were commonly observed in all of the samples and were essentially non-crystalline porous particle size of different sizes (<200 μm). Adsorption study revealed that KOH activated samples could be excellent material for the iodine and methylene blue adsorption from aqueous phase. Iodine and methylene blue number were ca. 1726 mg/g and 608 mg/g, respectively. The observed excellent iodine and methylene blue adsorption properties can be attributed to the well-developed micro- and mesopore structure in the carbon material. This study demonstrates that the agricultural waste, rice husk, and derived nanoporous carbon materials would be excellent adsorbent materials in water purifications.
Collapse
|
14
|
Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha LK, Hill JP. Self-assembly as a key player for materials nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:51-95. [PMID: 30787960 PMCID: PMC6374972 DOI: 10.1080/14686996.2018.1553108] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 05/07/2023]
Abstract
The development of science and technology of advanced materials using nanoscale units can be conducted by a novel concept involving combination of nanotechnology methodology with various research disciplines, especially supramolecular chemistry. The novel concept is called 'nanoarchitectonics' where self-assembly processes are crucial in many cases involving a wide range of component materials. This review of self-assembly processes re-examines recent progress in materials nanoarchitectonics. It is composed of three main sections: (1) the first short section describes typical examples of self-assembly research to outline the matters discussed in this review; (2) the second section summarizes self-assemblies at interfaces from general viewpoints; and (3) the final section is focused on self-assembly processes at interfaces. The examples presented demonstrate the strikingly wide range of possibilities and future potential of self-assembly processes and their important contribution to materials nanoarchitectonics. The research examples described in this review cover variously structured objects including molecular machines, molecular receptors, molecular pliers, molecular rotors, nanoparticles, nanosheets, nanotubes, nanowires, nanoflakes, nanocubes, nanodisks, nanoring, block copolymers, hyperbranched polymers, supramolecular polymers, supramolecular gels, liquid crystals, Langmuir monolayers, Langmuir-Blodgett films, self-assembled monolayers, thin films, layer-by-layer structures, breath figure motif structures, two-dimensional molecular patterns, fullerene crystals, metal-organic frameworks, coordination polymers, coordination capsules, porous carbon spheres, mesoporous materials, polynuclear catalysts, DNA origamis, transmembrane channels, peptide conjugates, and vesicles, as well as functional materials for sensing, surface-enhanced Raman spectroscopy, photovoltaics, charge transport, excitation energy transfer, light-harvesting, photocatalysts, field effect transistors, logic gates, organic semiconductors, thin-film-based devices, drug delivery, cell culture, supramolecular differentiation, molecular recognition, molecular tuning, and hand-operating (hand-operated) nanotechnology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | | | - Taizo Mori
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Jun Takeya
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Lok Kumar Shrestha
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Jonathan P. Hill
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
| |
Collapse
|
15
|
Self-Assembled Fullerene Crystals as Excellent Aromatic Vapor Sensors. SENSORS 2019; 19:s19020267. [PMID: 30641916 PMCID: PMC6359261 DOI: 10.3390/s19020267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/29/2023]
Abstract
Here we report the aromatic vapor sensing performance of bitter melon shaped nanoporous fullerene C60 crystals that are self-assembled at a liquid-liquid interface between isopropyl alcohol and C60 solution in dodecylbenzene at 25 °C. Average length and center diameter of the crystals were ca. 10 μm and ~2 μm, respectively. Powder X-ray diffraction pattern (pXRD) confirmed a face-centered cubic (fcc) structure with cell dimension ca. a = 1.4272 nm, and V = 2.907 nm3, which is similar to that of the pristine fullerene C60. Transmission electron microscopy (TEM) confirmed the presence of a nanoporous structure. Quartz crystal microbalance (QCM) results showed that the bitter melon shaped nanoporous C60 performs as an excellent sensing system, particularly for aromatic vapors, due to their easy diffusion through the porous architecture and strong π–π interactions with the sp2-carbon.
Collapse
|
16
|
Sengottaiyan C, Kalam NA, Jayavel R, Shrestha RG, Subramani T, Sankar S, Hill JP, Shrestha LK, Ariga K. BiVO4/RGO hybrid nanostructure for high performance electrochemical supercapacitor. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Ariga K, Jackman JA, Cho NJ, Hsu SH, Shrestha LK, Mori T, Takeya J. Nanoarchitectonic-Based Material Platforms for Environmental and Bioprocessing Applications. CHEM REC 2018; 19:1891-1912. [PMID: 30230688 DOI: 10.1002/tcr.201800103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
The challenges of pollution, environmental science, and energy consumption have become global issues of broad societal importance. In order to address these challenges, novel functional systems and advanced materials are needed to achieve high efficiency, low emission, and environmentally friendly performance. A promising approach involves nanostructure-level controls of functional material design through a novel concept, nanoarchitectonics. In this account article, we summarize nanoarchitectonic approaches to create nanoscale platform structures that are potentially useful for environmentally green and bioprocessing applications. The introduced platforms are roughly classified into (i) membrane platforms and (ii) nanostructured platforms. The examples are discussed together with the relevant chemical processes, environmental sensing, bio-related interaction analyses, materials for environmental remediation, non-precious metal catalysts, and facile separation for biomedical uses.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,Department of Medicine, Stanford University Stanford, California, 94305, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, R.O.C
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jun Takeya
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
18
|
Jackman JA, Cho NJ, Nishikawa M, Yoshikawa G, Mori T, Shrestha LK, Ariga K. Materials Nanoarchitectonics for Mechanical Tools in Chemical and Biological Sensing. Chem Asian J 2018; 13:3366-3377. [PMID: 29959818 DOI: 10.1002/asia.201800935] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 12/28/2022]
