1
|
Li J, Mao N, Wang Y, Deng S, Chen K. Novel insights into the ROCK-JAK-STAT signaling pathway in upper respiratory tract infections and neurodegenerative diseases. Mol Ther 2025; 33:32-50. [PMID: 39511889 PMCID: PMC11764622 DOI: 10.1016/j.ymthe.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
Acute upper respiratory tract infections are a major public health issue, with uncontrolled inflammation triggered by upper respiratory viruses being a significant cause of patient deterioration or death. This study focuses on the Janus kinase-signal transducer and activator of transcription Rho-associated coiled-coil containing protein kinase (JAK-STAT-ROCK) signaling pathway, providing an in-depth analysis of the interplay between uncontrolled inflammation after upper respiratory tract infections and the development of neurodegenerative diseases. It offers a conceptual framework for understanding the lung-brain-related immune responses and potential interactions. The relationship between the ROCK-JAK-STAT signaling pathway and inflammatory immunity is a complex and multi-layered research area and exploring potential common targets could open new avenues for the prevention and treatment of related inflammation.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Naihui Mao
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China.
| |
Collapse
|
2
|
Zhao J, An K, Mao Z, Qu Y, Wang D, Li J, Min Z, Xue Z. CCL5 promotes LFA-1 expression in Th17 cells and induces LCK and ZAP70 activation in a mouse model of Parkinson's disease. Front Aging Neurosci 2023; 15:1250685. [PMID: 38020765 PMCID: PMC10655117 DOI: 10.3389/fnagi.2023.1250685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background Parkinson's disease (PD), which is associated to autoimmune disorders, is characterized by the pathological deposition of alpha-synuclein (α-Syn) and loss of dopaminergic (DA) neurons. Th17 cells are thought to be responsible for the direct loss of DA neurons. C-C chemokine ligand 5 (CCL5) specifically induces Th17 cell infiltration into the SN. However, the specific effect of CCL5 on Th17 cells in PD and the relationship between CCL5 and lymphocyte function-associated antigen-1 (LFA-1) expression in Th17 cells are unknown. Methods We evaluated the effects of CCL5 on LFA-1 expression in Th17 cells in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and examined Th17 cell differentiation upon CCL5 stimulation in vitro. Furthermore, we assessed the effects of CCL5 on tyrosine kinase zeta-chain-associated protein kinase 70 (ZAP70) and lymphocyte-specific protein tyrosine kinase (LCK) activity in CCL5-stimulated Th17 cells in vivo and in vitro. Results CCL5 increased the proportion of peripheral Th17 cells in MPTP-treated mice, LFA-1 expression on Th17 cells, and Th17 cell levels in the SN of MPTP-treated mice. CCL5 promoted Th17 cell differentiation and LFA-1 expression in naive T cells in vitro. Moreover, CCL5 increased Th17 cell differentiation and LFA-1 expression by stimulating LCK and ZAP70 activation in naive CD4+ T cells. Inhibiting LCK and ZAP70 activation reduced the proportion of peripheral Th17 cells and LFA-1 surface expression in MPTP-treated mice, and Th17 cell levels in the SN also significantly decreased. Conclusion CCL5, which increased Th17 cell differentiation and LFA-1 protein expression by activating LCK and ZAP70, could increase the Th17 cell number in the SN, induce DA neuron death and aggravate PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
4
|
Furgiuele A, Pereira FC, Martini S, Marino F, Cosentino M. Dopaminergic regulation of inflammation and immunity in Parkinson's disease: friend or foe? Clin Transl Immunology 2023; 12:e1469. [PMID: 37781343 PMCID: PMC10540835 DOI: 10.1002/cti2.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/11/2022] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting 7-10 million people worldwide. Currently, there is no treatment available to prevent or delay PD progression, partially due to the limited understanding of the pathological events which lead to the death of dopaminergic neurons in the substantia nigra in the brain, which is known to be the cause of PD symptoms. The current available treatments aim at compensating dopamine (DA) deficiency in the brain using its precursor levodopa, dopaminergic agonists and some indirect dopaminergic agents. The immune system is emerging as a critical player in PD. Therefore, immune-based approaches have recently been proposed to be used as potential antiparkinsonian agents. It has been well-known that dopaminergic pathways play a significant role in regulating immune responses in the brain. Although dopaminergic agents are the primary antiparkinsonian treatments, their immune regulatory effect has yet to be fully understood. The present review summarises the current available evidence of the immune regulatory effects of DA and its mimics and discusses dopaminergic agents as antiparkinsonian drugs. Based on the current understanding of their involvement in the regulation of neuroinflammation in PD, we propose that targeting immune pathways involved in PD pathology could offer a better treatment outcome for PD patients.
