1
|
Zhang D, Zhang W, Liu H, Liu P, Li C, Liu Y, Han J, Zhu G. Recent advances in the treatment of non-small cell lung cancer with MET inhibitors. Front Chem 2024; 12:1501844. [PMID: 39720556 PMCID: PMC11666382 DOI: 10.3389/fchem.2024.1501844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Recently, research into the oncogenic driver genes associated with non-small cell lung cancer (NSCLC) has advanced significantly, leading to the development and clinical application of an increasing number of approved therapeutic agents. Among these, small molecule inhibitors that target mesenchymal-epithelial transition (MET) have demonstrated successful application in clinical settings. Currently, three categories of small molecule MET inhibitors, characterized by distinct binding patterns to the MET kinase region, have been developed: types Ia/Ib, II, and III. This review thoroughly examines MET's structure and its crucial role in NSCLC initiation and progression, explores discovery strategies for MET inhibitors, and discusses advancements in understanding resistance mechanisms. These insights are anticipated to enhance the development of a new generation of MET inhibitors characterized by high efficiency, selectivity, and low toxicity, thereby offering additional therapeutic alternatives for patients diagnosed with NSCLC.
Collapse
Affiliation(s)
- Dongna Zhang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Wenying Zhang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - He Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Pan Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Chunxin Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yangyang Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jicheng Han
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of integrative medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Guangze Zhu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Wang Z, Shi Z, Yang S, Niu Z, Shu K, Chen L, Zhi C, Liu F, Huang W, Fan T, Jiang Y. Design and Synthesis of c-Met and HDAC Dual Inhibitors for the Treatment of Breast Cancer. ACS Med Chem Lett 2024; 15:1516-1525. [PMID: 39291032 PMCID: PMC11403759 DOI: 10.1021/acsmedchemlett.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In recent years, it has been proposed that c-mesenchymal-to-epithelial transition factor (c-Met) and histone deacetylase (HDAC) dual inhibition is a promising cancer treatment strategy. Herein, a series of c-Met/HDAC dual inhibitors were designed and synthesized given their synergistic anticancer effect in breast cancer cells. Compound 12d exhibited excellent inhibitory activity against c-Met (IC50 = 28.92 nM) and HDAC (85.68%@1000 nM) and inhibited the proliferation of all three breast cancer cell lines. Moreover, a mechanism investigation demonstrated that 12d could simultaneously induce cell cycle arrest in the G0/G1 phase and cell apoptosis in MDA-MB-231 cells, which was endorsed by c-Met and HDAC pathway blockade. It could also suppress cell invasion. Our results suggest that developing promising c-Met/HDAC dual inhibitors is a novel strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Zuoyang Wang
- The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhichao Shi
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shiqi Yang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zizhou Niu
- The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Kaifei Shu
- The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Linbo Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Cailian Zhi
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Funian Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wenjun Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuyang Jiang
- The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Lu CW, Chen CB, Chiu TM, Chen CC, Wei KC, Lin SH, Yu S, Hsu CK, Hsiao PF, Hsu PS, Su J, Chao SC, Yang CT, Chung WH, Luo YH. Consensus of the Taiwanese dermatological association and Taiwan Lung Cancer Society on the prevention and management of tyrosine kinase inhibitor-related skin toxicities in patients with non-small cell lung cancer: An updated version incorporating Taiwanese treatment experience. J Formos Med Assoc 2024:S0929-6646(24)00349-8. [PMID: 39174397 DOI: 10.1016/j.jfma.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/09/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
The 2023 consensus from the Taiwanese Dermatological Association (TDA) and Taiwan Lung Cancer Society (TLCS) addresses the management of tyrosine kinase inhibitor (TKI)-induced skin toxicities in non-small cell lung cancer (NSCLC). Providing a comprehensive overview, the consensus reflects recent advances in understanding causes and developmental processes of TKI-related skin toxicities. Aimed at guiding clinicians in Taiwan, the consensus integrates new treatment perspectives while incorporating experiences from local dermatology experts. Recommendations underwent a voting process, achieving consensus when 75% or more of experts agreed, leading to their inclusion. Approved by over 90% of participants, the recommended treatment algorithms for major skin toxicities offer valuable insights for clinicians managing TKI-associated effects in NSCLC patients.
