1
|
Romero-Molina AO, Ramirez-Garcia G, Chirino-Perez A, Padron-Rivera G, Hernandez-Castillo CR, Garcia-Gomar MG, Torres-Vences DL, Fernandez-Ruiz J. Cerebellar cognitive affective syndrome in patients with spinocerebellar ataxia type 10. PLoS One 2025; 20:e0319505. [PMID: 40029932 PMCID: PMC11875346 DOI: 10.1371/journal.pone.0319505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/03/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant cerebellar ataxia, characterized by epilepsy, ataxic symptoms, and cognitive impairments linked to Cerebellar Cognitive Affective Syndrome (CCAS). The Cerebellar Cognitive Affective Syndrome Scale (CCAS-S) has been developed to identify CCAS across various cerebellar pathologies. OBJECTIVE To determine whether patients with SCA10 exhibit CCAS using the CCAS-S, and to compare its effectiveness with the Montreal Cognitive Assessment (MoCA). A secondary objective was to evaluate the effect of demographic and clinical data on CCAS-S performance. METHOD Fifteen patients with SCA10 and fifteen matched controls underwent assessments using the CCAS-S, the MoCA, the Scale for the Assessment and Rating of Ataxia (SARA), and the Center for Epidemiologic Studies Depression Scale (CES-D). Diagnostic accuracy was analyzed using ROC curve analysis, comparing total and subcategory scores between groups. Demographic and clinical data were examined for relations with CCAS-S scores. RESULTS The CCAS-S effectively distinguished cognitive impairments in SCA10 patients, showing satisfactory sensitivity and specificity (AUC of 0.83). Although no significant differences were found in the AUCs between CCAS-S and MoCA (p = 0.45), the CCAS-S demonstrated a significantly larger effect size in the comparison between patients and control group (d = 2.33). Cognitive performance was poorer in patients than in controls (p = < 0.001), with depressive symptoms and age having a significant impact on CCAS-S outcomes. CONCLUSIONS Patients with the SCA10 mutation exhibit CCAS. Besides the significant cognitive impairment, also detected by MoCA, the CCAS-S score was significantly affected by indicators of depressive mood and age, highlighting the importance of considering these variables during outcome analyses.
Collapse
Affiliation(s)
- Angel Omar Romero-Molina
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Gabriel Ramirez-Garcia
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Amanda Chirino-Perez
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Gustavo Padron-Rivera
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | | | - Maria Guadalupe Garcia-Gomar
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autonoma de Mexico, Juriquilla, Queretaro, Mexico
| | - Diana Laura Torres-Vences
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Juan Fernandez-Ruiz
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
2
|
Donofrio SG, Brandenburg C, Brown AM, Lin T, Lu HC, Sillitoe RV. Cerebellar Purkinje cell stripe patterns reveal a differential vulnerability and resistance to cell loss during normal aging in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634923. [PMID: 39974902 PMCID: PMC11838208 DOI: 10.1101/2025.01.26.634923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Age-related neurodegenerative diseases involve reduced cell numbers and impaired behavioral capacity. Neurodegeneration and behavioral deficits also occur during aging, and notably in the absence of disease. The cerebellum, which modulates movement and cognition, is susceptible to cell loss in both aging and disease. Here, we demonstrate that cerebellar Purkinje cell loss in aged mice is not spatially random but rather occurs in a pattern of parasagittal stripes. We also find that aged mice exhibit impaired motor coordination and more severe tremor compared to younger mice. However, the relationship between patterned Purkinje cell loss and motor dysfunction is not straightforward. Examination of postmortem samples of human cerebella from neurologically typical individuals supports the presence of selective loss of Purkinje cells during aging. These data reveal a spatiotemporal cellular substrate for aging in the cerebellum that may inform about how neuronal vulnerability leads to neurodegeneration and the ensuing deterioration of behavior.
Collapse
|
3
|
Chen J, Wei Y, Xue K, Gao X, Zhang M, Han S, Wen B, Wu G, Cheng J. Static and temporal dynamic changes of intrinsic brain activity in early-onset and adult-onset schizophrenia: a fMRI study of interaction effects. Front Neurol 2024; 15:1445599. [PMID: 39655163 PMCID: PMC11625647 DOI: 10.3389/fneur.2024.1445599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Background Schizophrenia is characterized by altered static and dynamic spontaneous brain activity. However, the conclusions regarding this are inconsistent. Evidence has revealed that this inconsistency could be due to mixed effects of age of onset. Methods We enrolled 66/84 drug-naïve first-episode patients with early-onset/adult-onset schizophrenia (EOS/AOS) and matched normal controls (NCs) (46 adolescents, 73 adults), undergoing resting-state functional magnetic resonance imaging. Two-way ANOVA was used to determine the amplitude of low-frequency fluctuation (ALFF) and dynamic ALFF (dALFF) among the four groups. Result Compared to NCs, EOS had a higher ALFF in inferior frontal gyrus bilateral triangular part (IFG-tri), left opercular part (IFG-oper), left orbital part (IFG-orb), and left middle frontal gyrus (MFG). The AOS had a lower ALFF in left IFG-tri, IFG-oper, and lower dALFF in left IFG-tri. Compared to AOS, EOS had a higher ALFF in the left IFG-orb, and MFG, and higher dALFF in IFG-tri. Adult NCs had higher ALFF and dALFF in the prefrontal cortex (PFC) than adolescent NCs. The main effects of diagnosis were found in the PFC, medial temporal structures, cerebrum, visual and sensorimotor networks, the main effects of age were found in the visual and motor networks of ALFF and PFC of dALFF. Conclusion Our findings unveil the static and dynamic neural activity mechanisms involved in the interaction between disorder and age in schizophrenia. Our results underscore age-related abnormalities in the neural activity of the PFC, shedding new light on the neurobiological mechanisms underlying the development of schizophrenia. This insight may offer valuable perspectives for the specific treatment of EOS in clinical settings.