Collapse
Affiliation(s)
- Alessia Furgiuele
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Frederico C Pereira
- Faculty of Medicine, Institute of Pharmacology and Experimental TherapeuticsUniversity of CoimbraCoimbraPortugal
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Center of Coimbra (CACC)CoimbraPortugal
| | - Stefano Martini
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Franca Marino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Marco Cosentino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| |
Collapse
|
5
|
Wang W, Li S, Wang X, Wang J, Zhang Y. PbO nanoparticles increase the expression of ICAM-1 and VCAM-1 by increasing reactive oxygen species production in choroid plexus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40162-40173. [PMID: 36607576 DOI: 10.1007/s11356-022-25109-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
PbO nanoparticles (nano-PbO) are widely used in the production of electrode materials, but exposure to them can cause brain damage. The first barrier preventing nano-PbO from entering the brain is the choroid plexus. However, the effect of nano-PbO on the choroid plexus remains unclear. Thus, the purpose of this study was to investigate the effect of nano-PbO exposure on lymphocyte cells infiltration, the adhesion protein of the choroid plexus as well as the role of reactive oxygen species (ROS) during the process. Results showed that nano-PbO exposure increased the percentage of lymphocyte cells in the brain and upregulated the expression of surface adhesion proteins, including intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in choroid plexus. Meanwhile, nano-PbO treatment also resulted in the increase of intercellular ROS production, and significantly decrease glutathione (GSH) content, glutathione peroxidase (GSH-PX) activity, and superoxide dismutase (SOD) activity in Z310 cells beside the increase of ICAM and VCAM-1 expression. Treatment with ROS inhibitor N-acetylcysteine (NAC) significantly downregulated the expression of ICAM-1 and VCAM-1expression. In conclusion, exposure to nano-PbO increases the expression of ICAM-1 and VCAM-1 through oxidative stress, which may contribute to peripheral lymphocyte cells infiltration into the brain.
Collapse
Affiliation(s)
- Weixuan Wang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Shuang Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
- The Experiment Animal Center, North China University of Science and Technology, Tangshan, China
| | - Xi Wang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Jianbo Wang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China.
- The Experiment Animal Center, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
6
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
7
|
Khairnar RC, Parihar N, Prabhavalkar KS, Bhatt LK. Emerging targets signaling for inflammation in Parkinson's disease drug discovery. Metab Brain Dis 2022; 37:2143-2161. [PMID: 35536461 DOI: 10.1007/s11011-022-00999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) patients not only show motor features such as bradykinesia, tremor, and rigidity but also non-motor features such as anxiety, depression, psychosis, memory loss, attention deficits, fatigue, sexual dysfunction, gastrointestinal issues, and pain. Many pharmacological treatments are available for PD patients; however, these treatments are partially or transiently effective since they only decrease the symptoms. As these therapies are unable to restore dopaminergic neurons and stop the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is required. The current review summarizes novel targets for PD, that can be utilized to identify disease-modifying treatments.