Collapse
Affiliation(s)
- Chun-Wei Lu
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Tsu-Man Chiu
- Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Chiang Chen
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Che Wei
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shang-Hung Lin
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sebastian Yu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung Univeresity, Tainan, Taiwan
| | - Pa-Fan Hsiao
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Pei-Sung Hsu
- Department of Pulmonology, Shin Kong Memorial Wu Ho-Su Hospital at Taipei, Taiwan
| | - Jian Su
- Department of Chest Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Sheau-Chiou Chao
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung Univeresity, Tainan, Taiwan
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Yung-Hung Luo
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Gou Q, Gou Q, Gan X, Xie Y. Novel therapeutic strategies for rare mutations in non-small cell lung cancer. Sci Rep 2024; 14:10317. [PMID: 38705930 PMCID: PMC11070427 DOI: 10.1038/s41598-024-61087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/30/2024] [Indexed: 05/07/2024] Open
Abstract
Lung cancer is still the leading cause of cancer-related mortality. Over the past two decades, the management of non-small cell lung cancer (NSCLC) has undergone a significant revolution. Since the first identification of activating mutations in the epidermal growth factor receptor (EGFR) gene in 2004, several genetic aberrations, such as anaplastic lymphoma kinase rearrangements (ALK), neurotrophic tropomyosin receptor kinase (NTRK) and hepatocyte growth factor receptor (MET), have been found. With the development of gene sequencing technology, the development of targeted drugs for rare mutations, such as multikinase inhibitors, has provided new strategies for treating lung cancer patients with rare mutations. Patients who harbor this type of oncologic driver might acquire a greater survival benefit from the use of targeted therapy than from the use of chemotherapy and immunotherapy. To date, more new agents and regimens can achieve satisfactory results in patients with NSCLC. In this review, we focus on recent advances and highlight the new approval of molecular targeted therapy for NSCLC patients with rare oncologic drivers.
Collapse
Affiliation(s)
- Qitao Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaochuan Gan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxin Xie
- Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Yuan P, Xue X, Qiu T, Ying J. MET alterations detection platforms and clinical implications in solid tumors: a comprehensive review of literature. Ther Adv Med Oncol 2024; 16:17588359231221910. [PMID: 38249331 PMCID: PMC10798113 DOI: 10.1177/17588359231221910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
MET alterations, including MET exon 14 skipping variants, MET amplification, MET overexpression, and MET fusion, play pivotal roles in primary tumorigenesis and acquired resistance to targeted therapies, especially EGFR tyrosine kinase inhibitors. They represent important diagnostic, prognostic, and predictive biomarkers in many solid tumor types. However, the detection of MET alterations is challenging due to the complexity of MET alterations and the diversity of platform technologies. Therefore, techniques with high sensitivity, specificity, and reliable molecular detection accuracy are needed to overcome such hindrances and aid in biomarker-guided therapies. The current review emphasizes the role of MET alterations as oncogenic drivers in a variety of cancers and their involvement in the development of resistance to targeted therapies. Moreover, our review provides an overview of and recommendations on the selection of various cross-platform technologies for the detection of MET exon 14 skipping variants, MET amplification, MET overexpression, and MET fusion. Furthermore, challenges and hurdles underlying these common detection platforms are discussed.
Collapse
Affiliation(s)
- Pei Yuan
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemin Xue
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Qiu
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| |
Collapse
|
6
|
Nitulescu GM, Stancov G, Seremet OC, Nitulescu G, Mihai DP, Duta-Bratu CG, Barbuceanu SF, Olaru OT. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Molecules 2023; 28:5359. [PMID: 37513232 PMCID: PMC10385367 DOI: 10.3390/molecules28145359] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The altered activation or overexpression of protein kinases (PKs) is a major subject of research in oncology and their inhibition using small molecules, protein kinases inhibitors (PKI) is the best available option for the cure of cancer. The pyrazole ring is extensively employed in the field of medicinal chemistry and drug development strategies, playing a vital role as a fundamental framework in the structure of various PKIs. This scaffold holds major importance and is considered a privileged structure based on its synthetic accessibility, drug-like properties, and its versatile bioisosteric replacement function. It has proven to play a key role in many PKI, such as the inhibitors of Akt, Aurora kinases, MAPK, B-raf, JAK, Bcr-Abl, c-Met, PDGFR, FGFRT, and RET. Of the 74 small molecule PKI approved by the US FDA, 8 contain a pyrazole ring: Avapritinib, Asciminib, Crizotinib, Encorafenib, Erdafitinib, Pralsetinib, Pirtobrutinib, and Ruxolitinib. The focus of this review is on the importance of the unfused pyrazole ring within the clinically tested PKI and on the additional required elements of their chemical structures. Related important pyrazole fused scaffolds like indazole, pyrrolo[1,2-b]pyrazole, pyrazolo[4,3-b]pyridine, pyrazolo[1,5-a]pyrimidine, or pyrazolo[3,4-d]pyrimidine are beyond the subject of this work.
Collapse
Affiliation(s)
| | | | | | - Georgiana Nitulescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (G.M.N.)
