1
|
Tosolini AP, Smith GM. Editorial: Gene therapy for the central and peripheral nervous system, volume II. Front Mol Neurosci 2023; 16:1258458. [PMID: 37593465 PMCID: PMC10431961 DOI: 10.3389/fnmol.2023.1258458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Affiliation(s)
- Andrew P. Tosolini
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - George M. Smith
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Maruyama R, Yokota T. Antisense Oligonucleotide Treatment in a Humanized Mouse Model of Duchenne Muscular Dystrophy and Highly Sensitive Detection of Dystrophin Using Western Blotting. Methods Mol Biol 2021; 2224:203-214. [PMID: 33606217 DOI: 10.1007/978-1-0716-1008-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disorder affecting many children. The disease is caused by the lack of dystrophin production and characterized by muscle wasting. The most common causes of death are respiratory failure and heart failure. Antisense oligonucleotide-mediated exon skipping using a phosphorodiamidate morpholino oligomer (PMO) is a promising therapeutic approach for the treatment of DMD. In preclinical studies, dystrophic mouse models are commonly used for the development of therapeutic oligos. We employ a humanized model carrying the full-length human DMD transgene along with the complete knockout of the mouse Dmd gene. In this model, the effects of human-targeting AOs can be tested without cross-reaction between mouse sequences and human sequences (note that mdx, a conventional dystrophic mouse model, carries a nonsense point mutation in exon 23 and express the full-length mouse Dmd mRNA, which is a significant complicating factor). To determine if dystrophin expression is restored, the Western blotting analysis is commonly performed; however, due to the extremely large protein size of dystrophin (427 kDa), detection and accurate quantification of full-length dystrophin can be a challenge. Here, we present methodologies to systemically inject PMOs into humanized DMD model mice and determine levels of dystrophin restoration via Western blotting. Using a tris-acetate gradient SDS gel and semi-dry transfer with three buffers, including the Concentrated Anode Buffer, Anode Buffer, and Cathode Buffer, less than 1% normal levels of dystrophin expression are easily detectable. This method is fast, easy, and sensitive enough for the detection of dystrophin from both cultured muscle cells and muscle biopsy samples.
Collapse
Affiliation(s)
- Rika Maruyama
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Sheikh O, Yokota T. Developing DMD therapeutics: a review of the effectiveness of small molecules, stop-codon readthrough, dystrophin gene replacement, and exon-skipping therapies. Expert Opin Investig Drugs 2021; 30:167-176. [PMID: 33393390 DOI: 10.1080/13543784.2021.1868434] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the dystrophin (DMD) gene. Most patients die from respiratory failure or cardiomyopathy. There are significant unmet needs for treatments for DMD as the standard of care is principally limited to symptom relief through treatments including steroids. AREAS COVERED This review summarizes safety and efficacy in promising areas of DMD therapeutics - small molecules, stop codon readthrough, gene replacement, and exon skipping - under clinical examination from 2015-2020 as demonstrated in the NIH Clinical Trials and PubMed search engines. EXPERT OPINION Currently, steroids persist as the most accessible medicine for DMD. Stop-codon readthrough, gene replacement, and exon-skipping therapies all aim to restore dystrophin expression. Of these strategies, gene replacement therapy has recently gained momentum while exon-skipping retains great traction. The FDA approval of three exon-skipping antisense oligonucleotides illustrate this regulatory momentum, though the effectiveness and sequence design of eteplirsen remain controversial. Cell-penetrating peptides promise to more efficaciously treat DMD-related cardiomyopathy.The recent success of antisense therapies, however, poses major regulatory challenges. To fully realize the benefits of exon-skipping, including cocktail oligonucleotide-mediated multiple exon-skipping and oligonucleotide drugs for very rare mutations, regulatory challenges need to be addressed in coordination with scientific advances.