Collapse
Affiliation(s)
- Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Guangyu Wu
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| |
Collapse
|
4
|
Alves CL, Martinelli T, Sallum LF, Rodrigues FA, Toutain TGLDO, Porto JAM, Thielemann C, Aguiar PMDC, Moeckel M. Multiclass classification of Autism Spectrum Disorder, attention deficit hyperactivity disorder, and typically developed individuals using fMRI functional connectivity analysis. PLoS One 2024; 19:e0305630. [PMID: 39418298 PMCID: PMC11486369 DOI: 10.1371/journal.pone.0305630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/03/2024] [Indexed: 10/19/2024] Open
Abstract
Neurodevelopmental conditions, such as Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD), present unique challenges due to overlapping symptoms, making an accurate diagnosis and targeted intervention difficult. Our study employs advanced machine learning techniques to analyze functional magnetic resonance imaging (fMRI) data from individuals with ASD, ADHD, and typically developed (TD) controls, totaling 120 subjects in the study. Leveraging multiclass classification (ML) algorithms, we achieve superior accuracy in distinguishing between ASD, ADHD, and TD groups, surpassing existing benchmarks with an area under the ROC curve near 98%. Our analysis reveals distinct neural signatures associated with ASD and ADHD: individuals with ADHD exhibit altered connectivity patterns of regions involved in attention and impulse control, whereas those with ASD show disruptions in brain regions critical for social and cognitive functions. The observed connectivity patterns, on which the ML classification rests, agree with established diagnostic approaches based on clinical symptoms. Furthermore, complex network analyses highlight differences in brain network integration and segregation among the three groups. Our findings pave the way for refined, ML-enhanced diagnostics in accordance with established practices, offering a promising avenue for developing trustworthy clinical decision-support systems.
Collapse
Affiliation(s)
- Caroline L. Alves
- Laboratory for Hybrid Modeling, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| | - Tiago Martinelli
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Loriz Francisco Sallum
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Joel Augusto Moura Porto
- Institute of Physics of São Carlos (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
- Institute of Biological Information Processing, Heinrich Heine University Düsseldorf, Düsseldorf, North Rhine–Westphalia Land, Germany
| | - Christiane Thielemann
- BioMEMS Lab, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| | - Patrícia Maria de Carvalho Aguiar
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Michael Moeckel
- Laboratory for Hybrid Modeling, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| |
Collapse
|
5
|
Berlijn AM, Huvermann DM, Schneider S, Bellebaum C, Timmann D, Minnerop M, Peterburs J. The Role of the Human Cerebellum for Learning from and Processing of External Feedback in Non-Motor Learning: A Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1532-1551. [PMID: 38379034 PMCID: PMC11269477 DOI: 10.1007/s12311-024-01669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
This review aimed to systematically identify and comprehensively review the role of the cerebellum in performance monitoring, focusing on learning from and on processing of external feedback in non-motor learning. While 1078 articles were screened for eligibility, ultimately 36 studies were included in which external feedback was delivered in cognitive tasks and which referenced the cerebellum. These included studies in patient populations with cerebellar damage and studies in healthy subjects applying neuroimaging. Learning performance in patients with different cerebellar diseases was heterogeneous, with only about half of all patients showing alterations. One patient study using EEG demonstrated that damage to the cerebellum was associated with altered neural processing of external feedback. Studies assessing brain activity with task-based fMRI or PET and one resting-state functional imaging study that investigated connectivity changes following feedback-based learning in healthy participants revealed involvement particularly of lateral and posterior cerebellar regions in processing of and learning from external feedback. Cerebellar involvement was found at different stages, e.g., during feedback anticipation and following the onset of the feedback stimuli, substantiating the cerebellum's relevance for different aspects of performance monitoring such as feedback prediction. Future research will need to further elucidate precisely how, where, and when the cerebellum modulates the prediction and processing of external feedback information, which cerebellar subregions are particularly relevant, and to what extent cerebellar diseases alter these processes.
Collapse
Affiliation(s)
- Adam M Berlijn
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Dana M Huvermann
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sandra Schneider
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Bellebaum
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martina Minnerop
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Jutta Peterburs
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Romero-Molina AO, Ramirez-Garcia G, Chirino-Perez A, Fuentes-Zavaleta DA, Hernandez-Castillo CR, Marrufo-Melendez O, Lopez-Gonzalez D, Rodriguez-Rodriguez M, Castorena-Maldonado A, Rodriguez-Agudelo Y, Paz-Rodriguez F, Chavez-Oliveros M, Lozano-Tovar S, Gutierrez-Romero A, Arauz-Gongora A, Garcia-Santos RA, Fernandez-Ruiz J. SARS-CoV-2's brain impact: revealing cortical and cerebellar differences via cluster analysis in COVID-19 recovered patients. Neurol Sci 2024; 45:837-848. [PMID: 38172414 DOI: 10.1007/s10072-023-07266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND COVID-19 is a disease known for its neurological involvement. SARS-CoV-2 infection triggers neuroinflammation, which could significantly contribute to the development of long-term neurological symptoms and structural alterations in the gray matter. However, the existence of a consistent pattern of cerebral atrophy remains uncertain. OBJECTIVE Our study aimed to identify patterns of brain involvement in recovered COVID-19 patients and explore potential relationships with clinical variables during hospitalization. METHODOLOGY In this study, we included 39 recovered patients and 39 controls from a pre-pandemic database to ensure their non-exposure to the virus. We obtained clinical data of the patients during hospitalization, and 3 months later; in addition we obtained T1-weighted magnetic resonance images and performed standard screening cognitive tests. RESULTS We identified two groups of recovered patients based on a cluster analysis of the significant cortical thickness differences between patients and controls. Group 1 displayed significant cortical thickness differences in specific cerebral regions, while Group 2 exhibited significant differences in the cerebellum, though neither group showed cognitive deterioration at the group level. Notably, Group 1 showed a tendency of higher D-dimer values during hospitalization compared to Group 2, prior to p-value correction. CONCLUSION This data-driven division into two groups based on the brain structural differences, and the possible link to D-dimer values may provide insights into the underlying mechanisms of SARS-COV-2 neurological disruption and its impact on the brain during and after recovery from the disease.
