1
|
Zhou Y, Su Y, Xu Y, Shi M. Editorial: Immunotherapy for hematological malignancies in children. Front Pediatr 2023; 11:1315218. [PMID: 37954428 PMCID: PMC10634529 DOI: 10.3389/fped.2023.1315218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Affiliation(s)
- Yusi Zhou
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Yang Su
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Yutong Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Xie J, Liu S, Zhou M, Wang Y, He H, Xiao P, Hu S, Lu J. Short-course blinatumomab for refractory/relapse precursor B acute lymphoblastic leukemia in children. Front Pediatr 2023; 11:1187607. [PMID: 37601130 PMCID: PMC10437063 DOI: 10.3389/fped.2023.1187607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Objective To evaluate the clinical efficacy and safety of a short course of blinatumomab in children with refractory or relapsed precursor B-cell acute lymphoblastic leukemia (R/R-BCP-ALL). Methods The clinical data of 33 R/R BCP-ALL children aged 0-18 years who underwent a short course of blinatumomab (14 days) between August 2021 and November 2022 were retrospectively collected and analyzed. Results Among 33 patients with BCP-ALL, 26 achieved complete remission (CR), with a total remission rate of 78.8% (26/33). The duration of remission was approximately 14 days. Of the 7 children without CR, 5 were still in remission at 28 days. In 11 patients with refractory disease and 22 with recurrence, the remission rates were 90.9% (10/11) and 72.7% (16/22), respectively. The overall survival (OS) rates of the 26 patients with CR and seven patients without CR were 96.1% and 57.1% (p = 0.002), respectively, and the disease-free survival (DFS) rates were 96.1% and 42.9% (p < 0.001), respectively. Among the 26 patients with CR, 15 underwent bridging hematopoietic stem cell transplantation (HSCT) and 11 did not receive HSCT; with OS rates of 93.3% and 100% (p = 0.40) and DFS rates of 93.3% and 100% (p = 0.400), respectively. The OS for all patients was 87.9% (29/33) and the DFS was 84.8% (28/33). There were 18 cases (54.5%) of cytokine release syndrome (CRS), 2 cases (6.1%) of severe CRS (all grade 3), 1 case (3.0%) of immune effector cell-associated neurotoxicity syndrome (ICANS), 0 cases (0%) of ICANS ≥ grade 3, and no deaths caused by treatment. Conclusions Short-term follow-up revealed a high R/R BCP-ALL remission rate in children treated with a short course of blinatumomab. The toxicity was low and controllable. No significant short-term survival benefits were observed after bridging HSCT with blinatumomab. In developing countries, a short course of blinatumomab can achieve satisfactory outcomes, while reducing household costs and saving medical resources.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shaoyan Hu
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Outcomes and endpoints in clinical trials supporting the marketing authorisation of treatments in paediatric acute lymphoblastic leukaemia. Drug Discov Today 2022; 27:2440-2466. [PMID: 35597514 DOI: 10.1016/j.drudis.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
The improvement in acute lymphoblastic leukaemia (ALL) treatment has led research efforts to focus on the unmet medical needs of an increasingly smaller patient cohort with resistant leukaemia and to develop more-targeted agents. Survival and response rates remain the most-prevalent endpoints in paediatric ALL research, but other intermediate clinical endpoints and molecular biomarkers for efficacy and mid- and long-term safety endpoints are also being investigated. The success of current ALL treatment appears to be driving new paradigms to optimise clinical drug development, while at the same time, regulatory tools in place are supporting meaningful drug development in the area.