Collapse
Affiliation(s)
- Omar Sheikh
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| |
Collapse
|
4
|
Abstract
Objective Alternative splicing can generate various structural and functional protein isoforms. Recently, accumulating evidence shows a relationship between alternative splicing and cancer. Cancer is a complex and chronic disease that involves malignant transformation. In this review, we consider alternative splicing events in relation to the hallmarks of cancer cells, and discuss current therapies to treat cancer-related to alternative splicing. Data sources Data cited in this article are from the PubMed and Embase database, primarily focusing on research published from 2000 to 2018. Study selection Articles were selected with the search terms “alternative splicing,” “cancer cell,” “tumor microenvironment,” and “therapy.” Results Alternative splicing plays an important role in tumorigenesis, development, and escape from cell death. Taking this trait of cancer cells into consideration will allow more definite diagnoses of cancer, and allow the development of more effective medicines to intervene in cancer that could focus on controlling alternative splicing or competitively binding to the final products. Conclusions Alternative splicing is common in cancer cells. Consideration of alternative splicing may allow different strategies for cancer therapy or the identification of novel biomarkers for cancer diagnosis.
Collapse
|
5
|
Wadman RI, Jansen MD, Stam M, Wijngaarde CA, Curial CAD, Medic J, Sodaar P, Schouten J, Vijzelaar R, Lemmink HH, van den Berg LH, Groen EJN, van der Pol WL. Intragenic and structural variation in the SMN locus and clinical variability in spinal muscular atrophy. Brain Commun 2020; 2:fcaa075. [PMID: 32954327 PMCID: PMC7425299 DOI: 10.1093/braincomms/fcaa075] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022] Open
Abstract
Clinical severity and treatment response vary significantly between patients with spinal muscular atrophy. The approval of therapies and the emergence of neonatal screening programmes urgently require a more detailed understanding of the genetic variants that underlie this clinical heterogeneity. We systematically investigated genetic variation other than SMN2 copy number in the SMN locus. Data were collected through our single-centre, population-based study on spinal muscular atrophy in the Netherlands, including 286 children and adults with spinal muscular atrophy Types 1–4, including 56 patients from 25 families with multiple siblings with spinal muscular atrophy. We combined multiplex ligation-dependent probe amplification, Sanger sequencing, multiplexed targeted resequencing and digital droplet polymerase chain reaction to determine sequence and expression variation in the SMN locus. SMN1, SMN2 and NAIP gene copy number were determined by multiplex ligation-dependent probe amplification. SMN2 gene variant analysis was performed using Sanger sequencing and RNA expression analysis of SMN by droplet digital polymerase chain reaction. We identified SMN1–SMN2 hybrid genes in 10% of spinal muscular atrophy patients, including partial gene deletions, duplications or conversions within SMN1 and SMN2 genes. This indicates that SMN2 copies can vary structurally between patients, implicating an important novel level of genetic variability in spinal muscular atrophy. Sequence analysis revealed six exonic and four intronic SMN2 variants, which were associated with disease severity in individual cases. There are no indications that NAIP1 gene copy number or sequence variants add value in addition to SMN2 copies in predicting the clinical phenotype in individual patients with spinal muscular atrophy. Importantly, 95% of spinal muscular atrophy siblings in our study had equal SMN2 copy numbers and structural changes (e.g. hybrid genes), but 60% presented with a different spinal muscular atrophy type, indicating the likely presence of further inter- and intragenic variabilities inside as well as outside the SMN locus. SMN2 gene copies can be structurally different, resulting in inter- and intra-individual differences in the composition of SMN1 and SMN2 gene copies. This adds another layer of complexity to the genetics that underlie spinal muscular atrophy and should be considered in current genetic diagnosis and counselling practices.