Collapse
Affiliation(s)
- Angel Omar Romero-Molina
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Gabriel Ramirez-Garcia
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Amanda Chirino-Perez
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Juan Fernandez-Ruiz
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.
| |
Collapse
|
7
|
Akefe IO, Saber SH, Matthews B, Venkatesh BG, Gormal RS, Blackmore DG, Alexander S, Sieriecki E, Gambin Y, Bertran-Gonzalez J, Vitale N, Humeau Y, Gaudin A, Ellis SA, Michaels AA, Xue M, Cravatt B, Joensuu M, Wallis TP, Meunier FA. The DDHD2-STXBP1 interaction mediates long-term memory via generation of saturated free fatty acids. EMBO J 2024; 43:533-567. [PMID: 38316990 PMCID: PMC10897203 DOI: 10.1038/s44318-024-00030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
The phospholipid and free fatty acid (FFA) composition of neuronal membranes plays a crucial role in learning and memory, but the mechanisms through which neuronal activity affects the brain's lipid landscape remain largely unexplored. The levels of saturated FFAs, particularly of myristic acid (C14:0), strongly increase during neuronal stimulation and memory acquisition, suggesting the involvement of phospholipase A1 (PLA1) activity in synaptic plasticity. Here, we show that genetic ablation of the PLA1 isoform DDHD2 in mice dramatically reduces saturated FFA responses to memory acquisition across the brain. Furthermore, DDHD2 loss also decreases memory performance in reward-based learning and spatial memory models prior to the development of neuromuscular deficits that mirror human spastic paraplegia. Via pulldown-mass spectrometry analyses, we find that DDHD2 binds to the key synaptic protein STXBP1. Using STXBP1/2 knockout neurosecretory cells and a haploinsufficient STXBP1+/- mouse model of human early infantile encephalopathy associated with intellectual disability and motor dysfunction, we show that STXBP1 controls targeting of DDHD2 to the plasma membrane and generation of saturated FFAs in the brain. These findings suggest key roles for DDHD2 and STXBP1 in lipid metabolism and in the processes of synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Isaac O Akefe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Academy for Medical Education, Medical School, The University of Queensland, 288 Herston Road, 4006, Brisbane, QLD, Australia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD, 4072, Australia
| | - Benjamin Matthews
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bharat G Venkatesh
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Suzy Alexander
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Emma Sieriecki
- School of Medical Science, University of New South Wales, Randwick, NSW, 2052, Australia
- EMBL Australia, Single Molecule Node, University of New South Wales, Sydney, 2052, Australia
| | - Yann Gambin
- School of Medical Science, University of New South Wales, Randwick, NSW, 2052, Australia
- EMBL Australia, Single Molecule Node, University of New South Wales, Sydney, 2052, Australia
| | | | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 CNRS - Université de Strasbourg, Strasbourg, France
| | - Yann Humeau
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Université de Bordeaux, Bordeaux, France
| | - Arnaud Gaudin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sevannah A Ellis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alysee A Michaels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD, 4072, Australia.
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
- The School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
8
|
Campbell T, Diuguid C, Vasaya S, Janda P, Vickers A. Mixed Aphasia Caused by Bilateral Cerebellar Infarcts: a Case Report. CEREBELLUM (LONDON, ENGLAND) 2024; 23:255-259. [PMID: 36690828 DOI: 10.1007/s12311-023-01521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Although neuroanatomical and physiological understanding of the cerebellum has evolved over recent decades and continues to develop, there is much that remains to be expounded upon, especially with regard to nonmotor roles. Neurocognitive and language processing is one area where involvement of the cerebellum is no longer in question, but the extent and mechanism of this relationship have yet to be defined. For example, which of the cerebellar hemispheres is involved continues to be debated. We present a case wherein a thrombus in the basilar artery led to bihemispheric cerebellar strokes with profound mixed effects on the patient's language and cognition. To the authors' knowledge, this is the first reported case of bilateral cerebellar strokes resulting in a mixed aphasia reported in scientific literature. This demonstrates the importance of continued research into a model for cerebellar function and the clinical impact of lesions to various cerebellar regions.
Collapse
Affiliation(s)
- Taylor Campbell
- Valley Hospital Medical Center, Las Vegas, USA.