Collapse
|
4
|
Abstract
Background: Acute lymphoblastic leukemia (ALL) is a malignant disease characterized by an excessive number of immature lymphocytes, including immature precursors of both B- and T cells. ALL affects children more often than adults. Immature lymphocytes lead to arrested differentiation and proliferation of cells. Its conventional treatments involve medication with dexamethasone, vincristine, and other anticancer drugs. Although the current first-line drugs can achieve effective treatment, they still cannot prevent the recurrence of some patients with ALL. Treatments have high risk of recurrence especially after the first remission. Currently, novel therapies to treat ALL are in need. Autophagy and apoptosis play important roles in regulating cancer development. Autophagy involves degradation of proteins and organelles, and apoptosis leads to cell death. These phenomena are crucial in cancer progression. Past studies reported that many potential anticancer agents regulate intracellular signaling pathways. Methods: The authors discuss the recent research findings on the role of autophagy and apoptosis in ALL. Results: The autophagy and apoptosis are widely used in the treatment of ALL. Most studies showed that many agents regulate autophagy and apoptosis in ALL cell models, clinical trials, and ALL animal models. Conclusions: In summary, activating autophagy and apoptosis pathways are the main strategies for ALL treatments. For ALL, combining new drugs with traditional chemotherapy and glucocorticoids treatments can achieve the greatest therapeutic effect by activating autophagy and apoptosis.
Collapse
Affiliation(s)
- Fang-Liang Huang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan, ROC.,Department of Physical Therapy, Hungkuang University, Taichung, Taiwan, ROC.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan, ROC
| | - Sheng-Jie Yu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Chia-Ling Li
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
5
|
Mihăilă RG. Monoclonal Antibodies, Bispecific Antibodies and Antibody-Drug Conjugates in Oncohematology. Recent Pat Anticancer Drug Discov 2020; 15:272-292. [DOI: 10.2174/1574892815666200925120717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Background:
The therapeutic outcomes and the prognosis of patients with various hematologic
malignancies are not always ideal with the current standard of care.
Objective:
The aim of this study is to analyze the results of the use of monoclonal antibodies, bispecific
antibodies and antibody-drug conjugates for the therapy of malignant hemopathies.
Methods:
A mini-review was achieved using the articles published in Web of Science and PubMed
between January 2017 and January 2020 and the new patents were made in this field.
Results:
Naked monoclonal antibodies have improved the therapeutic results obtained with standard
of care, but they also have side effects and the use of some of them can lead to the loss of the
target antigen through trogocytosis, which explains the resistance that occurs during therapy. The
results obtained with naked monoclonal antibodies have been improved by a better monoclonal
antibody preparation, the use of bispecific antibodies (against two antigens on the target cell surface
or by binding both surface antigen on target cells and T-cell receptor complex, followed by cytotoxic
T-lymphocytes activation and subsequent cytolysis of the target cell), the use of monoclonal
or bispecific constructs in frontline regimens, combining immunotherapy with chemotherapy, including
through the use of antibody-drug conjugates (which provides a targeted release of a chemotherapeutic
agent).
Conclusion:
Immunotherapy and immuno-chemotherapy have improved the outcome of the patients
with malignant hemopathies through a targeted, personalized therapy, with reduced systemic
toxicity, which in some cases can even induce deep complete remissions, including minimal residual
disease negativity.
Collapse
Affiliation(s)
- Romeo G. Mihăilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Hematology Department, Emergency County Clinical Hospital Sibiu, Sibiu 550169, Romania
| |
Collapse
|
6
|
Jasinski S, De Los Reyes FA, Yametti GC, Pierro J, Raetz E, Carroll WL. Immunotherapy in Pediatric B-Cell Acute Lymphoblastic Leukemia: Advances and Ongoing Challenges. Paediatr Drugs 2020; 22:485-499. [PMID: 32860590 PMCID: PMC7537790 DOI: 10.1007/s40272-020-00413-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leukemia, most commonly B-cell acute lymphoblastic leukemia (B-ALL), accounts for about 30% of childhood cancer diagnoses. While there have been dramatic improvements in childhood ALL outcomes, certain subgroups-particularly those who relapse-fare poorly. In addition, cure is associated with significant short- and long-term side effects. Given these challenges, there is great interest in novel, targeted approaches to therapy. A number of new immunotherapeutic agents have proven to be efficacious in relapsed or refractory disease and are now being investigated in frontline treatment regimens. Blinatumomab (a bispecific T-cell engager that targets cluster of differentiation [CD]-19) and inotuzumab ozogamicin (a humanized antibody-drug conjugate to CD22) have shown the most promise. Chimeric antigen receptor T (CAR-T) cells, a form of adoptive immunotherapy, rely on the transfer of genetically modified effector T cells that have the potential to persist in vivo for years, providing ongoing long-term disease control. In this article, we discuss the clinical biology and treatment of B-ALL with an emphasis on the role of immunotherapy in overcoming the challenges of conventional cytotoxic therapy. As immunotherapy continues to move into the frontline of pediatric B-ALL therapy, we also discuss strategies to address unique side effects associated with these agents and efforts to overcome mechanisms of resistance to immunotherapy.