Collapse
Affiliation(s)
- Rhema Chandan Khairnar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
8
|
Shi Y, Wei B, Li L, Wang B, Sun M. Th17 cells and inflammation in neurological disorders: Possible mechanisms of action. Front Immunol 2022; 13:932152. [PMID: 35935951 PMCID: PMC9353135 DOI: 10.3389/fimmu.2022.932152] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Neurological disorders (NDs) are one of the leading causes of global death. A sustained neuroinflammatory response has been reported to be associated with the pathogenesis of multiple NDs, including Parkinson’s disease (PD), multiple sclerosis (MS), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and major depressive disorder (MDD). Accumulating evidence shows that the recruitment of abundant lymphocytes in the central nervous system may contribute to promoting the development and progress of inflammation in neurological disorders. As one subset of T lymphocytes, CD4+ T cells have a critical impact on the inflammation of neurological disorders. T helper (Th) 17 is one of the most studied CD4+ Th subpopulations that produces cytokines (e.g., IL-17A, IL-23, IL-21, IL-6, and IFN-γ), leading to the abnormal neuroinflammatory response including the excessive activation of microglia and the recruitment of other immune cell types. All these factors are involved in several neurological disorders. However, the possible mechanisms of Th17 cells and their associated cytokines in the immunopathology of the abovementioned neurological disorders have not been clarified completely. This review will summarize the mechanisms by which encephalitogenic inflammatory Th17 cells and their related cytokines strongly contribute to chronic neuroinflammation, thus perpetuating neurodegenerative processes in NDs. Finally, the potential therapeutic prospects of Th17 cells and their cytokines in NDs will also be discussed.
Collapse
Affiliation(s)
| | | | | | - Bin Wang
- *Correspondence: Miao Sun, ; Bin Wang,
| | - Miao Sun
- *Correspondence: Miao Sun, ; Bin Wang,
| |
Collapse
|
9
|
Fu J, Huang Y, Bao T, Liu C, Liu X, Chen X. The role of Th17 cells/IL-17A in AD, PD, ALS and the strategic therapy targeting on IL-17A. J Neuroinflammation 2022; 19:98. [PMID: 35459141 PMCID: PMC9034482 DOI: 10.1186/s12974-022-02446-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive loss of certain populations of neurons, which eventually lead to dysfunction. These diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Immune pathway dysregulation is one of the common features of neurodegeneration. Recently, there is growing interest in the specific role of T helper Th 17 cells and Interleukin-17A (IL-17A), the most important cytokine of Th 17 cells, in the pathogenesis of the central nervous system (CNS) of neurodegenerative diseases. In the present study, we summarized current knowledge about the function of Th17/IL-17A, the physiology of Th17/IL-17A in diseases, and the contribution of Th17/IL-17A in AD, PD, and ALS. We also update the findings on IL-17A-targeting drugs as potentially immunomodulatory therapeutic agents for neurodegenerative diseases. Although the specific mechanism of Th17/IL-17A in this group of diseases is still controversial, uncovering the molecular pathways of Th17/IL-17A in neurodegeneration allows the identification of suitable targets to modulate these cellular processes. Therapeutics targeting IL-17A might represent potentially novel anti-neurodegeneration drugs.
Collapse
Affiliation(s)
- Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Xiang 37#, Chengdu, Sichuan, China
| | - Yan Huang
- Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Bao
- Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Xiang 37#, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Contaldi E, Magistrelli L, Comi C. T Lymphocytes in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S65-S74. [PMID: 35253782 PMCID: PMC9535550 DOI: 10.3233/jpd-223152] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
T cells are key mediators of both humoral and cellular adaptive immune responses, and their role in Parkinson’s disease (PD) is being increasingly recognized. Several lines of evidence have highlighted how T cells are involved in both the central nervous system and the periphery, leading to a profound imbalance in the immune network in PD patients. This review discusses the involvement of T cells in both preclinical and clinical studies, their importance as feasible biomarkers of motor and non-motor progression of the disease, and recent therapeutic strategies addressing the modulation of T cell response.