Collapse
Affiliation(s)
- Renske I Wadman
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marc D Jansen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marloes Stam
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Camiel A Wijngaarde
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Chantall A D Curial
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jelena Medic
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Peter Sodaar
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jan Schouten
- MRC Holland BV, 1057 DL Amsterdam, the Netherlands
| | | | - Henny H Lemmink
- Department of Genetics, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Leonard H van den Berg
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J N Groen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W Ludo van der Pol
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
6
|
Zaw K, Greer K, Aung-Htut MT, Mitrpant C, Veedu RN, Fletcher S, Wilton SD. Consequences of Making the Inactive Active Through Changes in Antisense Oligonucleotide Chemistries. Front Genet 2019; 10:1249. [PMID: 31956327 PMCID: PMC6951410 DOI: 10.3389/fgene.2019.01249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/13/2019] [Indexed: 01/02/2023] Open
Abstract
Antisense oligonucleotides are short, single-stranded nucleic acid analogues that can interfere with pre-messenger RNA (pre-mRNA) processing and induce excision of a targeted exon from the mature transcript. When developing a panel of antisense oligonucleotides to skip every dystrophin exon, we found great variation in splice switching efficiencies, with some antisense oligonucleotides ineffective, even when directed to canonical splice sites and transfected into cells at high concentrations. In this study, we re-evaluated some of these ineffective antisense oligonucleotide sequences after incorporation of locked nucleic acid residues to increase annealing potential. Antisense oligonucleotides targeting exons 16, 23, and 51 of human DMD transcripts were synthesized as two different chemistries, 2′-O-methyl modified bases on a phosphorothioate backbone or mixmers containing several locked nucleic acid residues, which were then transfected into primary human myotubes, and DMD transcripts were analyzed for exon skipping. The ineffective 2′-O-methyl modified antisense oligonucleotides induced no detectable exon skipping, while all corresponding mixmers did induce excision of the targeted exons. Interestingly, the mixmer targeting exon 51 induced two unexpected transcripts arising from partial skipping of exon 51 with retention of 95 or 188 bases from the 5′ region of exon 51. These results indicated that locked nucleic acid/2′-O-methyl mixmers are more effective at inducing exon skipping, however, this improvement may come at the cost of activating alternative cryptic splice sites and off-target effects on gene expression.
Collapse
Affiliation(s)
- Khine Zaw
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kane Greer
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Perron Institute for Neurological and Translational Science and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Aartsma-Rus A, van Putten M. The use of genetically humanized animal models for personalized medicine approaches. Dis Model Mech 2019; 13:13/2/dmm041673. [PMID: 31591145 PMCID: PMC6906630 DOI: 10.1242/dmm.041673] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For many genetic diseases, researchers are developing personalized medicine approaches. These sometimes employ custom genetic interventions such as antisense-mediated exon skipping or genome editing, aiming to restore protein function in a mutation-specific manner. Animal models can facilitate the development of personalized medicine approaches; however, given that they target human mutations and therefore human genetic sequences, scientists rely on the availability of humanized animal models. Here, we outline the usefulness, caveats and potential of such models, using the example of the hDMDdel52/mdx model, a humanized model recently generated for Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
8
|
Aung-Htut MT, McIntosh CS, West KA, Fletcher S, Wilton SD. In Vitro Validation of Phosphorodiamidate Morpholino Oligomers. Molecules 2019; 24:E2922. [PMID: 31408997 PMCID: PMC6719133 DOI: 10.3390/molecules24162922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023] Open
Abstract
One of the crucial aspects of screening antisense oligonucleotides destined for therapeutic application is confidence that the antisense oligomer is delivered efficiently into cultured cells. Efficient delivery is particularly vital for antisense phosphorodiamidate morpholino oligomers, which have a neutral backbone, and are known to show poor gymnotic uptake. Here, we report several methods to deliver these oligomers into cultured cells. Although 4D-Nucleofector™ or Neon™ electroporation systems provide efficient delivery and use lower amounts of phosphorodiamidate morpholino oligomer, both systems are costly. We show that some readily available transfection reagents can be used to deliver phosphorodiamidate morpholino oligomers as efficiently as the electroporation systems. Among the transfection reagents tested, we recommend Lipofectamine 3000™ for delivering phosphorodiamidate morpholino oligomers into fibroblasts and Lipofectamine 3000™ or Lipofectamine 2000™ for myoblasts/myotubes. We also provide optimal programs for nucleofection into various cell lines using the P3 Primary Cell 4D-Nucleofector™ X Kit (Lonza), as well as antisense oligomers that redirect expression of ubiquitously expressed genes that may be used as positive treatments for human and murine cell transfections.
Collapse
Affiliation(s)
- May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, the University of Western Australia, Perth, WA 6009, Australia
| | - Craig S McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
- Perron Institute for Neurological and Translational Science, the University of Western Australia, Perth, WA 6009, Australia.