Collapse
Affiliation(s)
- Sylwia Jasinski
- Perlmutter Cancer Center, Smilow 1211, Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, 560 First Avenue, New York, NY, 10016, USA
| | | | - Gloria Contreras Yametti
- Perlmutter Cancer Center, Smilow 1211, Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, 560 First Avenue, New York, NY, 10016, USA
| | - Joanna Pierro
- Perlmutter Cancer Center, Smilow 1211, Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, 560 First Avenue, New York, NY, 10016, USA
| | - Elizabeth Raetz
- Perlmutter Cancer Center, Smilow 1211, Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, 560 First Avenue, New York, NY, 10016, USA
| | - William L Carroll
- Perlmutter Cancer Center, Smilow 1211, Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, 560 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
7
|
Engelberts PJ, Hiemstra IH, de Jong B, Schuurhuis DH, Meesters J, Beltran Hernandez I, Oostindie SC, Neijssen J, van den Brink EN, Horbach GJ, Verploegen S, Labrijn AF, Salcedo T, Schuurman J, Parren PWHI, Breij ECW. DuoBody-CD3xCD20 induces potent T-cell-mediated killing of malignant B cells in preclinical models and provides opportunities for subcutaneous dosing. EBioMedicine 2020; 52:102625. [PMID: 31981978 PMCID: PMC6992935 DOI: 10.1016/j.ebiom.2019.102625] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022] Open
Abstract
Background DuoBody®-CD3xCD20 (GEN3013) is a full-length human IgG1 bispecific antibody (bsAb) recognizing CD3 and CD20, generated by controlled Fab-arm exchange. Its Fc domain was silenced by introduction of mutations L234F L235E D265A. Methods T-cell activation and T-cell-mediated cytotoxicity were measured by flow cytometry following co-culture with tumour cells. Anti-tumour activity of DuoBody-CD3xCD20 was assessed in humanized mouse models in vivo. Non-clinical safety studies were performed in cynomolgus monkeys. Findings DuoBody-CD3xCD20 induced highly potent T-cell activation and T-cell-mediated cytotoxicity towards malignant B cells in vitro. Comparison of DuoBody-CD3xCD20 to CD3 bsAb targeting alternative B-cell antigens, or to CD3xCD20 bsAb generated using alternative CD20 Ab, emphasized its exceptional potency. In vitro comparison with other CD3xCD20 bsAb in clinical development showed that DuoBody-CD3xCD20 was significantly more potent than three other bsAb with single CD3 and CD20 binding regions and equally potent as a bsAb with a single CD3 and two CD20 binding regions. DuoBody-CD3xCD20 showed promising anti-tumour activity in vivo, also in the presence of excess levels of a CD20 Ab that competes for binding. In cynomolgus monkeys, DuoBody-CD3xCD20 demonstrated profound and long-lasting B-cell depletion from peripheral blood and lymphoid organs, which was comparable after subcutaneous and intravenous administration. Peak plasma levels of DuoBody-CD3xCD20 were lower and delayed after subcutaneous administration, which was associated with a reduction in plasma cytokine levels compared to intravenous administration, while bioavailability was comparable. Interpretation Based on these preclinical studies, a clinical trial was initiated to assess the clinical safety of subcutaneous DuoBody-CD3xCD20 in patients with B-cell malignancies. Funding Genmab
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibody Specificity/immunology
- Antibody-Dependent Cell Cytotoxicity
- Antigens, CD20/metabolism
- Antineoplastic Agents, Immunological/pharmacology
- CD3 Complex/metabolism
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Humans
- Leukemia, B-Cell/drug therapy