- Las Vegas Neurology Center, 2020 Wellness Way Ste. 300, Las Vegas, NV, 89106, USA.
| | - Christy Diuguid
- Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, 1650 W Charleston Blvd, NV, 89016, Las Vegas, USA
| | - Sannah Vasaya
- Valley Hospital Medical Center, Las Vegas, USA
- Las Vegas Neurology Center, 2020 Wellness Way Ste. 300, Las Vegas, NV, 89106, USA
| | - Paul Janda
- Valley Hospital Medical Center, Las Vegas, USA
- Las Vegas Neurology Center, 2020 Wellness Way Ste. 300, Las Vegas, NV, 89106, USA
- Neurology, Touro University Nevada, Henderson, USA
| | - Aroucha Vickers
- Valley Hospital Medical Center, Las Vegas, USA
- Las Vegas Neurology Center, 2020 Wellness Way Ste. 300, Las Vegas, NV, 89106, USA
- Neurology and Neuro-Ophthalmology, Touro University Nevada, Henderson, USA
- Neuro-Ophthalmology Department, Las Vegas Neurology Center, Las Vegas, USA
| |
Collapse
|
9
|
Deviaterikova A, Kasatkin V, Malykh S. The Role of the Cerebellum in Visual-Spatial Memory in Pediatric Posterior Fossa Tumor Survivors. CEREBELLUM (LONDON, ENGLAND) 2024; 23:197-203. [PMID: 36737535 DOI: 10.1007/s12311-023-01525-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The cerebellum is involved in motor and non-motor functions. Cerebellar lesions can underlie the disruption of various executive functions. The violation of executive functions in cerebellar lesions is a serious problem, since children, after completing treatment, must return to school, finish their education, and get a profession. One of the important executive functions is working memory, which contributes to academic success. Deficits of verbal working memory in cerebellar tumors have been studied, in contrast to visual-spatial working memory. To assess this issue, 101 patients who survived cerebellar tumors and 100 healthy control subjects performed a visual-spatial working memory test. As a result, in children who survived cerebellar tumors, visual-spatial working memory is impaired compared to the control group. Moreover, with age, and hence the time since the end of treatment, the number of elements that children can retain in visual-spatial working memory increases, but still remains smaller compared to the control group. Our findings complement the idea of cerebellar involvement in visual-spatial working memory and suggest that it is disrupted by cerebellar lesions in children.
Collapse
Affiliation(s)
- Alena Deviaterikova
- Neurocognitive Laboratory, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117997, Russia.
- Research Institute for Brain Development and Peak Performance, Peoples' Friendship University of Russia, Moscow, 117198, Russia.
| | - Vladimir Kasatkin
- Research Institute for Brain Development and Peak Performance, Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - Sergey Malykh
- Developmental Behavioral Genetics Lab, Psychological Institute of Russian Academy of Education, Moscow, 125009, Russia
| |
Collapse
|
10
|
Toth AJ, Harvey C, Gullane H, Kelly N, Bruton A, Campbell MJ. The effect of bipolar bihemispheric tDCS on executive function and working memory abilities. Front Psychol 2024; 14:1275878. [PMID: 38235279 PMCID: PMC10791995 DOI: 10.3389/fpsyg.2023.1275878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Cognitive functioning is central to the ability to learn, problem solve, remember, and use information in a rapid and accurate manner and cognitive abilities are fundamental for communication, autonomy, and quality of life. Transcranial electric stimulation (tES) is a very promising tool shown to improve various motor and cognitive functions. When applied as a direct current stimulus (transcranial direct current stimulation; tDCS) over the dorsolateral pre-frontal cortex (DLPFC), this form of neurostimulation has mixed results regarding its ability to slow cognitive deterioration and potentially enhance cognitive functioning, requiring further investigation. This study set out to comprehensively investigate the effect that anodal and cathodal bipolar bihemispheric tDCS have on executive function and working memory abilities. Methods 72 healthy young adults were recruited, and each participant was randomly allocated to either a control group (CON), a placebo group (SHAM) or one of two neurostimulation groups (Anodal; A-STIM and Cathodal; C-STIM). All participants undertook cognitive tests (Stroop & N Back) before and after a 30-minute stimulation/ sham/ control protocol. Results Overall, our results add further evidence that tDCS may not be as efficacious for enhancing cognitive functioning as it has been shown to be for enhancing motor learning when applied over M1. We also provide evidence that the effect of neurostimulation on cognitive functioning may be moderated by sex, with males demonstrating a benefit from both anodal and cathodal stimulation when considering performance on simple attention trial types within the Stroop task. Discussion Considering this finding, we propose a new avenue for tDCS research, that the potential that sex may moderate the efficacy of neurostimulation on cognitive functioning.
Collapse
Affiliation(s)
- Adam J. Toth
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
- Lero Institute, University of Limerick, Limerick, Ireland
| | - Cliodhna Harvey
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Hannah Gullane
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Niall Kelly
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Adam Bruton
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Mark J. Campbell
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
- The Science Foundation Ireland Center for Software Research, Lero Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
11
|
Dondé C, Dubertret C, Fond G, Andre M, Berna F, Boyer L, Capdevielle D, Chereau I, Coulon N, Dorey JM, Leignier S, Llorca PM, Misdrahi D, Passerieux C, Pignon B, Rey R, Schorr B, Schürhoff F, Urbach M, Polosan M, Mallet J. History of learning disorders is associated with worse cognitive and functional outcomes in schizophrenia: results from the multicentric FACE-SZ cross-sectional dataset. Eur Arch Psychiatry Clin Neurosci 2023; 273:1773-1783. [PMID: 36583738 DOI: 10.1007/s00406-022-01544-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
Schizophrenia is associated with early neurodevelopmental disorders, including most frequently learning disorders (LD), among them dyslexia and dyspraxia. Despite the demonstrated links between schizophrenia and LD, specific clinical patterns of the schizophrenia with a history of LD subgroup remain unknown. The aim of the present study was to investigate cognitive impairment, symptoms and functional outcome associated with a history of LD in a large cross-sectional, multicentric, sample of schizophrenia subjects. 492 community-dwelling subjects with schizophrenia (75.6% male, mean age 30.8 years) were consecutively included in the network of the FondaMental Expert Centers for Schizophrenia in France and received a thorough clinical assessment. The 51 (10.4%) subjects identified with a history of LD had significantly impaired general cognitive ability (Wechsler Adult Intelligence Scale Full Scale Total IQ: Cohen's d = 0.50, p = 0.001), processing speed (d = 0.19), verbal comprehension (d = 0.29), working memory (d = 0.31), cognitive inhibition and flexibility (d = 0.26), central executive functioning (d = 0.26), phonemic verbal fluency (d = 0.22) and premorbid intellectual ability (d = 0.48), as well as with a worse functional outcome (Global Assessment of Functioning, d = 0.21), independently of age, sex, education level, symptoms, treatments, and addiction comorbidities. These results indicate that a history of LD is associated with later cognitive impairment and functional outcome in schizophrenia. This suggests that history of LD is a relevant clinical marker to discriminate subgroups of patients with schizophrenia with different profiles in a precision psychiatry framework.
