1
|
Fan R, Liu H, Liang Q. Roles and Therapeutic Targeting of Exosomes in Sepsis-Induced Cardiomyopathy. J Cell Mol Med 2025; 29:e70559. [PMID: 40264381 PMCID: PMC12015131 DOI: 10.1111/jcmm.70559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Sepsis-induced cardiomyopathy (SICM) is a complex and fatal manifestation of sepsis, characterised by myocardial dysfunction that exacerbates the clinical prognosis in septic patients. While the pathophysiology of SICM remains incompletely understood, emerging evidence highlights the multifaceted functions of exosomes, small membrane-bound extracellular vesicles, in mediating the inflammatory responses and cardiac dysfunction involved in this condition. During sepsis, exosomes are secreted by various cells, such as cardiomyocytes, endothelial cells and macrophages, which serve as critical messengers, transferring proteins, lipids and RNA molecules that influence recipient cells, thus affecting cellular functions and disease progression. This review summarises the pathophysiology of SICM and the basics of exosomes and focuses on exosome-mediated mechanisms in SICM, including their role in inflammation, oxidative stress, mitochondrial dysfunction and myocardial injury, offering novel insights into the exosome-based therapeutic strategies in SICM.
Collapse
Affiliation(s)
- Rui Fan
- Graduate SchoolHeilongjiang University of Chinese MedicineHarbinChina
| | - Han Liu
- Graduate SchoolUniversity College LondonLondonUK
| | - Qun Liang
- Department of Critical Care MedicineFirst Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| |
Collapse
|
2
|
do Nascimento MF, Ferreira LRP, Vieira Junior JM, Deheinzelin D, Aparecida Santos Nussbaum AC, Toshihiro Sakamoto LH, Vasconcelos RO, Salomao R, Waisberg J, Azevedo LCP, Chammas R, Real JM. Circulating extracellular vesicles as potential biomarkers and mediators of acute respiratory distress syndrome in sepsis. Sci Rep 2025; 15:5512. [PMID: 39953195 PMCID: PMC11829037 DOI: 10.1038/s41598-025-89783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
The early sequence of respiratory failure events after the onset of sepsis is still unknown. We hypothesize that the lung should signal through circulating extracellular vesicles (EVs) when it is affected by a systemic inflammatory response. Blood samples were obtained from septic patients with (n = 5) and without acute respiratory distress syndrome (ARDS) (n = 13) at 24 h of intensive care unit admission and 3 days later at Sírio-Libanês Hospital. Pulmonary-originated sepsis was not considered. The characteristics of the plasma-isolated EVs were compatible with exosomes. 48 miRNAs were evaluated by real-time PCR. Comparing all samples from patients with sepsis + ARDS to sepsis only, 9 miRNAs are transported in smaller amounts: miR-766 (-35.7, p = 0.002), miR-127 (-23.8, p = 0.001), miR-340 (-13.5, p = 0.006), miR-29b (-12.8, p = 0.001), miR-744 (-7.1, p = 0.05), miR-618 (-4.0, p = 0.02), miR-598 (-3.8, p = 0.035), miR-1260 (-2.5, p = 0.035); and miR-885-5p is expressed at higher levels (9.5; p = 0.028). In paired samples, the set of altered miRNAs is generally different (p < 0.05) between sepsis + ARDS (miR-1183,-1267,-1290,-17,-192,-199a-3p,-25,-485-3p,-518d,-720) or sepsis only (miR-148a,-193a-5p,-199a-3p,-222,-25,-340,744). Bioinformatic analysis showed that when sepsis is associated with ARDS, those differentially expressed miRNAs potentially target messenger RNAs from the Glycoprotein VI/GP6 signaling pathway. Circulating EV-miRNA cargo could be potential biomarkers of lung inflammation during sepsis in patients requiring mechanical ventilation.
Collapse
Affiliation(s)
- Marcelo Fernando do Nascimento
- Programa de pós-graduação em Ciências da Saúde, Instituto de Assistência Médica ao Servidor Público Estadual, São Paulo, Brasil
| | - Ludmila Rodrigues Pinto Ferreira
- RNA Systems Biology Laboratory, Departamento de morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | | | | | | | | - Reinaldo Salomao
- Departamento de Imunologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Jaques Waisberg
- Programa de pós-graduação em Ciências da Saúde, Instituto de Assistência Médica ao Servidor Público Estadual, São Paulo, Brasil
| | | | - Roger Chammas
- Instituto do Câncer do Estado de São Paulo, São Paulo, Brasil
| | - Juliana Monte Real
- Programa de pós-graduação em Ciências da Saúde, Instituto de Assistência Médica ao Servidor Público Estadual, São Paulo, Brasil.