- Leukemia, B-Cell/etiology
- Leukemia, B-Cell/pathology
- Lymphocyte Activation/immunology
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/pathology
- Macaca fascicularis
- Mice
- Mutation
- Recombinant Proteins
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | | | | | | | | | - Simone C Oostindie
- Genmab, Utrecht, The Netherlands; Dept of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | - Paul W H I Parren
- Genmab, Utrecht, The Netherlands; Dept of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
8
|
Smith JD, Cardwell LN, Porciani D, Nguyen JA, Zhang R, Gallazzi F, Tata RR, Burke DH, Daniels MA, Ulery BD. Aptamer-displaying peptide amphiphile micelles as a cell-targeted delivery vehicle of peptide cargoes. Phys Biol 2018; 15:065006. [PMID: 30124431 DOI: 10.1088/1478-3975/aadb68] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Peptide amphiphile micelles (PAMs) are attractive vehicles for the delivery of a variety of therapeutic and prophylactic peptides. However, a key limitation of PAMs is their lack of preferential targeting ability. In this paper, we describe our design of a PAM system that incorporates a DNA oligonucleotide amphiphile (antitail amphiphile-AA) to form A/PAMs. A cell-targeting DNA aptamer with a 3' extension sequence (tail) complementary to the AA is annealed to the surface to form aptamer-displaying PAMs (Aptamer~A/PAMs). Aptamer~A/PAMs are small, anionic, stable nanoparticles capable of delivering a large mass percentage peptide amphiphile (PA) compared to targeting DNA components. Aptamer~A/PAMs are stable for over 4 h in the presence of biological fluids. Additionally, the aptamer retains its cell-targeting properties when annealed to the A/PAM, thus leading to enhanced delivery to a specifically-targeted B-cell leukemia cell line. This exciting modular technology can be readily used with a library of different targeting aptamers and PAs, capable of improving the bioavailability and potency of the peptide cargo.
Collapse
Affiliation(s)
- Josiah D Smith
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ribera JM. Efficacy and safety of bispecific T-cell engager blinatumomab and the potential to improve leukemia-free survival in B-cell acute lymphoblastic leukemia. Expert Rev Hematol 2017; 10:1057-1067. [PMID: 29082835 DOI: 10.1080/17474086.2017.1396890] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Immunotherapy is a promising modality of treatment of neoplastic diseases, including acute lymphoblastic leukemia (ALL). The CD19/CD3-bispecific T cell-engaging (BiTE®) monoclonal antibody blinatumomab can transiently bind cytotoxic T cells to CD19+ target B cells of ALL inducing their serial lysis. Areas covered: This review focuses on the efficacy and safety of blinatumomab used for the treatment of relapsed/refractory (R/R) ALL and minimal residual disease (MRD)-positive B-cell precursor (BCP) ALL in adults and children, as well as the future prospects of this drug in the treatment of ALL. Expert commentary: Blinatumomab has demonstrated encouraging response rates in MRD-positive and R/R in adults with Philadelphia chromosome-positive and -negative ALL, as well as in children with R/R ALL. Blinatumomab has a favorable safety profile, although reversible CNS events and cytokine release syndrome can occur. Ongoing trials in ALL incorporate blinatumomab in the first line therapy of BCP ALL in combination with chemotherapy, targeted therapies or other immunotherapies with the aim of increasing the depth of the remission and decreasing the probability of relapse.
