1
|
Liang Y, Li H, Tang H, Zhang C, Men D, Mayer D. Bioinspired Electrolyte-Gated Organic Synaptic Transistors: From Fundamental Requirements to Applications. NANO-MICRO LETTERS 2025; 17:198. [PMID: 40122950 PMCID: PMC11930914 DOI: 10.1007/s40820-025-01708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Rapid development of artificial intelligence requires the implementation of hardware systems with bioinspired parallel information processing and presentation and energy efficiency. Electrolyte-gated organic transistors (EGOTs) offer significant advantages as neuromorphic devices due to their ultra-low operation voltages, minimal hardwired connectivity, and similar operation environment as electrophysiology. Meanwhile, ionic-electronic coupling and the relatively low elastic moduli of organic channel materials make EGOTs suitable for interfacing with biology. This review presents an overview of the device architectures based on organic electrochemical transistors and organic field-effect transistors. Furthermore, we review the requirements of low energy consumption and tunable synaptic plasticity of EGOTs in emulating biological synapses and how they are affected by the organic materials, electrolyte, architecture, and operation mechanism. In addition, we summarize the basic operation principle of biological sensory systems and the recent progress of EGOTs as a building block in artificial systems. Finally, the current challenges and future development of the organic neuromorphic devices are discussed.
Collapse
Affiliation(s)
- Yuanying Liang
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, 510335, People's Republic of China.
| | - Hangyu Li
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Hu Tang
- Guangzhou Liby Group Co., Ltd, Guangzhou, 510370, People's Republic of China
| | - Chunyang Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Dong Men
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
2
|
Zhao R, Kim SJ, Xu Y, Zhao J, Wang T, Midya R, Ganguli S, Roy AK, Dubey M, Williams RS, Yang JJ. Memristive Ion Dynamics to Enable Biorealistic Computing. Chem Rev 2025; 125:745-785. [PMID: 39729346 PMCID: PMC11759055 DOI: 10.1021/acs.chemrev.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Conventional artificial intelligence (AI) systems are facing bottlenecks due to the fundamental mismatches between AI models, which rely on parallel, in-memory, and dynamic computation, and traditional transistors, which have been designed and optimized for sequential logic operations. This calls for the development of novel computing units beyond transistors. Inspired by the high efficiency and adaptability of biological neural networks, computing systems mimicking the capabilities of biological structures are gaining more attention. Ion-based memristive devices (IMDs), owing to the intrinsic functional similarities to their biological counterparts, hold significant promise for implementing emerging neuromorphic learning and computing algorithms. In this article, we review the fundamental mechanisms of IMDs based on ion drift and diffusion to elucidate the origins of their diverse dynamics. We then examine how these mechanisms operate within different materials to enable IMDs with various types of switching behaviors, leading to a wide range of applications, from emulating biological components to realizing specialized computing requirements. Furthermore, we explore the potential for IMDs to be modified and tuned to achieve customized dynamics, which positions them as one of the most promising hardware candidates for executing bioinspired algorithms with unique specifications. Finally, we identify the challenges currently facing IMDs that hinder their widespread usage and highlight emerging research directions that could significantly benefit from incorporating IMDs.
Collapse
Affiliation(s)
- Ruoyu Zhao
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Seung Ju Kim
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Yichun Xu
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Jian Zhao
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Tong Wang
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Rivu Midya
- Sandia
National Laboratories, Livermore, California 94550, United States
- Department
of Electrical & Computer Engineering, Texas A&M University, College
Station, Texas, 77843, United States
| | - Sabyasachi Ganguli
- Air
Force Research Laboratory Materials and Manufacturing Directorate
Wright − Patterson Air Force Base Dayton, Ohio 45433, United States
| | - Ajit K. Roy
- Air
Force Research Laboratory Materials and Manufacturing Directorate
Wright − Patterson Air Force Base Dayton, Ohio 45433, United States
| | - Madan Dubey
- Sensors
and Electron Devices Directorate, U.S. Army
Research Laboratory, Adelphi, Maryland 20723, United States
| | - R. Stanley Williams
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - J. Joshua Yang
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024; 124:12738-12843. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
4
|
Yin X, Ji X, Liu W, Li X, Wang M, Xin Q, Zhang J, Yan Z, Song A. Electrolyte-gated amorphous IGZO transistors with extended gates for prostate-specific antigen detection. LAB ON A CHIP 2024; 24:3284-3293. [PMID: 38847194 DOI: 10.1039/d4lc00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The prostate-specific antigen (PSA) test is considered an important way for preoperative diagnosis and accurate screening of prostate cancer. Current antigen detection methods, including radioimmunoassay, enzyme-linked immunosorbent assay and microfluidic electrochemical detection, feature expensive equipment, long testing time and poor stability. Here, we propose a portable biosensor composed of electrolyte-gated amorphous indium gallium zinc oxide (a-IGZO) transistors with an extended gate, which can achieve real-time, instant PSA detection at a low operating voltage (<2 V) owing to the liquid-free ionic conductive elastomer (ICE) serving as the gate dielectric. The electric double layer (EDL) capacitance in ICE enhances the accumulation of carriers in the IGZO channel, leading to strong gate modulation, which enables the IGZO transistor to have a small subthreshold swing (<0.5 V dec-1) and a high on-state current (∼4 × 10-4 A). The separate, biodegradable, and pluggable sensing pad, serving as an extended gate connected to the IGZO transistor, prevents contamination and depletion arising from direct contact with biomolecular buffers, enabling the IGZO transistor to maintain superior electronic performance for at least six months. The threshold voltage and channel current of the transistor exhibit excellent linear response to PSA molecule concentrations across five orders of magnitude ranging from 1 fg mL-1 to 10 pg mL-1, with a detection limit of 400 ag mL-1 and a detection time of ∼5.1 s. The fabricated biosensors offer a point-of-care system for antigen detection, attesting the feasibility of the electrolyte-gated transistors in clinical screening, healthcare diagnostics and biological management.