| | | | | | | | | |
Collapse
|
7
|
Xia H, Zhang J, Chen T, Wang M, Chen D, Si T, Liu Y. Molecular characterization of MET fusions from a large real-world Chinese population: A multicenter study. Cancer Med 2023. [PMID: 37326363 PMCID: PMC10358190 DOI: 10.1002/cam4.6047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE MET is a notable driver gene in the diversity of aberrations with clinical relevance, including exon 14 skipping, copy number gain, point mutations, and gene fusions. Compared with the former two, MET fusions are severely under-reported, leaving a series of unanswered questions. In this study, we addressed this gap by characterizing MET fusions in a large, real-world Chinese cancer population. METHODS We retrospectively included patients with solid tumors who had DNA-based genome profiles acquired through targeted sequencing from August 2015 to May 2021. MET fusion-positive (MET+) patients were subsequently selected for clinical and molecular characterization. RESULTS We screened 79,803 patients across 27 tumor types and detected 155 putative MET fusions from 122 patients, resulting in an overall prevalence of 0.15%. Lung cancer comprised the majority of MET+ patients (92, 75.4%). Prevalence was markedly higher in liver cancer, biliary tract cancer, and renal cancer (range 0.52%-0.60%). It was lower in ovarian cancer (0.06%). A substantial proportion (48/58, 82.8%) of unique partners were reported for the first time. High heterogeneity was observed for partners, with ST7, HLA-DRB1, and KIF5B as the three most common partners. Mutational landscape analysis of lung adenocarcinoma (n = 32) revealed a high prevalence of TP53 in MET+ alterations, EGFR L858R, EGFR L861Q, and MET amplification. CONCLUSION To our knowledge, this is currently the largest study in characterizing MET fusions. Our findings warrant that further clinical validation and mechanistic study may translate into therapeutic avenues for MET+ cancer patients.
Collapse
Affiliation(s)
- Hui Xia
- Thoracic Surgery Department, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Junhua Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Tong Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingzhao Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongna Chen
- Department of Medical Oncology, Sanhuan Cancer Hospital of Chaoyang District, Beijing, China
| | - Tongguo Si
- Department of Interventional Treatment, Tianjin Medical University Cancer Hospital and Institute, Tianjin, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Yang M, You Y, Wang X, Dong W. I-125 seeds brachytherapy combined with immunotherapy for MET amplification in non-small cell lung cancer from clinical application to related lncRNA mechanism explore: a case report. Front Cell Dev Biol 2023; 11:1176083. [PMID: 37389354 PMCID: PMC10300560 DOI: 10.3389/fcell.2023.1176083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) with MET amplification primarily relies on MET inhibitors for treatment, but once resistance occurs, the available treatment options are limited and the prognosis is typically poor. A 57-year-old man with advanced NSCLC and C-MET amplification was initially treated with crizotinib but developed progressive disease. After the antirotinib treatment, he achieved a partial response for a year. Genetic testing showed high PD-L1 expression, and he was treated with pembrolizumab and chemotherapy for 3 months, with partial response. Maintenance therapy with pembrolizumab and local I-125 seeds brachytherapy (ISB) was given after the lung lesion progressed but other lesions remained stable. The therapy resulted in significant resolution of the right upper lung lesion. It demonstrates the effectiveness of ISB-ICI combination in treating MET amplification advanced NSCLC. Ongoing research and treatment innovation are important in managing advanced NSCLC with complex genetic aberrations. To explore the candidate mechanism of ISB therapy response, we download public genetic data and conduct different expression Lncrnas analysis and pathway analysis to discover radiotherapy related sensitive or resistance lncRNAs and pathways, we found that AL654754.1 is a key lncRNA with radiotherapy response, and it also include in classical p53 and Wnt signaling pathway. Overall, the clinical case reports, combined with the exploration of underlying mechanisms, provide positive guidance for the precise treatment of lung cancer.
Collapse
|
9
|
Hu X, Cui X, Wang Z, Liu Y, Luo Y, Zhong W, Zhao H, Yao M, Jiang D, Wang M, Chen M, Zheng X, Ding L, Wang Y, Yuan X, Wu P, Hu B, Han X, Shi Y. Safety, efficacy and pharmacokinetics of BPI-9016M in c-MET overexpression or MET exon 14 skipping mutation patients with locally advanced or metastatic non-small-cell lung cancer: a phase Ib study. BMC Cancer 2023; 23:331. [PMID: 37041472 PMCID: PMC10088252 DOI: 10.1186/s12885-022-10500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/30/2022] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND As a potential target receptor tyrosine kinase, mesenchymal-epithelial transition factor (MET) exhibits high aberrant expression across various tumors. This study aimed to evaluated the safety, tolerability, efficacy and pharmacokinetics (PK) of BPI-9016M, a novel tyrosine kinase inhibitor (TKI) targeting c-MET, in c-MET overexpression or MET exon 14 skipping mutation patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC). METHODS/DESIGN In this two-part multicenter phase Ib study, eligible patients with locally advanced or metastatic NSCLC harboring c-MET overexpression or MET exon 14 skipping mutation were enrolled into Part A (tested positive for c-MET overexpression [immunohistochemical staining score ≥ 2+]; 300 mg quaque die [QD], 450 mg QD and 600 mg QD cohorts) or Part B (tested positive for MET exon 14 skipping mutation; 400 mg bis in die [BID] cohort), respectively. The primary endpoints were safety, objective response rate (ORR) and disease control rate (DCR), the second endpoints were PK parameters, progression-free survival (PFS) and overall survival (OS). RESULTS Between March 15, 2017 and September 18, 2021, 38 patients were enrolled (Part A, n = 34; Part B, n = 4). Of 38 patients, 32 (84.2%) patients completed the treatment protocol. As of the data cut-off date on January 27, 2022, all patients reported at least one treatment-emergent adverse event (TEAE). Ninety-two point one percent (35/38) of patients experienced treatment-related adverse events (TRAEs), and grade ≥ 3 TRAEs were observed in 11 (28.9%) patients. The most common TRAEs were elevated alanine aminotransferase (ALT, 14/38, 36.8%) and elevated aspartate aminotransferase (AST, 11/38, 28.9%). Only one (2.6%) patient had treatment-related serious adverse event (SAE) in 600 mg QD cohort due to thrombocytopenia. PK analysis showed BPI-9016M and its main metabolites (M1 and M2-2) reached steady state after seven days of continuous administration. At the dose of 300 mg QD and 450 mg QD, the exposure of BPI-9016M increased with increasing dose. Exposure of BPI-9016M was similar at 450 mg QD and 600 mg QD, which may exhibit a saturation trend. In all patients, ORR and DCR were 2.6% (1/38, 95% confidence interval [CI] 0.1-13.8%) and 42.1% (16/38, 95% CI 26.3-59.2%), respectively. Only one partial response (PR) patient was observed at a dose of 600 mg QD in Part A. In Part B, DCR was 75.0% (3/4, 95% CI 19.4-99.4%). The median PFS and OS in all 38 patients were 1.9 months (95% CI 1.9-3.7) and 10.3 months (95% CI 7.3-not evaluable [NE]), respectively. CONCLUSION BPI-9016M showed manageable safety profile in c-MET overexpression or MET exon 14 skipping mutation patients with locally advanced or metastatic NSCLC, but showed limited efficacy. TRIAL REGISTRATION Clinicaltrials.gov NCT02929290 (11/10/2016).