Collapse
Affiliation(s)
- Josep-Maria Ribera
- a Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Jose Carreras Research Institute, Badalona , Universitat Autonoma de Barcelona , Spain
| |
Collapse
|
10
|
Williams BA, Law AD, Routy B, denHollander N, Gupta V, Wang XH, Chaboureau A, Viswanathan S, Keating A. A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy. Oncotarget 2017; 8:89256-89268. [PMID: 29179517 PMCID: PMC5687687 DOI: 10.18632/oncotarget.19204] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022] Open
Abstract
Background Autologous NK cell therapy can treat a variety of malignancies, but is limited by patient-specific variations in potency and cell number expansion. In contrast, allogeneic NK cell lines can overcome many of these limitations. Cells from the permanent NK-92 line are constitutively activated, lack inhibitory receptors and appear to be safe based on two prior phase I trials. Materials and Methods We conducted a single-center, non-randomized, non-blinded, open-label, Phase I dose-escalation trial of irradiated NK-92 cells in adults with refractory hematological malignancies who relapsed after autologous hematopoietic cell transplantation (AHCT). The objectives were to determine safety, feasibility and evidence of activity. Patients were treated at one of three dose levels (1 × 109 cells/m2, 3 × 109 cells/m2 and 5 × 109 cells/m2), given on day 1, 3 and 5 for a planned total of six monthly cycles. Results Twelve patients with lymphoma or multiple myeloma who relapsed after AHCT for relapsed/refractory disease were enrolled in this trial. The treatment was well tolerated, with minor toxicities restricted to acute infusional events, including fever, chills, nausea and fatigue. Two patients achieved a complete response (Hodgkin lymphoma and multiple myeloma), two patients had minor responses and one had clinical improvement on the trial. Conclusions Irradiated NK-92 cells can be administered at very high doses with minimal toxicity in patients with refractory blood cancers, who had relapsed after AHCT. We conclude that high dose NK-92 therapy is safe, shows some evidence of efficacy in patients with refractory blood cancers and warrants further clinical investigation.
Collapse
Affiliation(s)
- Brent A Williams
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Arjun Datt Law
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Bertrand Routy
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Neal denHollander
- Department of Laboratory Medicine, University Health Network, Toronto, ON, Canada
| | - Vikas Gupta
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Xing-Hua Wang
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Amélie Chaboureau
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Armand Keating
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
11
|
Pierro J, Hogan LE, Bhatla T, Carroll WL. New targeted therapies for relapsed pediatric acute lymphoblastic leukemia. Expert Rev Anticancer Ther 2017. [PMID: 28649891 DOI: 10.1080/14737140.2017.1347507] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The improvement in outcomes for children with acute lymphoblastic leukemia (ALL) is one of the greatest success stories of modern oncology however the prognosis for patients who relapse remains dismal. Recent discoveries by high resolution genomic technologies have characterized the biology of relapsed leukemia, most notably pathways leading to the drug resistant phenotype. These observations open the possibility of targeting such pathways to prevent and/or treat relapse. Likewise, early experiences with new immunotherapeutic approaches have shown great promise. Areas covered: We performed a literature search on PubMed and recent meeting abstracts using the keywords below. We focused on the biology and clonal evolution of relapsed disease highlighting potential new targets of therapy. We further summarized the results of early trials of the three most prominent immunotherapy agents currently under investigation. Expert commentary: Discovery of targetable pathways that lead to drug resistance and recent breakthroughs in immunotherapy show great promise towards treating this aggressive disease. The best way to treat relapse, however, is to prevent it which makes incorporation of these new approaches into frontline therapy the best approach. Challenges remain to balance efficacy with toxicity and to prevent the emergence of resistant subclones which is why combining these newer agents with conventional chemotherapy will likely become standard of care.
Collapse
Affiliation(s)
- Joanna Pierro
- a Division of Pediatric Hematology Oncology, Department of Pediatrics , Perlmutter Cancer Center, NYU Langone Medical Center , New York , NY , USA
| | - Laura E Hogan
- b Division of Pediatric Hematology/Oncology, Department of Pediatrics , Stony Brook Children's , Stony Brook , NY , USA
| | - Teena Bhatla
- a Division of Pediatric Hematology Oncology, Department of Pediatrics , Perlmutter Cancer Center, NYU Langone Medical Center , New York , NY , USA
| | - William L Carroll
- a Division of Pediatric Hematology Oncology, Department of Pediatrics , Perlmutter Cancer Center, NYU Langone Medical Center , New York , NY , USA
| |
Collapse
|