Collapse
Affiliation(s)
- Elena Contaldi
- Department of Translational Medicine, Movement Disorders Centre, "Maggiore della Caritá" University Hospital, University of Piemonte Orientale, Novara, Italy.,Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Department of Translational Medicine, Movement Disorders Centre, "Maggiore della Caritá" University Hospital, University of Piemonte Orientale, Novara, Italy.,Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, Varese, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Neurology Unit, S. Andrea Hospital, University of Piemonte Orientale, Vercelli, Italy
| |
Collapse
|
11
|
|
12
|
Chen X, Cao W, Zhuang Y, Chen S, Li X. Integrative analysis of potential biomarkers and immune cell infiltration in Parkinson's disease. Brain Res Bull 2021; 177:53-63. [PMID: 34536521 DOI: 10.1016/j.brainresbull.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disease in the elderly population. However, there are no reliable diagnostic biomarkers for PD, and the pathogenesis of PD still needs further study. The aim of the current study was to identify potential biomarkers and explore the pathogenesis of PD. METHODS We conducted an integrative analysis of messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) expression profiles of PD using data from the Gene Expression Omnibus (GEO). The GSE110720, GSE110719 and GSE133347 data sets were selected and analysed. Gene ontology (GO) enrichment and gene set variation analysis (GSVA) were performed for annotation, visualization, and integrated discovery. Protein-protein interaction (PPI) and competing endogenous RNA (ceRNA) networks were constructed, and hub genes were identified. Meanwhile, the immune infiltration analysis of hub genes was analysed. Moreover, receiver operating characteristic (ROC) curves were generated to verify the diagnostic value of the differentially expressed genes (DEGs). Finally, the genes with high area under the curve (AUC) values were verified by human samples. RESULTS We identified 464 DEGs closely related to PD, including 154 mRNAs, 134 miRNAs, and 176 lncRNAs. The GO analyses indicated that changes in PD were mainly enriched in receptor ligand activity and cytokine receptor binding. The KEGG enrichment analysis showed that these DEGs were significantly involved in cytokine-cytokine receptor interactions, signalling pathways regulating the pluripotency of stem cells and Th17 cell differentiation. GSVA suggested that growth factor binding, IL2-stat5 signalling, and IL6-jak-stat3 signalling were crucial in the development of PD. A total of five hub genes (NPBWR2, CXCL10, CXCL5, S1PR5, and GALR1) were selected via the PPI network. A ceRNA network of the CXCL5, CXCL10 and S1PR5 genes was constructed, and target genes of the three genes were screened. The immune infiltration analysis showed that there were significant differences in a variety of immune cells between the hub genes. The expression of DEGs was validated in clinical human samples by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The expression levels of hsa-miR6895-5p, hsa-miR6791-5p, hsa-miR518f-5p, hsa-miR455-3p and TEKT4P2 were decreased, while the levels of TPTE2P6 were increased in human samples. These findings are consistent with the bioinformatics analysis results. CONCLUSION We found that the immune inflammatory response and immune cell regulation were involved in the pathogenesis of PD. Five hub genes involved in the immune infiltration biological processes of PD based on bioinformatics. We verified the DEGs with significant differences by qRT-PCR. These findings might provide new insight into the pathogenesis of PD and the development of diagnostic and therapeutic strategies for PD.
Collapse
Affiliation(s)
- Xiaopeng Chen
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 221000, Jiangsu, China
| | - Wei Cao
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 221000, Jiangsu, China
| | - Yuansu Zhuang
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 221000, Jiangsu, China
| | - Siyuan Chen
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 221000, Jiangsu, China
| | - Xuezhong Li
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 221000, Jiangsu, China.
| |
Collapse
|
13
|
Content of Peripheral Blood T- and B-Cell Subpopulations in Transgenic A53T Mice of Different Age (A Model of Parkinson's Disease). Bull Exp Biol Med 2021; 170:401-404. [PMID: 33725243 DOI: 10.1007/s10517-021-05075-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 10/21/2022]
Abstract
We analyzed the behavior and peripheral blood T- and B-cell subpopulations in mice overexpressing the mutant form of human α-synuclein (A53T) in comparison with mice of the wild type (WT) parent C57BL/6J strain. Behavioral phenotype and the content of various cell subpopulations of A53T mice depended on animal age. Young (2-month-old mice) were characterized by low emotionality and the most pronounced changes in cell subpopulation composition (an increase in CD3+T cells and CD4+T helper cells, a decrease in CD19+B cells along with unchanged content of CD3+CD4+CD25+T-regulatory cells and CD19+CD25+B-regulatory cells). In old A53T mice (10-month-old), movement impairments appeared and increased numbers of CD4+T helper cells and CD3+CD4+CD25+T-regulatory cells were revealed.