Collapse
Affiliation(s)
- Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xinge Cui
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Ziping Wang
- Department of Thoracic Oncology, Beijing Cancer Hospital, Beijing, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Liaoning, China
| | - Ying Luo
- Department of Medical Oncology, The First Hospital of China Medical University, Liaoning, China
| | - Wei Zhong
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Mengxing Yao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Da Jiang
- Department of Oncology, Hebei Tumor Hospital, Hebi, China
| | - Mingxia Wang
- Department of Oncology, Hebei Tumor Hospital, Hebi, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin Zheng
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | | | - Yang Wang
- Betta Pharmaceuticals Co., Ltd, Hangzhou, China
| | | | | | - Bei Hu
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
10
|
Sun R, Wang Z, Zhao J, Ren P, Ma J, Guo Y. Optimized Detection of Unknown MET Exon 14 Skipping Mutations in Routine Testing for Patients With Non-Small-Cell Lung Cancer. JCO Precis Oncol 2023; 7:e2200482. [PMID: 36848606 DOI: 10.1200/po.22.00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
PURPOSE MET exon 14 (METex14) skipping is an actionable biomarker in non-small-cell lung cancer. However, MET variants are highly complex and diverse, and not all variants lead to exon 14 skipping. Assessing the skipping effect of unknown variants is still a key issue in molecular diagnosis. MATERIALS AND METHODS We retrospectively collected MET variants around exon 14 from 4,233 patients with non-small-cell lung cancer who underwent next-generation sequencing testing using DNA, as well as two published data sets. RESULTS Among the 4,233 patients, 44 unique variants including 29 novel variants (65.9%) were discovered from 53 patients. Notably, 31 samples (58.5%) failed RNA verification. Using RNA verification, nine novel skipping variants and five nonskipping variants were confirmed. We further used SpliceAI with the delta score cutoff of 0.315 to aid the classification of novel variants (sensitivity = 98.88% and specificity = 100%). When applied to the reported variants, we also found three wrongly classified nonskipping variants. Finally, an optimized knowledge-based interpretation procedure for clinical routine was built according to the mutation type and location, and five more skipping mutations from the 13 unknown variants were determined, which improved the population determination rate to 0.92%. CONCLUSION This study discovered more METex14 skipping variants and optimized an innovative approach that could be adapted for the interpretation of infrequent or novel METex14 variants timely without experimental validation.
Collapse
Affiliation(s)
- Rui Sun
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan Province, China
| | - Zhizhong Wang
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan Province, China
| | - Jiuzhou Zhao
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan Province, China
| | - Pengfei Ren
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jie Ma
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yongjun Guo
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan Province, China
| |
Collapse
|
11
|
Discovery of novel exceptionally potent and orally active c-MET PROTACs for the treatment of tumors with MET alterations. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
12
|
Wu J, Lin Z. Non-Small Cell Lung Cancer Targeted Therapy: Drugs and Mechanisms of Drug Resistance. Int J Mol Sci 2022; 23:ijms232315056. [PMID: 36499382 PMCID: PMC9738331 DOI: 10.3390/ijms232315056] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The advent of precision medicine has brought light to the treatment of non-small cell lung cancer (NSCLC), expanding the options for patients with advanced NSCLC by targeting therapy through genetic and epigenetic cues. Tumor driver genes in NSCLC patients have been uncovered one by one, including epidermal growth factor receptor (EGFR), mesenchymal lymphoma kinase (ALK), and receptor tyrosine kinase ROS proto-oncogene 1 (ROS1) mutants. Antibodies and inhibitors that target the critical gene-mediated signaling pathways that regulate tumor growth and development are anticipated to increase patient survival and quality of life. Targeted drugs continue to emerge, with as many as two dozen approved by the FDA, and chemotherapy and targeted therapy have significantly improved patient prognosis. However, resistance due to cancer drivers' genetic alterations has given rise to significant challenges in treating patients with metastatic NSCLC. Here, we summarized the main targeted therapeutic sites of NSCLC drugs and discussed their resistance mechanisms, aiming to provide new ideas for follow-up research and clues for the improvement of targeted drugs.