Abstract
In this Focus Review, nanoarchitectonic approaches for mechanical-action-based chemical and biological sensors are briefly discussed. In particular, recent examples of piezoelectric devices, such as quartz crystal microbalances (QCM and QCM-D) and a membrane-type surface stress sensor (MSS), are introduced. Sensors need well-designed nanostructured sensing materials for the sensitive and selective detection of specific targets. Nanoarchitectonic approaches for sensing materials, such as mesoporous materials, 2D materials, fullerene assemblies, supported lipid bilayers, and layer-by-layer assemblies, are highlighted. Based on these sensing approaches, examples of bioanalytical applications are presented for toxic gas detection, cell membrane interactions, label-free biomolecular assays, anticancer drug evaluation, complement activation-related multiprotein membrane attack complexes, and daily biodiagnosis, which are partially supported by data analysis, such as machine learning and principal component analysis.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
- Department of Medicine, Stanford University, Stanford, California, 94305, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Michihiro Nishikawa
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Genki Yoshikawa
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
19
|
Li-modified nanoporous carbons for high-performance adsorption and separation of CO2 over N2: A combined DFT and GCMC computational study. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Tang Q, Bairi P, Shrestha RG, Hill JP, Ariga K, Zeng H, Ji Q, Shrestha LK. Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44458-44465. [PMID: 29210263 DOI: 10.1021/acsami.7b13277] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fullerene C60 microbelts were fabricated using the liquid-liquid interfacial precipitation method and converted into quasi 2D mesoporous carbon microbelts by heat treatment at elevated temperatures of 900 and 2000 °C. The carbon microbelts obtained by heat treatment of fullerene C60 microbelts at 900 °C showed excellent electrochemical supercapacitive performance, exhibiting high specific capacitances ca. 360 F g-1 (at 5 mV s-1) and 290 F g-1 (at 1 A g-1) because of the enhanced surface area and the robust mesoporous framework structure. Additionally, the heat-treated carbon microbelt showed good rate performance, retaining 49% of capacitance at a high scan rate of 10 A g-1. The carbon belts exhibit super cyclic stability. Capacity loss was not observed even after 10 000 charge/discharge cycles. These results demonstrate that the quasi 2D mesoporous carbon microbelts derived from a π-electron-rich carbon source, fullerene C60 crystals, could be used as a new candidate material for electrochemical supercapacitor applications.
Collapse
Affiliation(s)
- Qin Tang
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology , 200 Xiaolingwei, Nanjing 210094, China
| | - Partha Bairi
- Supermolecules Group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Rekha Goswami Shrestha
- Supermolecules Group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- Supermolecules Group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- Supermolecules Group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Nanjing University of Science and Technology , Nanjing 210094, China
| | - Qingmin Ji
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology , 200 Xiaolingwei, Nanjing 210094, China
- MIIT Key Laboratory of Advanced Display Materials and Devices, Nanjing University of Science and Technology , Nanjing 210094, China
| | - Lok Kumar Shrestha
- Supermolecules Group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
21
|
Natural biowaste of Groundnut shell derived nano carbons: Synthesis, characterization and its in vitro antibacterial activity. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.nanoso.2017.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Bardosova M, Fudouzi H. Focus on advanced nanoprocessing and applications in sensorics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:664-665. [PMID: 29057023 PMCID: PMC5642824 DOI: 10.1080/14686996.2017.1368257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Maria Bardosova
- Micro & Nano Systems Centre, Tyndall National Institute, University College Cork, Cork, Ireland
- Faculty of Electrical Engineering and Information Technology, Slovak Technical University in Bratislava (STUBA), Bratislava, Slovak Republic
| | - Hiroshi Fudouzi
- Research Center for Functional Materials, National Institute for Materials Science, Sengen, Tsukuba, Japan
| |
Collapse
|
23
|
Shu Y, Maruyama J, Iwasaki S, Li C, Shen Y, Uyama H. Hierarchical Activated Green Carbons from Abundant Biomass Waste for Symmetric Supercapacitors. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yu Shu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, Shaanxi Province, PR China
| | - Jun Maruyama
- Research Division of Environmental Technology, Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553
| | - Satoshi Iwasaki
- Research Division of Environmental Technology, Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, Shaanxi Province, PR China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, Shaanxi Province, PR China
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, Shaanxi Province, PR China
| |
Collapse
|
24
|
Sengottaiyan C, Jayavel R, Bairi P, Shrestha RG, Ariga K, Shrestha LK. Cobalt Oxide/Reduced Graphene Oxide Composite with Enhanced Electrochemical Supercapacitance Performance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170092] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Ramasamy Jayavel
- Center for Nanoscience and Technolgy, Anna University, Chennai-600025, India
| | - Partha Bairi
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044
| | - Rekha Goswami Shrestha
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044
| | - Katsuhiko Ariga
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-0827
| | - Lok Kumar Shrestha
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044
| |
Collapse
|
25
|
Wool Carpet Dye Adsorption on Nanoporous Carbon Materials Derived from Agro-Product. C — JOURNAL OF CARBON RESEARCH 2017. [DOI: 10.3390/c3020012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
26
|
Nanoarchitectonics of Nanoporous Carbon Materials from Natural Resource for Supercapacitor Application. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0548-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Sengottaiyan C, Jayavel R, Shrestha RG, Hill JP, Ariga K, Shrestha LK. Electrochemical Supercapacitance Properties of Reduced Graphene Oxide/Mn2O3:Co3O4 Nanocomposite. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0501-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|