Collapse
Affiliation(s)
- Clément Dondé
- Fondation Fondamental, Créteil, France.
- Univ. Grenoble Alpes, Inserm, U1216, Adult Psychiatry Department CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
- Psychiatry Department, CH Alpes-Isère, 38000, Saint-Egrève, France.
| | - Caroline Dubertret
- Fondation Fondamental, Créteil, France
- Institute of Psychiatry and Neuroscience of Paris, Université de Paris, INSERM UMR1266, Paris, France
- Department of Psychiatry, AP-HP, Louis Mourier Hospital, Colombes, France
| | - Guillaume Fond
- Fondation Fondamental, Créteil, France
- School of Medicine - La Timone Medical Campus, EA 3279: CEReSS - Health Service Research and Quality of Life Center, AP-HM, Aix-Marseille Univ., 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Myrtille Andre
- Fondation Fondamental, Créteil, France
- Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Inserm 1061, Montpellier, France
| | - Fabrice Berna
- Fondation Fondamental, Créteil, France
- Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Strasbourg, France
| | - Laurent Boyer
- Fondation Fondamental, Créteil, France
- School of Medicine - La Timone Medical Campus, EA 3279: CEReSS - Health Service Research and Quality of Life Center, AP-HM, Aix-Marseille Univ., 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Delphine Capdevielle
- Fondation Fondamental, Créteil, France
- Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Inserm 1061, Montpellier, France
| | - Isabelle Chereau
- Fondation Fondamental, Créteil, France
- University Clermont Auvergne, CMP-B CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Nathalie Coulon
- Fondation Fondamental, Créteil, France
- Centre Expert Schizophrénie, Centre Référent de Réhabilitation Psychosociale et de Remédiation Cognitive (C3R), CH Alpes Isère, Saint-Egrève, France
| | - Jean-Michel Dorey
- Fondation Fondamental, Créteil, France
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 95 Bd Pinel, BP 30039, 69678, Bron Cedex, France
| | - Sylvain Leignier
- Fondation Fondamental, Créteil, France
- Centre Expert Schizophrénie, Centre Référent de Réhabilitation Psychosociale et de Remédiation Cognitive (C3R), CH Alpes Isère, Saint-Egrève, France
| | - Pierre-Michel Llorca
- Fondation Fondamental, Créteil, France
- University Clermont Auvergne, CMP-B CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000, Clermont-Ferrand, France
| | - David Misdrahi
- Department of Psychiatry, AP-HP, Louis Mourier Hospital, Colombes, France
- Department of Adult Psychiatry, Charles Perrens Hospital, Bordeaux, France
- Aquitaine Institute for Cognitive and Integrative Neuroscience, UMR 5287-INCIA, University of Bordeaux, CNRS, Bordeaux, France
| | - Christine Passerieux
- Fondation Fondamental, Créteil, France
- Department of Adult Psychiatry and Addictology, Versailles Hospital, Centre Hospitalier de Versailles, 177 Rue de Versailles, 78157, Le Chesnay, France
- DisAP-DevPsy-CESP, INSERM UMR1018, University of Paris-Saclay, University of Versailles Saint-Quentin-En-Yvelines 94807, Villejuif, France
| | - Baptiste Pignon
- Fondation Fondamental, Créteil, France
- UMR_S955, UPEC, Créteil, France Inserm, U955, Equipe 15 Psychiatrie Génétique, Créteil, France AP-HP, Hôpital H. Mondor-A. Chenevier, Pôle de Psychiatrie, Créteil, France Fondation FondaMental, Fondation de Cooperation Scientifique, Université Paris-Est, Créteil, France
| | - Romain Rey
- Fondation Fondamental, Créteil, France
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 95 Bd Pinel, BP 30039, 69678, Bron Cedex, France
| | - Benoît Schorr
- Fondation Fondamental, Créteil, France
- Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Strasbourg, France
| | - Franck Schürhoff
- Fondation Fondamental, Créteil, France
- UMR_S955, UPEC, Créteil, France Inserm, U955, Equipe 15 Psychiatrie Génétique, Créteil, France AP-HP, Hôpital H. Mondor-A. Chenevier, Pôle de Psychiatrie, Créteil, France Fondation FondaMental, Fondation de Cooperation Scientifique, Université Paris-Est, Créteil, France
| | - Mathieu Urbach
- Fondation Fondamental, Créteil, France
- Department of Adult Psychiatry and Addictology, Versailles Hospital, Centre Hospitalier de Versailles, 177 Rue de Versailles, 78157, Le Chesnay, France
| | - Mircea Polosan
- Fondation Fondamental, Créteil, France
- Univ. Grenoble Alpes, Inserm, U1216, Adult Psychiatry Department CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Psychiatry Department, CH Alpes-Isère, 38000, Saint-Egrève, France
| | - Jasmina Mallet
- Fondation Fondamental, Créteil, France
- Institute of Psychiatry and Neuroscience of Paris, Université de Paris, INSERM UMR1266, Paris, France
- Department of Psychiatry, AP-HP, Louis Mourier Hospital, Colombes, France
| |
Collapse
|
12
|
Liu Y, Yang L, Yan H, Feng C, Jiang W, Li W, Lei Y, Pang L, Liang M, Guo W, Luo S. Increased functional connectivity coupling with supplementary motor area in blepharospasm at rest. Brain Res 2023; 1817:148469. [PMID: 37355150 DOI: 10.1016/j.brainres.2023.148469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVE To explore the abnormalities of brain function in blepharospasm (BSP) and to illustrate its neural mechanisms by assuming supplementary motor area (SMA) as the entry point. METHODS Twenty-five patients with BSP and 23 controls underwent resting-state functional MRI, seed-based functional connectivity (FC), correlation analysis, receiver operating characteristic curve (ROC) analysis, and support vector machine (SVM) were applied to process the data. RESULTS Patients showed that the left medial prefrontal cortex (MPFC), left lingual gyrus, right cerebellar crus I, and right lingual gyrus/cerebellar crus I had enhanced FC with the left SMA, whereas the right inferior temporal gyrus (ITG) had enhanced FC with the right SMA relative to controls. The FC between the left MPFC and left SMA was positively correlated with symptomatic severity. The ROC analysis verified that the abnormal FCs demonstrated in this study can separate patients and controls at high sensitivity and specificity. SVM analysis exhibited that combined FCs of the left SMA were optimal for distinguishing patients and control group at the accuracy of 89.58%, with sensitivity of 92.00% and specificity of 86.96%. CONCLUSIONS Several brain networks partake in the neurobiology of BSP. SMA plays a vital role in several brain networks and might be the key pathogenic factor in BSP. SIGNIFICANCE Providing novel evidence for the engagement of the MPFC in the motor symptoms of BSP, enhancing credibility of the thesis that SMA regulates the neurobiology of BSP, and providing ideas of screening susceptible population of BSP using neuroimaging.