Collapse
|
13
|
Ren Y, Cao L, You M, Ji J, Gong Y, Ren H, Xu F, Guo H, Hu J, Li Z. “SMART” digital nucleic acid amplification technologies for lung cancer monitoring from early to advanced stages. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Asadollahi L, Mahoutforoush A, Dorreyatim SS, Soltanfam T, Paiva-Santos AC, Peixoto D, Veiga F, Hamishehkar H, Zeinali M, Abbaspour-Ravasjani S. Co-Delivery of Erlotinib and Resveratrol via Nanostructured Lipid Carriers: A Synergistically Promising Approach for Cell Proliferation Prevention and ROS-Mediated Apoptosis Activation. Int J Pharm 2022; 624:122027. [PMID: 35850183 DOI: 10.1016/j.ijpharm.2022.122027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Cancer treatments are always associated with various challenges, and scientists are constantly trying to find new therapies and methods. Erlotinib (ELT) is a well-known medicine against non-small cell lung cancer (NSCLC). However, treatments by ELT disrupt therapy due to drug resistance and pose severe challenges to patients. To achieve high-performance treatment, we gained nanostructured lipid carriers (NLCs) to evaluate synergistic anticancer effects of co-delivery of ELT and resveratrol (RES), a natural herbal derived phenol against NSCLC. NLCs are prepared via the hot homogenization method and characterized. In vitro cytotoxicity of formulations were evaluated on adenocarcinoma human alveolar basal epithelial (A549) cells. Prepared NLCs showed a narrow particle size (97.52 ±17.14 nm), negative zeta potential (-7.67 ± 4.55 mV), and high encapsulation efficiency (EE%) was measured for the prepared co-delivery system (EE% 89.5 ± 5.16 % for ELT and 90.1 ± 6.61 % for RES). In vitro outcomes from cell viability study (12.63 % after 48 h of treatment), apoptosis assay (85.50%.), cell cycle (40.00% arrest in G2-M), and western blotting investigations (decreasing of protein expression levels of survivin, Bcl-2, P-Caspase 3 P-caspase 9, and P-ERK 1/2, and additionally, increasing protein levels of BAX, P53, C-Caspase 3 and 9), DAPI staining, and colony formation assays showed the augment cytotoxic performances for co-delivery of ELT and RES loaded NLCs. Our study introduced the co-delivery of ELT and RES by NLCs as a novel strategy to elevate the efficacy of chemotherapeutics for NSCLC.
Collapse
Affiliation(s)
- Leila Asadollahi
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Mahoutforoush
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Sina Dorreyatim
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tannaz Soltanfam
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research and Development Unit, Daana Pharma Co, Tabriz, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Zeinali
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research and Development Unit, Daana Pharma Co, Tabriz, Iran.
| | | |
Collapse
|
15
|
Shi K, Wang G, Pei J, Zhang J, Wang J, Ouyang L, Wang Y, Li W. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol 2022; 15:94. [PMID: 35840984 PMCID: PMC9287895 DOI: 10.1186/s13045-022-01311-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), the receptor for members of the epidermal growth factor family, regulates cell proliferation and signal transduction; moreover, EGFR is related to the inhibition of tumor cell proliferation, angiogenesis, invasion, metastasis, and apoptosis. Therefore, EGFR has become an important target for the treatment of cancer, including non-small cell lung cancer, head and neck cancer, breast cancer, glioma, cervical cancer, and bladder cancer. First- to third-generation EGFR inhibitors have shown considerable efficacy and have significantly improved disease prognosis. However, most patients develop drug resistance after treatment. The challenge of overcoming intrinsic and acquired resistance in primary and recurrent cancer mediated by EGFR mutations is thus driving the search for alternative strategies in the design of new therapeutic agents. In view of resistance to third-generation inhibitors, understanding the intricate mechanisms of resistance will offer insight for the development of more advanced targeted therapies. In this review, we discuss the molecular mechanisms of resistance to third-generation EGFR inhibitors and review recent strategies for overcoming resistance, new challenges, and future development directions.