Collapse
Affiliation(s)
- Xuemei Yin
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Xingqi Ji
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Wenlong Liu
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Xiaoqian Li
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Mingyang Wang
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Qian Xin
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
| | - Jiawei Zhang
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Zhuocheng Yan
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Aimin Song
- Institute of Nanoscience and Applications, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
5
|
Sun C, Liu X, Yao Q, Jiang Q, Xia X, Shen Y, Ye X, Tan H, Gao R, Zhu X, Li RW. A Discolorable Flexible Synaptic Transistor for Wearable Health Monitoring. ACS NANO 2024; 18:515-525. [PMID: 38126328 DOI: 10.1021/acsnano.3c08357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Multifunctional intelligent wearable electronics, providing integrated physiological signal analysis, storage, and display for real-time and on-site health status diagnosis, have great potential to revolutionize health monitoring technologies. Advanced wearable systems combine isolated digital processor, memory, and display modules for function integration; however, they suffer from compatibility and reliability issues. Here, we introduce a flexible multifunctional electrolyte-gated transistor (EGT) that integrates synaptic learning, memory, and autonomous discoloration functionalities for intelligent wearable application. This device exhibits synergistic light absorption coefficient changes during voltage-gated ion doping that modulate the electrical conductance changes for synaptic function implementation. By adaptively changing color, the EGT can differentiate voltage pulse inputs with different frequency, amplitude, and duration parameters, exhibiting excellent reversibility and reliability. We developed a smart wearable monitoring system that incorporates EGT devices and sensors for respiratory and electrocardiogram signal analysis, providing health warnings through real-time and on-site discoloration. This study represents a significant step toward smart wearable technologies for health management, offering health evaluation through intelligent displays.
Collapse
Affiliation(s)
- Cui Sun
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xuerong Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Quanxing Yao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qian Jiang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangling Xia
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youfeng Shen
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Ye
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Tan
- Department of Applied Physics, Aalto University, Aalto FI-00076, Finland
| | - Runsheng Gao
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Xiaojian Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
6
|
Zhou Y, Han ST. Foreword to the focus issue: materials and technologies for memristors and neuromorphic devices. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2263265. [PMID: 37854122 PMCID: PMC10580789 DOI: 10.1080/14686996.2023.2263265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Affiliation(s)
- Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
8
|
Liu X, Sun C, Guo Z, Xia X, Jiang Q, Ye X, Shang J, Zhang Y, Zhu X, Li RW. Near-Sensor Reservoir Computing for Gait Recognition via a Multi-Gate Electrolyte-Gated Transistor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300471. [PMID: 36950731 DOI: 10.1002/advs.202300471] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Indexed: 05/27/2023]
Abstract
The recent emergence of various smart wearable electronics has furnished the rapid development of human-computer interaction, medical health monitoring technologies, etc. Unfortunately, processing redundant motion and physiological data acquired by multiple wearable sensors using conventional off-site digital computers typically result in serious latency and energy consumption problems. In this work, a multi-gate electrolyte-gated transistor (EGT)-based reservoir device for efficient multi-channel near-sensor computing is reported. The EGT, exhibiting rich short-term dynamics under voltage modulation, can implement nonlinear parallel integration of the time-series signals thus extracting the temporal features such as the synchronization state and collective frequency in the inputs. The flexible EGT integrated with pressure sensors can perform on-site gait information analysis, enabling the identification of motion behaviors and Parkinson's disease. This near-sensor reservoir computing system offers a new route for rapid analysis of the motion and physiological signals with significantly improved efficiency and will lead to robust smart flexible wearable electronics.
Collapse
Affiliation(s)
- Xuerong Liu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Cui Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zhecheng Guo
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
| | - Xiangling Xia
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Qian Jiang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Ye
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yuejun Zhang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
| | - Xiaojian Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|