- Instituto do Câncer do Estado de São Paulo, São Paulo, Brasil.
- Laboratório Neugen Soluções Diagnósticas, São Paulo, Brasil.
| |
Collapse
|
3
|
Lv K, Liang Q. Macrophages in sepsis-induced acute lung injury: exosomal modulation and therapeutic potential. Front Immunol 2025; 15:1518008. [PMID: 39840035 PMCID: PMC11746006 DOI: 10.3389/fimmu.2024.1518008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Sepsis-induced acute lung injury (ALI) remains a leading cause of mortality in critically ill patients. Macrophages, key modulators of immune responses, play a dual role in both promoting and resolving inflammation. Exosomes, small extracellular vesicles released by various cells, carry bioactive molecules that influence macrophage polarization and immune responses. Emerging researchers have identified exosomes as crucial mediators that modulate macrophage activity during sepsis-induced ALI. This review explores the role of exosomes in modulating macrophage functions, focusing on the cellular interactions within the lung microenvironment and their potential as therapeutic targets. It highlights the regulation of macrophages by exosomes derived from pathogenic germs, neutrophils, alveolar epithelial cells, and mesenchymal stromal cells. By understanding these mechanisms, it aims to uncover innovative therapeutic strategies for sepsis-induced ALI.
Collapse
Affiliation(s)
- Kaiying Lv
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qun Liang
- Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Wang J, Hu L, Zhang Z, Sui C, Zhu X, Wu C, Zhang L, Lv M, Yang W, Zhou D, Shang Z. Mice fatal pneumonia model induced by less-virulent Streptococcus pneumoniae via intratracheal aerosolization. Future Microbiol 2024; 19:1055-1070. [PMID: 38913747 PMCID: PMC11323861 DOI: 10.1080/17460913.2024.2355738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/26/2024] Open
Abstract
Aim: Animal models of fatal pneumonia caused by Streptococcus pneumoniae (Spn) have not been reliably generated using many strains of less virulent serotypes.Materials & methods: Pulmonary infection of a less virulent Spn serotype1 strain in the immunocompetent mice was established via the intratracheal aerosolization (ITA) route. The survival, local and systemic bacterial spread, pathological changes and inflammatory responses of this model were compared with those of mice challenged via the intratracheal instillation, intranasal instillation and intraperitoneal injection routes.Results: ITA and intratracheal instillation both induced fatal pneumonia; however, ITA resulted in better lung bacterial deposition and distribution, pathological homogeneity and delivery efficiency.Conclusion: ITA is an optimal route for developing animal models of severe pulmonary infections.
Collapse
Affiliation(s)
- Jiazhen Wang
- Department of Immunology of Basic Medical College, Guizhou Medical University, Guian New Area, 561113, China
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhijun Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chengyu Sui
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
- Department of Microbiology of Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xiaoyu Zhu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chengxi Wu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lili Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Meng Lv
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhengling Shang
- Department of Immunology of Basic Medical College, Guizhou Medical University, Guian New Area, 561113, China
| |
Collapse
|
5
|
Gebeyehu GM, Rashidiani S, Farkas B, Szabadi A, Brandt B, Pap M, Rauch TA. Unveiling the Role of Exosomes in the Pathophysiology of Sepsis: Insights into Organ Dysfunction and Potential Biomarkers. Int J Mol Sci 2024; 25:4898. [PMID: 38732114 PMCID: PMC11084308 DOI: 10.3390/ijms25094898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are tools for intercellular communication, mediating molecular transport processes. Emerging studies have revealed that EVs are significantly involved in immune processes, including sepsis. Sepsis, a dysregulated immune response to infection, triggers systemic inflammation and multi-organ dysfunction, posing a life-threatening condition. Although extensive research has been conducted on animals, the complex inflammatory mechanisms that cause sepsis-induced organ failure in humans are still not fully understood. Recent studies have focused on secreted exosomes, which are small extracellular vesicles from various body cells, and have shed light on their involvement in the pathophysiology of sepsis. During sepsis, exosomes undergo changes in content, concentration, and function, which significantly affect the metabolism of endothelia, cardiovascular functions, and coagulation. Investigating the role of exosome content in the pathogenesis of sepsis shows promise for understanding the molecular basis of human sepsis. This review explores the contributions of activated immune cells and diverse body cells' secreted exosomes to vital organ dysfunction in sepsis, providing insights into potential molecular biomarkers for predicting organ failure in septic shock.