| | - Kristin A West
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, the University of Western Australia, Perth, WA 6009, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, the University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Echevarría L, Aupy P, Goyenvalle A. Exon-skipping advances for Duchenne muscular dystrophy. Hum Mol Genet 2019; 27:R163-R172. [PMID: 29771317 DOI: 10.1093/hmg/ddy171] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic disorder characterized by progressive muscle wasting that has currently no cure. Exon-skipping strategy represents one of the most promising therapeutic approaches that aim to restore expression of a shorter but functional dystrophin protein. The antisense field has remarkably progress over the last years with recent accelerated approval of the first antisense oligonucleotide-based therapy for DMD, Exondys 51, though the therapeutic benefit remains to be proved in patients. Despite clinical advances, the poor effective delivery to target all muscle remains the main hurdle for antisense drug therapy. This review describes the antisense-based exon-skipping approach for DMD, from proof-of-concept to first marketed drug. We discuss the main obstacles to achieve a successful exon-skipping therapy and the latest advances of the international community to develop more powerful chemistries and more sophisticated delivery systems in order to increase potency, bioavailability and safety. Finally, we highlight the importance of collaborative efforts and early dialogue between drug developers and regulatory agencies in order to overcome difficulties, find appropriate outcome markers and collect useful data.
Collapse
Affiliation(s)
- Lucía Echevarría
- U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France.,SQY Therapeutics, Université de Versailles St-Quentin, Montigny le Bretonneux, France
| | - Philippine Aupy
- U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| | - Aurélie Goyenvalle
- U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| |
Collapse
|
10
|
Systematic evaluation of 2'-Fluoro modified chimeric antisense oligonucleotide-mediated exon skipping in vitro. Sci Rep 2019; 9:6078. [PMID: 30988454 PMCID: PMC6465270 DOI: 10.1038/s41598-019-42523-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023] Open
Abstract
Antisense oligonucleotide (AO)-mediated splice modulation has been established as a therapeutic approach for tackling genetic diseases. Recently, Exondys51, a drug that aims to correct splicing defects in the dystrophin gene was approved by the US Food and Drug Administration (FDA) for the treatment of Duchenne muscular dystrophy (DMD). However, Exondys51 has relied on phosphorodiamidate morpholino oligomer (PMO) chemistry which poses challenges in the cost of production and compatibility with conventional oligonucleotide synthesis procedures. One approach to overcome this problem is to construct the AO with alternative nucleic acid chemistries using solid-phase oligonucleotide synthesis via standard phosphoramidite chemistry. 2′-Fluoro (2′-F) is a potent RNA analogue that possesses high RNA binding affinity and resistance to nuclease degradation with good safety profile, and an approved drug Macugen containing 2′-F-modified pyrimidines was approved for the treatment of age-related macular degeneration (AMD). In the present study, we investigated the scope of 2′-F nucleotides to construct mixmer and gapmer exon skipping AOs with either 2′-O-methyl (2′-OMe) or locked nucleic acid (LNA) nucleotides on a phosphorothioate (PS) backbone, and evaluated their efficacy in inducing exon-skipping in mdx mouse myotubes in vitro. Our results showed that all AOs containing 2′-F nucleotides induced efficient exon-23 skipping, with LNA/2′-F chimeras achieving better efficiency than the AOs without LNA modification. In addition, LNA/2′-F chimeric AOs demonstrated higher exonuclease stability and lower cytotoxicity than the 2′-OMe/2′-F chimeras. Overall, our findings certainly expand the scope of constructing 2′-F modified AOs in splice modulation by incorporating 2′-OMe and LNA modifications.