Collapse
Affiliation(s)
- Kunyu Shi
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| |
Collapse
|
16
|
Fujino T, Suda K, Koga T, Hamada A, Ohara S, Chiba M, Shimoji M, Takemoto T, Soh J, Mitsudomi T. Foretinib can overcome common on-target resistance mutations after capmatinib/tepotinib treatment in NSCLCs with MET exon 14 skipping mutation. J Hematol Oncol 2022; 15:79. [PMID: 35690785 PMCID: PMC9188708 DOI: 10.1186/s13045-022-01299-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Background Capmatinib and tepotinib are guideline-recommended front-line treatments for non-small-cell lung cancer (NSCLC) patients with MET exon 14 skipping mutations (METex14). However, the emergence of acquired resistance to capmatinib/tepotinib is almost inevitable partially due to D1228X or Y1230X secondary mutations of the MET. In this study, we explored agents that are active against both D1228X and Y1230X MET to propose an ideal sequential treatment after capmatinib/tepotinib treatment failure in NSCLC patients with METex14. Methods The inhibitory effects of 300 drugs, including 33 MET-TKIs, were screened in Ba/F3 cells carrying METex14 plus MET D1228A/Y secondary mutations. The screen revealed four-candidate type II MET-TKIs (altiratinib, CEP-40783, foretinib and sitravatinib). Therefore, we performed further growth inhibitory assays using these four MET-TKIs plus cabozantinib and merestinib in Ba/F3 cells carrying MET D1228A/E/G/H/N/V/Y or Y1230C/D/H/N/S secondary mutations. We also performed analyses using Hs746t cell models carrying METex14 (with mutant allele amplification) with/without D1228X or Y1230X in vitro and in vivo to confirm the findings. Furthermore, molecular dynamics (MD) simulations were carried out to examine differences in binding between type II MET-TKIs. Results All 6 type II MET-TKIs were active against Y1230X secondary mutations. However, among these 6 agents, only foretinib showed potent activity against D1228X secondary mutations of the MET in the Ba/F3 cell and Hs746t in vitro model and Hs746t in vivo model, and CEP-40783 and altiratinib demonstrated some activity. MD analysis suggested that the long tail of foretinib plays an important role in binding D1228X MET through interaction with a residue at the solvent front (G1163). Tertiary G1163X mutations, together with L1195F/I and F1200I/L, occurred as acquired resistance mechanisms to the second-line treatment foretinib in Ba/F3 cell models. Conclusions The type II MET-TKI foretinib may be an appropriate second-line treatment for NSCLCs carrying METex14 after campatinib/tepotinib treatment failure by secondary mutations at residue D1228 or Y1230. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01299-z.
Collapse
Affiliation(s)
- Toshio Fujino
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Takamasa Koga
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Akira Hamada
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Shuta Ohara
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Masato Chiba
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Masaki Shimoji
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Toshiki Takemoto
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Junichi Soh
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan.
| |
Collapse
|
17
|
Brazel D, Zhang S, Nagasaka M. Spotlight on Tepotinib and Capmatinib for Non-Small Cell Lung Cancer with MET Exon 14 Skipping Mutation. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:33-45. [PMID: 35592355 PMCID: PMC9113513 DOI: 10.2147/lctt.s360574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023]
Abstract
Mesenchymal-epithelial transition (MET) receptor tyrosine kinase is overexpressed, amplified, or mutated in 1-20% of NSCLC. MET dysregulation is associated with a poor prognosis. Recently, development of targeted therapies against MET exon 14 mutations has demonstrated efficacy and tolerability in early trials. Here we focus on tepotinib and capmatinib in regards to molecular characteristics, early preclinical and clinical data, and the emerging role in future studies and clinical practice.
Collapse
Affiliation(s)
- Danielle Brazel
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Shannon Zhang
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Misako Nagasaka
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
- Department of Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
18
|
Oscorbin IP, Smertina MA, Pronyaeva KA, Voskoboev ME, Boyarskikh UA, Kechin AA, Demidova IA, Filipenko ML. Multiplex Droplet Digital PCR Assay for Detection of MET and HER2 Genes Amplification in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14061458. [PMID: 35326608 PMCID: PMC8945941 DOI: 10.3390/cancers14061458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC), a subtype of lung cancer, remains one of the most common tumors with a high mortality and morbidity rate. Numerous targeted drugs were implemented or are now developed for the treatment of NSCLC. Two genes, HER2 and MET, are among targets for these specific therapeutic agents. Alterations in HER2 and MET could lead to primary or acquired resistance to commonly used anti-EGFR drugs. Using current methods for detecting HER2 and MET amplifications is time and labor-consuming; alternative methods are required for HER2 and MET testing. We developed the first multiplex droplet digital PCR assay for the simultaneous detection of MET and HER2 amplification in NSCLC samples. The suitability of qPCR was assessed for the optimization of multiplex ddPCR. The optimal elongation temperature, reference genes for DNA quantification, and amplicon length were selected. The developed ddPCR was validated on control samples with various DNA concentrations and ratios of MET and HER2 genes. Using ddPCR, 436 EGFR-negative NSCLC samples were analyzed. Among the tested samples, five specimens (1.15%) showed a higher ratio of MET, and six samples (1.38%) showed a higher ratio of HER2. The reported multiplex ddPCR assay could be used for the routine screening of MET and HER2 amplification in NSCLC samples.