Collapse
Affiliation(s)
- Gizaw Mamo Gebeyehu
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| | - Shima Rashidiani
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| | - Benjámin Farkas
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| | - András Szabadi
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, 7623 Pécs, Hungary;
| | - Barbara Brandt
- Hungary Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.B.); (M.P.)
| | - Marianna Pap
- Hungary Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.B.); (M.P.)
| | - Tibor A. Rauch
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| |
Collapse
|
6
|
Ma X, Chen Z, Chen W, Chen Z, Shang Y, Zhao Y, Li L, Zhou C, He J, Meng X. LncRNA AL139294.1 can be transported by extracellular vesicles to promote the oncogenic behaviour of recipient cells through activation of the Wnt and NF-κB2 pathways in non-small-cell lung cancer. J Exp Clin Cancer Res 2024; 43:20. [PMID: 38229152 DOI: 10.1186/s13046-023-02939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) participate in cancer development via cell-to-cell communication. Long non-coding RNAs (lncRNAs), one component of EVs, can play an essential role in non-small-cell lung cancer (NSCLC) through EV-mediated delivery. METHODS The NSCLC-associated lncRNA AL139294.1 in EVs was identified via lncRNA microarray analysis. The role of AL139294.1 in NSCLC was examined in vitro and in vivo. Confocal microscopy was used to observe the encapsulation of AL139294.1 into EVs and its transport to recipient cells. A co-culture device was used to examine the effects of transported AL139294.1 on the oncogenic behaviour of recipient cells. Dual-luciferase reporter assay was performed to verify the direct interaction of miR-204-5p with AL139294.1 and bromodomain-containing protein 4 (BRD4). AL139294.1 and miR-204-5p in EVs were quantified using quantitative polymerase chain reaction. Receiver operating characteristic analyses were conducted to evaluate the diagnostic efficiency. RESULTS The lncRNA AL139294.1 in EVs promoted NSCLC progression in vitro and in vivo. After AL139294.1 was encapsulated into EVs and transported to recipient cells, it promoted the cells' proliferation, migration, and invasion abilities by competitively binding with miR-204-5p to regulate BRD4, leading to the activation of the Wnt and NF-κB2 pathways. Additionally, the expression of serum lncRNA AL139294.1 in EVs was increased, whereas miR-204-5p in EVs was decreased in NSCLC. High levels of lncRNA AL139294.1 and low levels of miR-204-5p in EVs were associated with advanced pathological staging, lymph node metastasis, and distant metastasis, underscoring their promising utility for distinguishing between more and less severe manifestations of the disease. CONCLUSIONS This study reveals a novel lncRNA in EVs associated with NSCLC, namely, AL139294.1, providing valuable insights into the development of NSCLC and introducing potential diagnostic biomarkers for NSCLC.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhenhua Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Ziyuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Yue Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yikai Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Leyi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Jinxian He
- Department of Thoracic Surgery, The Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315048, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China.
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
7
|
A J, S S S, K S, T S M. Extracellular vesicles in bacterial and fungal diseases - Pathogenesis to diagnostic biomarkers. Virulence 2023; 14:2180934. [PMID: 36794396 PMCID: PMC10012962 DOI: 10.1080/21505594.2023.2180934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Intercellular communication among microbes plays an important role in disease exacerbation. Recent advances have described small vesicles, termed as "extracellular vesicles" (EVs), previously disregarded as "cellular dust" to be vital in the intracellular and intercellular communication in host-microbe interactions. These signals have been known to initiate host damage and transfer of a variety of cargo including proteins, lipid particles, DNA, mRNA, and miRNAs. Microbial EVs, referred to generally as "membrane vesicles" (MVs), play a key role in disease exacerbation suggesting their importance in pathogenicity. Host EVs help coordinate antimicrobial responses and prime the immune cells for pathogen attack. Hence EVs with their central role in microbe-host communication, may serve as important diagnostic biomarkers of microbial pathogenesis. In this review, we summarize current research regarding the roles of EVs as markers of microbial pathogenesis with specific focus on their interaction with host immune defence and their potential as diagnostic biomarkers in disease conditions.