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Neurology, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, China
| | - Lu Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Changqiang Feng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wenyan Jiang
- Department of Intensive Care Unit, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wenmei Li
- Department of Radiology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yiwu Lei
- Department of Radiology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lulu Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Meilan Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Shuguang Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
13
|
Peterson RK, Ng R, Ludwig NN, Jacobson LA. Tumor region associated with specific processing speed outcomes. Pediatr Blood Cancer 2023; 70:e30167. [PMID: 36625401 PMCID: PMC10101562 DOI: 10.1002/pbc.30167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Processing speed (PS) is a vulnerable cognitive skill in pediatric cancer survivors as a consequence of treatments and, less consistently, tumor region. Studies conventionally examine graphomotor PS; emerging research suggests other aspects of PS may be impacted. This study examined types of PS in pediatric brain tumor survivors to determine which aspects are impaired. Given discordance across studies, we additionally investigated the relationship between brain region and PS. METHODS The sample consisted of 167 pediatric brain tumor patients (100 supratentorial). PS (oral naming, semantic fluency, phonemic fluency, motor speed, graphomotor speed, visual scanning) was gathered via clinical neuropsychological assessment. To examine PS by region, infratentorial and supratentorial groups were matched on age at diagnosis and neuropsychological assessment, and time since diagnosis. RESULTS The whole sample performed below normative means on measures of oral naming (p < .001), phonemic fluency (p < .001), motor speed (p = .03), visual scanning (p < .001), and graphomotor speed (p < .001). Only oral naming differed by region (p = .03), with infratentorial tumors associated with slower performance. After controlling for known medical and demographic risk factors, brain region remained a significant predictor of performance (p = .04). Among the whole sample, greater than expected proportions of patients with impairment (i.e., >1 standard deviation below the normative mean) were seen across all PS measures. Infratentorial tumors had higher rates of impairments across all PS measures except phonemic fluency. CONCLUSIONS Results indicate pediatric brain tumor survivors demonstrate weaknesses in multiple aspects of PS, suggesting impairments are not secondary to peripheral motor slowing alone. Additionally, tumor region may predict some but not all neuropsychological outcomes in this population.
Collapse
Affiliation(s)
- Rachel K Peterson
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rowena Ng
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha N Ludwig
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisa A Jacobson
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
McDougle SD, Tsay JS, Pitt B, King M, Saban W, Taylor JA, Ivry RB. Continuous manipulation of mental representations is compromised in cerebellar degeneration. Brain 2022; 145:4246-4263. [PMID: 35202465 PMCID: PMC10200308 DOI: 10.1093/brain/awac072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 01/11/2022] [Accepted: 02/05/2022] [Indexed: 01/11/2023] Open
Abstract
We introduce a novel perspective on how the cerebellum might contribute to cognition, hypothesizing that this structure supports dynamic transformations of mental representations. In support of this hypothesis, we report a series of neuropsychological experiments comparing the performance of individuals with degenerative cerebellar disorders on tasks that either entail continuous, movement-like mental operations or more discrete mental operations. In the domain of visual cognition, the cerebellar disorders group exhibited an impaired rate of mental rotation, an operation hypothesized to require the continuous manipulation of a visual representation. In contrast, the cerebellar disorders group showed a normal processing rate when scanning items in visual working memory, an operation hypothesized to require the maintenance and retrieval of remembered items. In the domain of mathematical cognition, the cerebellar disorders group was impaired at single-digit addition, an operation hypothesized to primarily require iterative manipulations along a mental number-line; this group was not impaired on arithmetic tasks linked to memory retrieval (e.g. single-digit multiplication). These results, obtained in tasks from two disparate domains, point to a potential constraint on the contribution of the cerebellum to cognitive tasks. Paralleling its role in motor control, the cerebellum may be essential for coordinating dynamic, movement-like transformations in a mental workspace.