Collapse
Affiliation(s)
- Igor P. Oscorbin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
- Correspondence: ; Tel.: +7-9137061694
| | - Maria A. Smertina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
| | - Ksenia A. Pronyaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Mikhail E. Voskoboev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ulyana A. Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
| | - Andrey A. Kechin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
| | | | - Maxim L. Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
| |
Collapse
|
19
|
Licochalcone A Promotes the Ubiquitination of c-Met to Abrogate Gefitinib Resistance. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5687832. [PMID: 35309168 PMCID: PMC8930240 DOI: 10.1155/2022/5687832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Met proto-oncogene (MET) amplification and tyrosine-protein kinase Met (c-Met) overexpression confer gefitinib resistance in non-small cell lung cancer (NSCLC). The natural product Licochalcone A (Lico A) exhibits a broad range of inhibitory effects against various tumors. However, the effects of Lico A on c-Met signaling and gefitinib resistance in NSCLC remain unclear. In the present study, Lico A efficiently overcame gefitinib-acquired resistance in NSCLC cells by suppressing c-Met signaling. Lico A decreased cell viability and colony formation dose-dependently and impaired in vivo tumorigenesis of gefitinib-resistant HCC827 and PC-9 cells. Furthermore, Lico A induced intrinsic apoptosis and upregulated the protein expression levels of cleaved poly (ADP-ribose) polymerase and cleaved caspase 3. Lico A promoted the interaction between c-Met and E3 ligase c-Casitas B-lineage lymphoma (Cbl), which enhanced c-Cbl-mediated c-Met ubiquitination and degradation. Depletion of c-Cbl compromised Lico A-induced c-Met ubiquitination and its inhibitory efficacy in gefitinib-resistant NSCLC cells. Taken together, the results suggest that Lico A is a promising antitumor agent that might be used to overcome c-Met overexpression-mediated gefitinib resistance in NSCLC cells.
Collapse
|
20
|
Koga T, Suda K, Mitsudomi T. Utility of the Ba/F3 cell system for exploring on-target mechanisms of resistance to targeted therapies for lung cancer. Cancer Sci 2022; 113:815-827. [PMID: 34997674 PMCID: PMC8898722 DOI: 10.1111/cas.15263] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022] Open
Abstract
Molecular targeted therapies are the standard of care for front‐line treatment of metastatic non‐small‐cell lung cancers (NSCLCs) harboring driver gene mutations. However, despite the initial dramatic responses, the emergence of acquired resistance is inevitable. Acquisition of secondary mutations in the target gene (on‐target resistance) is one of the major mechanisms of resistance. The mouse pro‐B cell line Ba/F3 is dependent on interleukin‐3 for survival and proliferation. Upon transduction of a driver gene, Ba/F3 cells become independent of interleukin‐3 but dependent on the transduced driver gene. Therefore, the Ba/F3 cell line has been a popular system to generate models with oncogene dependence and vulnerability to specific targeted therapies. These models have been used to estimate oncogenicity of driver mutations or efficacies of molecularly targeted drugs. In addition, Ba/F3 models, together with N‐ethyl‐N‐nitrosourea mutagenesis, have been used to derive acquired resistant cells to investigate on‐target resistance mechanisms. Here, we reviewed studies that used Ba/F3 models with EGFR mutations, ALK/ROS1/NTRK/RET fusions, MET exon 14 skipping mutations, or KRAS G12C mutations to investigate secondary/tertiary drug resistant mutations. We determined that 68% of resistance mutations reproducibly detected in clinical cases were also found in Ba/F3 models. In addition, sensitivity data generated with Ba/F3 models correlated well with clinical responses to each drug. Ba/F3 models are useful to comprehensively identify potential mutations that induce resistance to molecularly targeted drugs and to explore drugs to overcome the resistance.
Collapse
Affiliation(s)
- Takamasa Koga
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
21
|
Yu J, Zhang L, Peng J, Ward R, Hao P, Wang J, Zhang N, Yang Y, Guo X, Xiang C, An S, Xu TR. Dictamnine, a novel c-Met inhibitor, suppresses the proliferation of lung cancer cells by downregulating the PI3K/AKT/mTOR and MAPK signaling pathways. Biochem Pharmacol 2022; 195:114864. [PMID: 34861243 DOI: 10.1016/j.bcp.2021.114864] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 01/19/2023]
Abstract
Dictamnine (Dic), a naturally occurring small-molecule furoquinoline alkaloid isolated from the root bark of Dictamnus dasycarpus Turcz., is reported to display anticancer properties. However, little is known about the direct target proteins and anticancer mechanisms of Dic. In the current study, Dic was found to suppress the growth of lung cancer cells in vitro and in vivo, and to attenuate the activation of PI3K/AKT/mTOR and mitogen-activated protein kinase (MAPK) signaling pathways by inhibiting the phosphorylation and activation of receptor tyrosine kinase c-Met. Moreover, the binding of Dic to c-Met was confirmed by using cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) assay. Among all cancer cell lines tested, Dic inhibited the proliferation of c-Met-dependent EBC-1 cells with the greatest potency (IC50 = 2.811 μM). Notably, Dic was shown to synergistically improve the chemo-sensitivity of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-resistant lung cancer cells to gefitinib and osimertinib. These results suggest that Dic is a c-Met inhibitor that can serve as a potential therapeutic agent in the treatment of lung cancer, especially against EGFR TKI-resistant and c-Met-dependent lung cancer.