Collapse
Affiliation(s)
- Jnana A
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sadiya S S
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Satyamoorthy K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Murali T S
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
8
|
Jiao Y, Zhang T, Liu M, Zhou L, Qi M, Xie X, Shi X, Gu X, Ma Z. Exosomal PGE2 from M2 macrophages inhibits neutrophil recruitment and NET formation through lipid mediator class switching in sepsis. J Biomed Sci 2023; 30:62. [PMID: 37533081 PMCID: PMC10394797 DOI: 10.1186/s12929-023-00957-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Excess polymorphonuclear neutrophil (PMN) recruitment or excessive neutrophil extracellular trap (NET) formation can lead to the development of multiple organ dysfunction during sepsis. M2 macrophage-derived exosomes (M2-Exos) have exhibited anti-inflammatory activities in some inflammatory diseases to mediate organ functional protection, but their role in treating sepsis-related acute lung injury (ALI) remains unclear. In this study, we sought to investigate whether M2-Exos could prevent potentially deleterious inflammatory effects during sepsis-related ALI by modulating abnormal PMN behaviours. METHODS C57BL/6 wild-type mice were subjected to a caecal ligation and puncture (CLP) mouse model to mimic sepsis in vivo, and M2-Exos were administered intraperitoneally 1 h after CLP. H&E staining, immunofluorescence and immunohistochemistry were conducted to investigate lung tissue injury, PMN infiltration and NET formation in the lung. We further demonstrated the role of M2-Exos on PMN function and explored the potential mechanisms through an in vitro coculture experiment using PMNs isolated from both healthy volunteers and septic patients. RESULTS Here, we report that M2-Exos inhibited PMN migration and NET formation, alleviated lung injury and reduced mortality in a sepsis mouse model. In vitro, M2-Exos significantly decreased PMN migration and NET formation capacity, leading to lipid mediator class switching from proinflammatory leukotriene B4 (LTB4) to anti-inflammatory lipoxin A4 (LXA4) by upregulating 15-lipoxygenase (15-LO) expression in PMNs. Treatment with LXA4 receptor antagonist attenuated the effect of M2-Exos on PMNs and lung injury. Mechanistically, prostaglandin E2 (PGE2) enriched in M2-Exos was necessary to increase 15-LO expression in PMNs by functioning on the EP4 receptor, upregulate LXA4 production to downregulate chemokine (C-X-C motif) receptor 2 (CXCR2) and reactive oxygen species (ROS) expressions, and finally inhibit PMN function. CONCLUSIONS Our findings reveal a previously unknown role of M2-Exos in regulating PMN migration and NET formation through lipid mediator class switching, thus highlighting the potential application of M2-Exos in controlling PMN-mediated tissue injury in patients with sepsis.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Ti Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Mei Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Luyang Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Mengzhi Qi
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Xie
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xueyin Shi
- Department of Anesthesiology and Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
9
|
Homma K, Bazhanov N, Hashimoto K, Shimizu M, Heathman T, Hao Q, Nawgiri R, Muthukumarana V, Lee JW, Prough DS, Enkhbaatar P. Mesenchymal stem cell-derived exosomes for treatment of sepsis. Front Immunol 2023; 14:1136964. [PMID: 37180159 PMCID: PMC10169690 DOI: 10.3389/fimmu.2023.1136964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction The pathogenesis of sepsis is an imbalance between pro-inflammatory and anti-inflammatory responses. At the onset of sepsis, the lungs are severely affected, and the injury progresses to acute respiratory distress syndrome (ARDS), with a mortality rate of up to 40%. Currently, there is no effective treatment for sepsis. Cellular therapies using mesenchymal stem cells (MSCs) have been initiated in clinical trials for both ARDS and sepsis based on a wealth of pre-clinical data. However, there remains concern that MSCs may pose a tumor risk when administered to patients. Recent pre-clinical studies have demonstrated the beneficial effects of MSC-derived extracellular vesicles (EVs) for the treatment of acute lung injury (ALI) and sepsis. Methods After recovery of initial surgical preparation, pneumonia/sepsis was induced in 14 adult female sheep by the instillation of Pseudomonas aeruginosa (~1.0×1011 CFU) into the lungs by bronchoscope under anesthesia and analgesia. After the injury, sheep were mechanically ventilated and continuously monitored for 24 h in a conscious state in an ICU setting. After the injury, sheep were randomly allocated into two groups: Control, septic sheep treated with vehicle, n=7; and Treatment, septic sheep treated with MSC-EVs, n=7. MSC-EVs infusions (4ml) were given intravenously one hour after the injury. Results The infusion of MSCs-EVs was well tolerated without adverse events. PaO2/FiO2 ratio in the treatment group tended to be higher than the control from 6 to 21 h after the lung injury, with no significant differences between the groups. No significant differences were found between the two groups in other pulmonary functions. Although vasopressor requirement in the treatment group tended to be lower than in the control, the net fluid balance was similarly increased in both groups as the severity of sepsis progressed. The variables reflecting microvascular hyperpermeability were comparable in both groups. Conclusion We have previously demonstrated the beneficial effects of bone marrow-derived MSCs (10×106 cells/kg) in the same model of sepsis. However, despite some improvement in pulmonary gas exchange, the present study demonstrated that EVs isolated from the same amount of bone marrow-derived MSCs failed to attenuate the severity of multiorgan dysfunctions.
