1
|
Bakhtiyaridovvombaygi M, Yazdanparast S, Kheyrandish S, Safdari SM, Amiri Samani F, Sohani M, Jaafarian AS, Damirchiloo F, Izadpanah A, Parkhideh S, Mikanik F, Roshandel E, Hajifathali A, Gharehbaghian A. Harnessing natural killer cells for refractory/relapsed non-Hodgkin lymphoma: biological roles, clinical trials, and future prospective. Biomark Res 2024; 12:66. [PMID: 39020411 PMCID: PMC11253502 DOI: 10.1186/s40364-024-00610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Non-Hodgkin lymphomas (NHLs) are heterogeneous and are among the most common hematological malignancies worldwide. Despite the advances in the treatment of patients with NHLs, relapse or resistance to treatment is anticipated in several patients. Therefore, novel therapeutic approaches are needed. Recently, natural killer (NK) cell-based immunotherapy alone or in combination with monoclonal antibodies, chimeric antigen receptors, or bispecific killer engagers have been applied in many investigations for NHL treatment. The functional defects of NK cells and the ability of cancerous cells to escape NK cell-mediated cytotoxicity within the tumor microenvironment of NHLs, as well as the beneficial results from previous studies in the context of NK cell-based immunotherapy in NHLs, direct our attention to this therapeutic strategy. This review aims to summarize clinical studies focusing on the applications of NK cells in the immunotherapy of patients with NHL.
Collapse
Affiliation(s)
- Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanparast
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Amiri Samani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mahsa Sohani
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Sadat Jaafarian
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Damirchiloo
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Gharehbaghian
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Strzelec A, Helbig G. Are we ready for personalized CAR-T therapy? Eur J Haematol 2024; 112:174-183. [PMID: 37431655 DOI: 10.1111/ejh.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
The future of chimeric antigen receptor T (CAR-T) therapy remains unclear. New studies are constantly being published confirming the efficacy and favorable safety profile of its innovative enhancements. Currently approved CAR-T drugs are manufactured exclusively for a specific patient from the recipient's own cells. This does not close the door to further modifications with subsequent personalization and better adaptation to the individual needs. Bringing such a drug to market would involve raising the already high costs, so it is necessary to lower the existing ones. On the other hand, so-called universal CAR-T are also getting closer to the patient's bed, but its implementation may struggle with multiple challenges, including development of graft-versus-host disease (GvHD) and alloimmunity. However, that off-the-shelf therapy could prove useful as a quick solution for patients in very poor condition or excluded from current therapy due to manufacturing limitations. The introduction of currently tested solutions may undoubtedly change the current paradigm of treatment.
Collapse
Affiliation(s)
- Anna Strzelec
- Department of Hematology and Bone Marrow Transplantation, Faculty of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, Faculty of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
3
|
Brooks TR, Caimi PF. A paradox of choice: Sequencing therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Rev 2024; 63:101140. [PMID: 37949705 DOI: 10.1016/j.blre.2023.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The available treatments for relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) have experienced a dramatic change since 2017. Incremental advances in basic and translational science over several decades have led to innovations in immune-oncology. These innovations have culminated in eight separate approvals by the US Food and Drug Administration for the treatment of patients with R/R DLBCL over the last 10 years. High-dose therapy and autologous stem cell transplant (HDT-ASCT) remains the standard of care for transplant-eligible patients who relapse after an initial remission. For transplant-ineligible patients or for those who relapse following HDT-ASCT, multiple options exist. Monoclonal antibodies targeting CD19, antibody-drug conjugates, bispecific antibodies, immune effector cell products, and other agents with novel mechanisms of action are now available for patients with R/R DLBCL. There is increasing use of chimeric antigen receptor (CAR) T-cells as second-line therapy for patients with early relapse of DLBCL or those who are refractory to initial chemoimmunotherapy. The clinical benefits of these strategies vary and are influenced by patient and disease characteristics, as well as the type of prior therapy administered. Therefore, there are multiple clinical scenarios that clinicians might encounter when treating R/R DLBCL. An optimal sequence of drugs has not been established, and there is no evidence-based consensus on how to best order these agents. This abundance of choices introduces a paradox: proliferating treatment options are initially a boon to patients and providers, but as choices grow further they no longer liberate. Rather, more choices make the management of R/R DLBCL more challenging due to lack of direct comparisons among agents and a desire to maximize patient outcomes. Here, we provide a review of recently-approved second- and subsequent-line agents, summarize real-world data detailing the use of these medicines, and provide a framework for sequencing therapy in R/R DLBCL.