Collapse
|
14
|
Bi Y, Lin X, Liang H, Yang D, Zhang X, Ke J, Xiao J, Chen Z, Chen W, Zhang X, Wang S, Liu CF. Human Adipose Tissue-Derived Mesenchymal Stem Cells in Parkinson's Disease: Inhibition of T Helper 17 Cell Differentiation and Regulation of Immune Balance Towards a Regulatory T Cell Phenotype. Clin Interv Aging 2020; 15:1383-1391. [PMID: 32884248 PMCID: PMC7434526 DOI: 10.2147/cia.s259762] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder displaying a typical neuroinflammation pathology that may result from an imbalance between regulatory T cells (Treg) and T helper 17 (Th17) cells. Human adipose tissue-derived mesenchymal stem cells (Ad-MSCs) exert immunomodulatory effects by inhibiting effector T cell responses and have been used to treat diverse immune disorders. We aimed to investigate the modulating effect of human Ad-MSCs on peripheral blood mononuclear cells (PBMCs) of patients with PD, focusing on differentiation into Th17 and Treg cells. METHODS We isolated human peripheral blood CD4+T cells and co-cultured them with Ad-MSCs at a ratio of 4:1 under either Th17 or Treg cell polarizing conditions for 4 days to detect the proportions of IL-17-producing CD4+T (Th17) and CD4+CD25+Foxp3+regulatory T (Treg) cells by flow cytometry. We also determined the mRNA expression levels of the retinoid-related orphan nuclear receptor (RORγt) transcription factor and those of interleukin-6 receptor (IL-6R), interleukin-23 receptor (IL-23R), leukemia inhibitory factor (LIF), and LIF receptor (LIFR) by quantitative reverse transcription PCR. We detected levels of cytokines in the supernatant (including LIF, IL-6, IL-23, IL-10, and TGF-β) using ELISA. RESULTS Our results showed that Ad-MSCs specifically inhibited the differentiation of PBMCs of patients with PD into IL-17-producing CD4+T cells by decreasing expressions of IL-6R, IL-23R, and RORγt (the key transcription factor for Th17 cells). Moreover, Ad-MSCs induced a functional CD4+CD25+Foxp3+T regulatory cell phenotype as evidenced by the secretion of IL-10. The levels of IL-6, IL-23, and TGF-β remained constant after co-culture under either the Th17 or the Treg cell polarizing condition. In addition, levels of LIF protein and its receptor mRNA were significantly increased under both polarizing conditions. CONCLUSION The present in vitro study found that Ad-MSCs from healthy participants were able to correct the imbalance between Th17 and Treg found in PBMCs of PD patients, which were correlated with an increase in LIF secretion and a decrease in expression of IL-6R, IL-23R, and RORγt. These findings should be confirmed by in vivo experiments.
Collapse
Affiliation(s)
- Yong Bi
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Neuroscience, Soochow University, Suzhou, People’s Republic of China
| | - Xiaobin Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Huazheng Liang
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Dehao Yang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaowei Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jianming Ke
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jingjing Xiao
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Zhilin Chen
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Weian Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Shaoshi Wang
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Institute of Neuroscience, Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
15
|
Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9080647. [PMID: 32707949 PMCID: PMC7466131 DOI: 10.3390/antiox9080647] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress develops as a response to injury and reflects a breach in the cell’s antioxidant capacity. Therefore, the fine-tuning of reactive oxygen species (ROS) generation is crucial for preserving cell’s homeostasis. Mitochondria are a major source and an immediate target of ROS. Under different stimuli, including oxidative stress and impaired quality control, mitochondrial constituents (e.g., mitochondrial DNA, mtDNA) are displaced toward intra- or extracellular compartments. However, the mechanisms responsible for mtDNA unloading remain largely unclear. While shuttling freely within the cell, mtDNA can be delivered into the extracellular compartment via either extrusion of entire nucleoids or the generation and release of extracellular vesicles. Once discarded, mtDNA may act as a damage-associated molecular pattern (DAMP) and trigger an innate immune inflammatory response by binding to danger-signal receptors. Neuroinflammation is associated with a large array of neurological disorders for which mitochondrial DAMPs could represent a common thread supporting disease progression. The exploration of non-canonical pathways involved in mitochondrial quality control and neurodegeneration may unveil novel targets for the development of therapeutic agents. Here, we discuss these processes in the setting of two common neurodegenerative diseases (Alzheimer’s and Parkinson’s disease) and Down syndrome, the most frequent progeroid syndrome.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Correspondence: (R.C.); (R.B.); Tel.: +39-06-3015-5559 (R.C. & R.B.); Fax: +39-06-3051-911 (R.C. & R.B.)
| | | | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Correspondence: (R.C.); (R.B.); Tel.: +39-06-3015-5559 (R.C. & R.B.); Fax: +39-06-3051-911 (R.C. & R.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
16
|
Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J. Parkinson disease and the immune system - associations, mechanisms and therapeutics. Nat Rev Neurol 2020; 16:303-318. [PMID: 32332985 DOI: 10.1038/s41582-020-0344-4] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Multiple lines of evidence indicate that immune system dysfunction has a role in Parkinson disease (PD); this evidence includes clinical and genetic associations between autoimmune disease and PD, impaired cellular and humoral immune responses in PD, imaging evidence of inflammatory cell activation and evidence of immune dysregulation in experimental models of PD. However, the mechanisms that link the immune system with PD remain unclear, and the temporal relationships of innate and adaptive immune responses with neurodegeneration are unknown. Despite these challenges, our current knowledge provides opportunities to develop immune-targeted therapeutic strategies for testing in PD, and clinical studies of some approaches are under way. In this Review, we provide an overview of the clinical observations, preclinical experiments and clinical studies that provide evidence for involvement of the immune system in PD and that help to define the nature of this association. We consider autoimmune mechanisms, central and peripheral inflammatory mechanisms and immunogenetic factors. We also discuss the use of this knowledge to develop immune-based therapeutic approaches, including immunotherapy that targets α-synuclein and the targeting of immune mediators such as inflammasomes. We also consider future research and clinical trials necessary to maximize the potential of targeting the immune system.
Collapse
Affiliation(s)
- Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.
- National Neuroscience Institute, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| | - Yin-Xia Chao
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Andrew West
- Duke Center for Neurodegeneration and Neurotherapeutics, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Ling-Ling Chan
- Duke-NUS Medical School, Singapore, Singapore
- Department of Radiology, Singapore General Hospital, Singapore, Singapore
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Shams R, Banik NL, Haque A. Calpain in the cleavage of alpha-synuclein and the pathogenesis of Parkinson's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:107-124. [PMID: 31601400 PMCID: PMC8434815 DOI: 10.1016/bs.pmbts.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Parkinson's disease (PD) devastates 6.3 million people, ranking it as one of the most prevalent neurodegenerative motor disorders worldwide. PD patients may manifest symptoms of postural instability, bradykinesia, and resting tremors as a result of increasing α-synuclein aggregation and neuron death with disease progression. Therapy options are limited, and those available to patients may worsen their condition. Thus, investigations to understand disease progression may help develop therapeutic strategies for improvement of quality of life for patients suffering from PD. This review provides an overview of α-synuclein, a presynaptic neuronal protein whose function in the healthy brain and PD pathology remains a mystery. This review also focuses on calcium-induced activation of calpain, a neutral protease, and the subsequent cascade of cellular processing of α-synuclein and emerging defense responses observed in experimental models of PD: microglial activation, dysregulation of T cells, and inflammatory responses in the brain. In addition, this review discusses the events of cross presentation of synuclein peptides by professional antigen presenting cells and microglia, induction of inflammatory responses in the periphery and brain, and emerging calpain-targeted therapeutic strategies to attenuate neuronal death in PD.
Collapse
Affiliation(s)
- Ramsha Shams
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Naren L Banik
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|