Collapse
Affiliation(s)
- Kento Homma
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nikolay Bazhanov
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kazuki Hashimoto
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Masaru Shimizu
- Department of Anesthesiology, University of California, San Francisco, CA, United States
| | - Thomas Heathman
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Qi Hao
- Department of Anesthesiology, University of California, San Francisco, CA, United States
| | - Ranjana Nawgiri
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Vidarshi Muthukumarana
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jae Woo Lee
- Department of Anesthesiology, University of California, San Francisco, CA, United States
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
10
|
Areny-Balagueró A, Solé-Porta A, Camprubí-Rimblas M, Campaña-Duel E, Ceccato A, Roig A, Closa D, Artigas A. Bioengineered extracellular vesicles: future of precision medicine for sepsis. Intensive Care Med Exp 2023; 11:11. [PMID: 36894763 PMCID: PMC9998145 DOI: 10.1186/s40635-023-00491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/01/2023] [Indexed: 03/11/2023] Open
Abstract
Sepsis is a syndromic response to infection and is frequently a final common pathway to death from many infectious diseases worldwide. The complexity and high heterogeneity of sepsis hinder the possibility to treat all patients with the same protocol, requiring personalized management. The versatility of extracellular vesicles (EVs) and their contribution to sepsis progression bring along promises for one-to-one tailoring sepsis treatment and diagnosis. In this article, we critically review the endogenous role of EVs in sepsis progression and how current advancements have improved EVs-based therapies toward their translational future clinical application, with innovative strategies to enhance EVs effect. More complex approaches, including hybrid and fully synthetic nanocarriers that mimic EVs, are also discussed. Several pre-clinical and clinical studies are examined through the review to offer a general outlook of the current and future perspectives of EV-based sepsis diagnosis and treatment.
Collapse
Affiliation(s)
- Aina Areny-Balagueró
- Institut d’Investigació i Innovació Parc Taulí (I3PT), Parc Taulí Hospital Universitari, 08208 Sabadell, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna Solé-Porta
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Marta Camprubí-Rimblas
- Institut d’Investigació i Innovació Parc Taulí (I3PT), Parc Taulí Hospital Universitari, 08208 Sabadell, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Present Address: Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias, CIBERES-Instituto De Salud Carlos III, 28029 Madrid, Spain
| | - Elena Campaña-Duel
- Institut d’Investigació i Innovació Parc Taulí (I3PT), Parc Taulí Hospital Universitari, 08208 Sabadell, Spain
| | - Adrián Ceccato
- Institut d’Investigació i Innovació Parc Taulí (I3PT), Parc Taulí Hospital Universitari, 08208 Sabadell, Spain
- Present Address: Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias, CIBERES-Instituto De Salud Carlos III, 28029 Madrid, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Daniel Closa
- Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Antonio Artigas
- Institut d’Investigació i Innovació Parc Taulí (I3PT), Parc Taulí Hospital Universitari, 08208 Sabadell, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Present Address: Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias, CIBERES-Instituto De Salud Carlos III, 28029 Madrid, Spain
- Servei de Medicina Intensiva, Corporació Sanitària i Universitària Parc Taulí, 08208 Sabadell, Spain
| |
Collapse
|