Collapse
Affiliation(s)
- Taylor R Brooks
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, OH, United States of America
| | - Paolo F Caimi
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, OH, United States of America; Case Comprehensive Cancer Center, Cleveland, OH, United States of America.
| |
Collapse
|
4
|
Nagamura-Inoue T, Nagamura F. Umbilical cord blood and cord tissue banking as somatic stem cell resources to support medical cell modalities. Inflamm Regen 2023; 43:59. [PMID: 38053217 PMCID: PMC10696687 DOI: 10.1186/s41232-023-00311-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Human umbilical cord blood (CB) and umbilical cord tissue (UC) are attractive sources of somatic stem cells for gene and cell therapies. CB and UC can be obtained noninvasively from donors. CB, a known source of hematopoietic stem cells for transplantation, has attracted attention as a new source of immune cells, including universal chimeric antigen receptor-T cell therapy (CAR-T) and, more recently, universal CAR-natural killer cells. UC-derived mesenchymal stromal cells (UC-MSCs) have a higher proliferation potency than those derived from adult tissues and can be used anon-HLA restrictively. UC-MSCs meet the MSC criteria outlined by the International Society of Gene and Cellular Therapy. UC-MSCs are negative for HLA-DR, CD80, and CD86 and have an immunosuppressive ability that mitigates the proliferation of activated lymphocytes through secreting indoleamine 2,3-dioxygenase 1 and prostaglandin E2, and the expression of PD-L2 and PD-L1. We established the off-the-shelf cord blood/cord bank IMSUT CORD to support novel cell therapy modalities, including the CB-derived immune cells, MSCs, MSCs-derived extracellular vesicles, biological carriers loaded with chemotherapy drugs, prodrug, oncolytic viruses, nanoparticles, human artificial chromosome, combinational products with a scaffold, bio3D printing, and so on.
Collapse
Affiliation(s)
- Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Fumitaka Nagamura
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Advanced Medicine Promotion, The Advanced Clinical Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Kumar V, Mahato RI. Natural killer cells for pancreatic cancer immunotherapy: Role of nanoparticles. Cancer Lett 2023; 579:216462. [PMID: 37924937 PMCID: PMC10842153 DOI: 10.1016/j.canlet.2023.216462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Advanced pancreatic cancer patients have a dismal prognosis despite advances in integrative therapy. The field of tumor immunology has witnessed significant advancements for cancer treatment. However, immunotherapy for pancreatic cancer is not very effective due to its highly complex tumor microenvironment (TME). Natural killer (NK) cells are lymphocytes that play an important role in the innate immune system. NK cells do not require antigen pre-sensitization, nor are they confined by the major histocompatibility complex (MHC). NK cells have the potential to eliminate cancer cells through CAR-dependent and CAR-independent pathways, demonstrating reduced levels of systemic toxicity in the process. The availability of several potential sources of NK cells is an additional benefit that contributes to meeting the therapeutic criteria. Adding nanotechnology to enhance the functions of effector NK cells is also an appealing strategy. This article primarily discusses various approaches recently been utilized to enhance the NK functions for the treatment of pancreatic cancer. In addition, new advances in boosting NK cell therapeutic efficacy by nanoparticle mediation are presented, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|