Collapse
|
11
|
Ma P, Zhang S, Zhang H, Fang S, Dong Y, Zhang Y, Hao W, Wu S, Zhao Y. Comprehensive genetic characteristics of dystrophinopathies in China. Orphanet J Rare Dis 2018; 13:109. [PMID: 29973226 PMCID: PMC6032532 DOI: 10.1186/s13023-018-0853-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background Dystrophinopathies are a set of severe and incurable X-linked neuromuscular disorders caused by mutations in the dystrophin gene (DMD). These mutations form a complex spectrum. A national registration network is essential not only to provide more information about the prevalence and natural history of the disease, but also to collect genetic data for analyzing the mutational spectrum. This information is extremely beneficial for basic scientific research, genetic diagnosis, trial planning, clinical care, and gene therapy. Methods We collected data from 1400 patients (1042 patients with confirmed unrelated Duchenne muscular dystrophy [DMD] or Becker muscular dystrophy [BMD]) registered in the Chinese Genetic Disease Registry from March 2012 to August 2017 and analyzed the genetic mutational characteristics of these patients. Results Large deletions were the most frequent type of mutation (72.2%), followed by nonsense mutations (11.9%), exon duplications (8.8%), small deletions (3.0%), splice-site mutations (2.1%), small insertions (1.3%), missense mutations (0.6%), and a combination mutation of a deletion and a duplication (0.1%). Exon 45–50 deletion was the most frequent deletion type, while exon 2 duplication was the most common duplication type. Two deletion hotspots were calculated—one located toward the central part (exon 45–52) of the gene and the other toward the 5’end (exon 8–26). We found no significant difference between hereditary and de novo mutations on deletion hotspots. Nonsense mutations accounted for 62.9% of all small mutations (197 patients). Conclusion We built a comprehensive national dystrophinopathy mutation database in China, which is essential for basic and clinical research in this field. The mutational spectrum and characteristics of this DMD/BMD group were largely consistent with those in previous international DMD/BMD studies, with some differences. Based on our results, about 12% of DMD/BMD patients with nonsense mutations may benefit from stop codon read-through therapy. Additionally, the top three targets for exon-skipping therapy are exon 51 (141, 13.5%), exon 53 (115, 11.0%), and exon 45 (84, 8.0%). Electronic supplementary material The online version of this article (10.1186/s13023-018-0853-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peipei Ma
- Department of Neurology, the General Hospital of Chinese People's Armed Police Force, Beijing, China
| | - Shu Zhang
- Department of Neurology, the General Hospital of Chinese People's Armed Police Force, Beijing, China
| | - Hao Zhang
- Department of Neurology, the General Hospital of Chinese People's Armed Police Force, Beijing, China
| | - Siying Fang
- Department of Neurology, the General Hospital of Chinese People's Armed Police Force, Beijing, China
| | - Yuru Dong
- Department of Magnetic Resonance, the General Hospital of Chinese People's Armed Police Force, Beijing, China
| | - Yan Zhang
- Department of Precision Medicine Laboratory, the General Hospital of Chinese People's Armed Police Force, Beijing, China
| | - Weiwei Hao
- Department of Precision Medicine Laboratory, the General Hospital of Chinese People's Armed Police Force, Beijing, China
| | - Shiwen Wu
- Department of Neurology, the General Hospital of Chinese People's Armed Police Force, Beijing, China.
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
12
|
Novak JS, Jaiswal JK, Partridge TA. The macrophage as a Trojan horse for antisense oligonucleotide delivery. Expert Opin Ther Targets 2018; 22:463-466. [PMID: 29860876 PMCID: PMC6309535 DOI: 10.1080/14728222.2018.1482279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- James S Novak
- a Center for Genetic Medicine Research, Children's Research Institute , Children's National Health System , Washington, DC , USA
- b Department of Genomics and Precision Medicine , The George Washington University School of Medicine and Health Sciences , Washington, DC , USA
- c Department of Pediatrics , The George Washington University School of Medicine and Health Sciences , Washington, DC , USA
| | - Jyoti K Jaiswal
- a Center for Genetic Medicine Research, Children's Research Institute , Children's National Health System , Washington, DC , USA
- b Department of Genomics and Precision Medicine , The George Washington University School of Medicine and Health Sciences , Washington, DC , USA
- c Department of Pediatrics , The George Washington University School of Medicine and Health Sciences , Washington, DC , USA
| | - Terence A Partridge
- a Center for Genetic Medicine Research, Children's Research Institute , Children's National Health System , Washington, DC , USA
- b Department of Genomics and Precision Medicine , The George Washington University School of Medicine and Health Sciences , Washington, DC , USA
- c Department of Pediatrics , The George Washington University School of Medicine and Health Sciences , Washington, DC , USA
| |
Collapse
|
13
|
Reble E, Dineen A, Barr CL. The contribution of alternative splicing to genetic risk for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2017; 17:e12430. [PMID: 29052934 DOI: 10.1111/gbb.12430] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/25/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
A genetic contribution to psychiatric disorders has clearly been established and genome-wide association studies now provide the location of risk genes and genetic variants associated with risk. However, the mechanism by which these genes and variants contribute to psychiatric disorders is mostly undetermined. This is in part because non-synonymous protein coding changes cannot explain the majority of variants associated with complex genetic traits. Based on this, it is predicted that these variants are causing gene expression changes, including changes to alternative splicing. Genetic changes influencing alternative splicing have been identified as risk factors in Mendelian disorders; however, currently there is a paucity of research on the role of alternative splicing in complex traits. This stems partly from the difficulty of predicting the role of genetic variation in splicing. Alterations to canonical splice site sequences, nucleotides adjacent to splice junctions, and exonic and intronic splicing regulatory sequences can influence splice site choice. Recent studies have identified global changes in alternatively spliced transcripts in brain tissues, some of which correlate with altered levels of splicing trans factors. Disease-associated variants have also been found to affect cis-acting splicing regulatory sequences and alter the ratio of alternatively spliced transcripts. These findings are reviewed here, as well as the current datasets and resources available to study alternative splicing in psychiatric disorders. Identifying and understanding risk variants that cause alternative splicing is critical to understanding the mechanisms of risk as well as to pave the way for new therapeutic options.