Collapse
Affiliation(s)
| | - Jonathan S Tsay
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94704, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94704, USA
| | - Benjamin Pitt
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94704, USA
| | - Maedbh King
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94704, USA
| | - William Saban
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94704, USA
| | - Jordan A Taylor
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94704, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
15
|
Sütçü G, Doğan M, Topuz S. Investigation of postural control and spatiotemporal parameters of gait during dual tasks in ataxic individuals. Neurol Sci 2022; 43:5943-5949. [DOI: 10.1007/s10072-022-06248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
|
16
|
Monteverdi A, Palesi F, Costa A, Vitali P, Pichiecchio A, Cotta Ramusino M, Bernini S, Jirsa V, Gandini Wheeler-Kingshott CAM, D’Angelo E. Subject-specific features of excitation/inhibition profiles in neurodegenerative diseases. Front Aging Neurosci 2022; 14:868342. [PMID: 35992607 PMCID: PMC9391060 DOI: 10.3389/fnagi.2022.868342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Brain pathologies are characterized by microscopic changes in neurons and synapses that reverberate into large scale networks altering brain dynamics and functional states. An important yet unresolved issue concerns the impact of patients' excitation/inhibition profiles on neurodegenerative diseases including Alzheimer's Disease, Frontotemporal Dementia, and Amyotrophic Lateral Sclerosis. In this work, we used The Virtual Brain (TVB) simulation platform to simulate brain dynamics in healthy and neurodegenerative conditions and to extract information about the excitatory/inhibitory balance in single subjects. The brain structural and functional connectomes were extracted from 3T-MRI (Magnetic Resonance Imaging) scans and TVB nodes were represented by a Wong-Wang neural mass model endowing an explicit representation of the excitatory/inhibitory balance. Simulations were performed including both cerebral and cerebellar nodes and their structural connections to explore cerebellar impact on brain dynamics generation. The potential for clinical translation of TVB derived biophysical parameters was assessed by exploring their association with patients' cognitive performance and testing their discriminative power between clinical conditions. Our results showed that TVB biophysical parameters differed between clinical phenotypes, predicting higher global coupling and inhibition in Alzheimer's Disease and stronger N-methyl-D-aspartate (NMDA) receptor-dependent excitation in Amyotrophic Lateral Sclerosis. These physio-pathological parameters allowed us to perform an advanced analysis of patients' conditions. In backward regressions, TVB-derived parameters significantly contributed to explain the variation of neuropsychological scores and, in discriminant analysis, the combination of TVB parameters and neuropsychological scores significantly improved the discriminative power between clinical conditions. Moreover, cluster analysis provided a unique description of the excitatory/inhibitory balance in individual patients. Importantly, the integration of cerebro-cerebellar loops in simulations improved TVB predictive power, i.e., the correlation between experimental and simulated functional connectivity in all pathological conditions supporting the cerebellar role in brain function disrupted by neurodegeneration. Overall, TVB simulations reveal differences in the excitatory/inhibitory balance of individual patients that, combined with cognitive assessment, can promote the personalized diagnosis and therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anita Monteverdi
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Paolo Vitali
- Department of Radiology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Advanced Imaging and Radiomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Cotta Ramusino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Sara Bernini
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, INSERM, INS, Aix-Marseille University, Marseille, France
| | - Claudia A. M. Gandini Wheeler-Kingshott
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Egidio D’Angelo
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
17
|
Guo Y, Ge Y, Li J, Dou W, Pan Y. Impact of injury duration on a sensorimotor functional network in complete spinal cord injury. J Neurosci Res 2022; 100:1765-1774. [PMID: 35608180 PMCID: PMC9541761 DOI: 10.1002/jnr.25069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Connectivity changes after spinal cord injury (SCI) appear as dynamic post‐injury procedures. The present study aimed to investigate the alterations in the functional connectivity (FC) in different injury duration in complete SCI using resting‐state functional magnetic resonance imaging (fMRI). A total of 30 healthy controls (HCs) and 27 complete SCI patients were recruited in this study. A seed‐based connectivity analysis compared FC differences between HCs and SCI and among SCI subgroups (SCI patients with post‐injury within 6 months (early stage, n = 13) vs. those with post‐injury beyond 6 months (late stage, n = 14)). Compared to HCs, SCI patients showed an increase in FC between sensorimotor cortex and cognitive, visual, and auditory cortices. The FC between motor cortex and cognitive cortex increased over time after injury. The FC between sensory cortex and visual cortex increased within 6 months after SCI, while FC between the sensory cortex and auditory cortex increased beyond 6 months after injury. The FC between sensorimotor cortex and cognitive, visual, auditory regions increased in complete SCI patients. The brain FC changed dynamically, and rehabilitation might be adapted over time after SCI.