Collapse
Affiliation(s)
- Jiaojiao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lijing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun Peng
- Department of Thoracic Surgery, the First People's Hospital of Yunnan Province, Kunming 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Richard Ward
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Peiqi Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiwei Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Na Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
22
|
Terlecka P, Krawczyk P, Grenda A, Milanowski J. MET Gene Dysregulation as a Promising Therapeutic Target in Lung Cancer-A Review. J Pers Med 2021; 11:1370. [PMID: 34945842 PMCID: PMC8705301 DOI: 10.3390/jpm11121370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/20/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Several molecular abnormalities in the MET gene have been identified, including overexpression, amplification, point mutations, and "skipping mutation" in exon 14. Even though deregulated MET signaling occurs rarely in non-small cell lung cancer (NSCLC), it possesses tumorigenic activity. Since the discovery of the significant role played by MET dysregulations in resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKI), many clinical trials have been focused on mechanisms underlying this acquired resistance. Therefore, new therapeutic strategies are being considered in the personalized therapy of NSCLC patients carrying MET abnormalities. First, MET kinase inhibitors (tepotinib and capmatinib) have been shown to be effective in the first and subsequent lines of treatment in NSCLC patients with "skipping mutations" in exon 14 of MET gene. In this article, the authors show the role of MET signaling pathway alterations and describe the results of clinical trials with MET inhibitors in NSCLC patients.
Collapse
Affiliation(s)
- Paulina Terlecka
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (P.K.); (A.G.); (J.M.)
| | | | | | | |
Collapse
|
23
|
Fujino T, Suda K, Mitsudomi T. Lung Cancer with MET exon 14 Skipping Mutation: Genetic Feature, Current Treatments, and Future Challenges. LUNG CANCER-TARGETS AND THERAPY 2021; 12:35-50. [PMID: 34295201 PMCID: PMC8290191 DOI: 10.2147/lctt.s269307] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/10/2021] [Indexed: 12/15/2022]
Abstract
MET exon 14 skipping mutation (MET∆ex14) is present about 3% of non-small cell lung cancers (NSCLCs). NSCLC patients with MET∆ex14 are characterized by an average age of over 70 years at diagnosis, a smoking history and a higher frequency in pleomorphic carcinoma and adenosquamous cell carcinoma than in adenocarcinoma. It has also been reported that NSCLCs with MET∆ex14 often have codriver alterations such as EGFR amplification (6–28%), FGFR1 alterations (5–17%), KRAS alterations (~8%), BRAF alterations (~21%), or PIK3CA mutation/amplification (~14%). In 2020, the approval of two MET-tyrosine kinase inhibitors (TKIs), capmatinib and tepotinib, for NSCLCs carrying MET∆ex14 dawned a new era for MET-targeted therapy. These drugs yielded progression-free survival of 5.4−12.4 months in clinical trials; however, it has also been reported that one-third to half of patients show inherent resistance to MET-TKIs. In addition, the emergence of acquired resistance to MET-TKIs is inevitable. In this review, we summarize the clinical and molecular characteristics of NSCLCs with MET∆ex14, the efficacy and safety of capmatinib and tepotinib, the inherent and acquired resistance mechanisms to MET-TKIs, and new treatment strategies for NSCLCs with MET∆ex14 in the near future.
Collapse
Affiliation(s)
- Toshio Fujino
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
24
|
Ohara S, Suda K, Mitsudomi T. Cell Line Models for Acquired Resistance to First-Line Osimertinib in Lung Cancers-Applications and Limitations. Cells 2021; 10:cells10020354. [PMID: 33572269 PMCID: PMC7915563 DOI: 10.3390/cells10020354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are first-line drugs for lung cancers with activating EGFR mutations. Although first- and second-generation EGFR-TKIs were standard first-line treatments, acquired resistance (AR) to these drugs is almost inevitable. Cell line models have been widely used to explore the molecular mechanisms of AR to first- and second-generation EGFR-TKIs. Many research groups, including ours, have established AR cell lines that harbor the EGFR T790M secondary mutation, MET gene amplification, or epithelial–mesenchymal transition (EMT) features, which are all found in clinical specimens obtained from TKI-refractory lesions. Currently, many oncologists prescribe osimertinib, a third-generation EGFR-TKI that can overcome T790M-mediated resistance, as a first-line TKI. Although few clinical data are available about AR mechanisms that arise when osimertinib is used as a first-line therapy, many research groups have established cell lines with AR to osimertinib and have reported on their AR mechanisms. In this review, we summarize the findings on AR mechanisms against first-line osimertinib obtained from analyses of cell line models.
Collapse
|
25
|
Pharmaceutical strategies in the emerging era of antibody-based biotherapeutics for the treatment of cancers overexpressing MET receptor tyrosine kinase. Drug Discov Today 2020; 26:106-121. [PMID: 33171292 DOI: 10.1016/j.drudis.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
Pharmaceutical innovation in the development of novel antibody-based biotherapeutics with increased therapeutic indexes makes MET-targeted cancer therapy a clinical reality.
Collapse
|