Collapse
Affiliation(s)
- E Reble
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - A Dineen
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Le BT, Adams AM, Fletcher S, Wilton SD, Veedu RN. Rational Design of Short Locked Nucleic Acid-Modified 2'-O-Methyl Antisense Oligonucleotides for Efficient Exon-Skipping In Vitro. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:155-161. [PMID: 29246294 PMCID: PMC5633351 DOI: 10.1016/j.omtn.2017.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 01/16/2023]
Abstract
Locked nucleic acid is a prominent nucleic acid analog with unprecedented target binding affinity to cDNA and RNA oligonucleotides and shows remarkable stability against nuclease degradation. Incorporation of locked nucleic acid nucleotides into an antisense oligonucleotide (AO) sequence can reduce the length required without compromising the efficacy. In this study, we synthesized a series of systematically truncated locked nucleic acid-modified 2′-O-methyl AOs on a phosphorothioate (PS) backbone that were designed to induce skipping exon 23 from the dystrophin transcript in H-2Kb-tsA58 mdx mouse myotubes in vitro. The results clearly demonstrated that shorter AOs (16- to 14-mer) containing locked nucleic acid nucleotides efficiently induced dystrophin exon 23 skipping compared with the corresponding 2′-O-methyl AOs. Our remarkable findings contribute significantly to the existing knowledge about the designing of short LNA-modified oligonucleotides for exon-skipping applications, which will help reduce the cost of exon-skipping AOs and potential toxicities, particularly the 2′-OMe-based oligos, by further reducing the length of AOs.
Collapse
Affiliation(s)
- Bao T Le
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Abbie M Adams
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia
| | - Susan Fletcher
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Stephen D Wilton
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| |
Collapse
|
15
|
Huang D, Fletcher S, Wilton SD, Palmer N, McLenachan S, Mackey DA, Chen FK. Inherited Retinal Disease Therapies Targeting Precursor Messenger Ribonucleic Acid. Vision (Basel) 2017; 1:vision1030022. [PMID: 31740647 PMCID: PMC6836112 DOI: 10.3390/vision1030022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Inherited retinal diseases are an extremely diverse group of genetically and phenotypically heterogeneous conditions characterized by variable maturation of retinal development, impairment of photoreceptor cell function and gradual loss of photoreceptor cells and vision. Significant progress has been made over the last two decades in identifying the many genes implicated in inherited retinal diseases and developing novel therapies to address the underlying genetic defects. Approximately one-quarter of exonic mutations related to human inherited diseases are likely to induce aberrant splicing products, providing opportunities for the development of novel therapeutics that target splicing processes. The feasibility of antisense oligomer mediated splice intervention to treat inherited diseases has been demonstrated in vitro, in vivo and in clinical trials. In this review, we will discuss therapeutic approaches to treat inherited retinal disease, including strategies to correct splicing and modify exon selection at the level of pre-mRNA. The challenges of clinical translation of this class of emerging therapeutics will also be discussed.
Collapse
Affiliation(s)
- Di Huang
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Sue Fletcher
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Norman Palmer
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth 6000, Australia
- Correspondence: ; Tel.: +61-8-9381-0817
| |
Collapse
|
16
|
Aartsma-Rus A, Straub V, Hemmings R, Haas M, Schlosser-Weber G, Stoyanova-Beninska V, Mercuri E, Muntoni F, Sepodes B, Vroom E, Balabanov P. Development of Exon Skipping Therapies for Duchenne Muscular Dystrophy: A Critical Review and a Perspective on the Outstanding Issues. Nucleic Acid Ther 2017; 27:251-259. [PMID: 28796573 PMCID: PMC5649120 DOI: 10.1089/nat.2017.0682] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare, severe, progressive muscle-wasting disease leading to disability and premature death. Patients lack the muscle membrane-stabilizing protein dystrophin. Antisense oligonucleotide (AON)-mediated exon skipping is a therapeutic approach that aims to induce production of partially functional dystrophins. Recently, an AON targeting exon 51 became the first of its class to be approved by the United States regulators [Food and Drug Administration (FDA)] for the treatment of DMD. A unique aspect of the exon-skipping approach for DMD is that, depending on the size and location of the mutation, different exons need to be skipped. This challenge raises a number of questions regarding the development and regulatory approval of those individual compounds. In this study, we present a perspective on those questions, following a European stakeholder meeting involving academics, regulators, and representatives from industry and patient organizations, and in the light of the most recent scientific and regulatory experience.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- 1 Department of Human Genetics, Leiden University Medical Center , Leiden, the Netherlands .,2 John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Volker Straub
- 2 John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Robert Hemmings
- 3 Medicines and Healthcare Product Regulatory Agency , London, United Kingdom
| | - Manuel Haas
- 4 Central Nervous System and Ophthalmology, Scientific and Regulatory Management Department, Human Medicines Evaluation Division, European Medicines Agency , London, United Kingdom
| | | | | | - Eugenio Mercuri
- 7 Department of Pediatric Neurology, Catholic University , Rome, Italy .,8 Centro Clinico Nemo, Policlinico Gemelli , Rome, Italy
| | - Francesco Muntoni
- 9 Dubowitz Neuromuscular Center, UCL Great Ormond Street Institute of Child Health , London, United Kingdom
| | - Bruno Sepodes
- 10 Faculdade de Farmácia, Universidade de Lisboa , Lisboa, Portugal
| | - Elizabeth Vroom
- 11 United Parent Project Muscular Dystrophy , Amsterdam, the Netherlands
| | - Pavel Balabanov
- 4 Central Nervous System and Ophthalmology, Scientific and Regulatory Management Department, Human Medicines Evaluation Division, European Medicines Agency , London, United Kingdom
| |
Collapse
|
17
|
|
18
|
Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensão-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet 2017; 136:1015-1042. [PMID: 28374191 PMCID: PMC5602094 DOI: 10.1007/s00439-017-1790-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/25/2017] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.
Collapse
Affiliation(s)
- L M Gallego-Paez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M C Bordone
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A C Leote
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N Saraiva-Agostinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M Ascensão-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
19
|
Ansseau E, Vanderplanck C, Wauters A, Harper SQ, Coppée F, Belayew A. Antisense Oligonucleotides Used to Target the DUX4 mRNA as Therapeutic Approaches in FaciosScapuloHumeral Muscular Dystrophy (FSHD). Genes (Basel) 2017; 8:genes8030093. [PMID: 28273791 PMCID: PMC5368697 DOI: 10.3390/genes8030093] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 02/02/2023] Open
Abstract
FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent hereditary myopathies and is generally characterized by progressive muscle atrophy affecting the face, scapular fixators; upper arms and distal lower legs. The FSHD locus maps to a macrosatellite D4Z4 repeat array on chromosome 4q35. Each D4Z4 unit contains a DUX4 gene; the most distal of which is flanked by a polyadenylation site on FSHD-permissive alleles, which allows for production of stable DUX4 mRNAs. In addition, an open chromatin structure is required for DUX4 gene transcription. FSHD thus results from a gain of function of the toxic DUX4 protein that normally is only expressed in germ line and stem cells. Therapeutic strategies are emerging that aim to decrease DUX4 expression or toxicity in FSHD muscle cells. We review here the heterogeneity of DUX4 mRNAs observed in muscle and stem cells; and the use of antisense oligonucleotides (AOs) targeting the DUX4 mRNA to interfere either with transcript cleavage/polyadenylation or intron splicing. We show in primary cultures that DUX4-targeted AOs suppress the atrophic FSHD myotube phenotype; but do not improve the disorganized FSHD myotube phenotype which could be caused by DUX4c over-expression. Thus; DUX4c might constitute another therapeutic target in FSHD.
Collapse
Affiliation(s)
- Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Céline Vanderplanck
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Scott Q Harper
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| |
Collapse
|