Collapse
Affiliation(s)
- Yun Guo
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China.,School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunxiang Ge
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Weibei Dou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Yu Pan
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China.,School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Carugati M, Goodlett CR, Cudd TA, Washburn SE. The effects of gestational choline supplementation on cerebellar Purkinje cell number in the sheep model of binge alcohol exposure during the first trimester-equivalent. Alcohol 2022; 100:11-21. [PMID: 35114358 PMCID: PMC8983574 DOI: 10.1016/j.alcohol.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/01/2022]
Abstract
Individuals with fetal alcohol spectrum disorders (FASD) incur enduring brain damage and neurodevelopmental impairments from prenatal alcohol exposure (PAE). Preclinical rodent models have demonstrated that choline supplementation during development can reduce the severity of adverse neurodevelopmental consequences of PAE. This study used the sheep model to evaluate dietary choline supplementation during pregnancy as a therapeutic intervention, testing the hypothesis that choline can ameliorate alcohol-induced cerebellar Purkinje cell loss. Pregnant ewes were randomly assigned either to a normal control [NC] group (n = 8), or to groups given intravenous infusions of alcohol (or saline) from gestational days 4-41 (the first trimester-equivalent). A weekly binge-drinking pattern was modeled, with three consecutive days of infusions of saline [SAL], 1.75 g/kg/day alcohol [1.75ALC], or 2.5 g/kg/day alcohol [2.5ALC] followed by four days off. Infused ewes were randomly assigned to receive dietary supplements throughout pregnancy of choline (10 mg/kg/day) or placebo (n = 8 per group). Mean blood alcohol concentrations (BAC) were significantly higher in the 2.5ALC groups (287 mg/dL) than the 1.75ALC groups (197 mg/dL). Lamb cerebella were harvested on postnatal day 180 and processed for stereological counts of Purkinje cells. Both alcohol doses caused significant reductions in Purkinje number relative to NC and SAL-Placebo groups, confirming previous findings. Effects of choline supplementation depended on infusion group: it significantly protected against Purkinje cell loss in the 2.5ALC group, had no effect in the 1.75ALC group, and significantly reduced numbers in the SAL-Choline group (though neither the SAL-Choline nor the SAL-Placebo group differed from the NC group). The protection by choline evident only in the 2.5ALC group suggests that multiple, BAC-dependent mechanisms of cerebellar damage may be activated with alcohol exposure in the first trimester, and that choline may protect against pathogenic mechanisms that emerge at higher BACs. These outcomes extend the evidence that early choline supplementation can mitigate some neurodevelopmental defects resulting from binge-like PAE.
Collapse
Affiliation(s)
- Megan Carugati
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Charles R Goodlett
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Timothy A Cudd
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Shannon E Washburn
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States.
| |
Collapse
|
19
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Carai A, Marras CE. Networking of the Human Cerebellum: From Anatomo-Functional Development to Neurosurgical Implications. Front Neurol 2022; 13:806298. [PMID: 35185765 PMCID: PMC8854219 DOI: 10.3389/fneur.2022.806298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
In the past, the cerebellum was considered to be substantially involved in sensory-motor coordination. However, a growing number of neuroanatomical, neuroimaging, clinical and lesion studies have now provided converging evidence on the implication of the cerebellum in a variety of cognitive, affective, social, and behavioral processes as well. These findings suggest a complex anatomo-functional organization of the cerebellum, involving a dense network of cortical territories and reciprocal connections with many supra-tentorial association areas. The final architecture of cerebellar networks results from a complex, highly protracted, and continuous development from childhood to adulthood, leading to integration between short-distance connections and long-range extra-cerebellar circuits. In this review, we summarize the current evidence on the anatomo-functional organization of the cerebellar connectome. We will focus on the maturation process of afferent and efferent neuronal circuitry, and the involvement of these networks in different aspects of neurocognitive processing. The final section will be devoted to identifying possible implications of this knowledge in neurosurgical practice, especially in the case of posterior fossa tumor resection, and to discuss reliable strategies to improve the quality of approaches while reducing postsurgical morbidity.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Luca de Palma
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
20
|
Starowicz-Filip A, Prochwicz K, Kłosowska J, Chrobak AA, Myszka A, Bętkowska-Korpała B, Kwinta B. Cerebellar Functional Lateralization From the Perspective of Clinical Neuropsychology. Front Psychol 2021; 12:775308. [PMID: 34955995 PMCID: PMC8703197 DOI: 10.3389/fpsyg.2021.775308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: The cerebellar functional laterality, with its right hemisphere predominantly involved in verbal performance and the left one engaged in visuospatial processes, has strong empirical support. However, the clinical observation and single research results show that the damage to the right cerebellar hemisphere may cause extralinguistic and more global cognitive decline. The aim of our research was to assess the pattern of cognitive functioning, depending on the cerebellar lesion side, with particular emphasis on the damage to the right cerebellar hemisphere. Method: The study sample consisted of 31 patients with focal cerebellar lesions and 31 controls, free of organic brain damage. The Addenbrooke’s Cognitive Examination ACE III and the Trail Making Test TMT were used to assess patients’ cognitive functioning. Results: Left-sided cerebellar lesion patients scored lower than controls in attention and visuospatial domain, but not in language, fluency, and memory functions. Participants with right-sided cerebellar lesion demonstrated a general deficit of cognitive functioning, with impairments not only in language and verbal fluency subscales but also in all ACE III domains, including memory, attention, and visuospatial functions. The TMT results proved that cerebellar damage is associated with executive function impairment, regardless of the lesion side. Conclusion: The cognitive profiles of patients with cerebellum lesions differ with regard to the lesion side. Left-sided cerebellar lesions are associated with selective visuospatial and attention impairments, whereas the right-sided ones may result in a more global cognitive decline, which is likely secondary to language deficiencies, associated with this lateral cerebellar injury.
Collapse
Affiliation(s)
- Anna Starowicz-Filip
- Department of Medical Psychology, Jagiellonian University Medical College, Kraków, Poland.,Department of Neurosurgery, University Hospital in Krakow, Kraków, Poland
| | | | - Joanna Kłosowska
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | | | - Aneta Myszka
- Department of Neurosurgery, Jagiellonian University Medical College, Kraków, Poland
| | | | - Borys Kwinta
- Department of Neurosurgery, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
21
|
Zhang M, Wang L, Zou F, Wang Y, Wu X. The Brain Structure and Intrinsic Characters of Falsification Thinking in Conditional Proposition Testing. Front Hum Neurosci 2021; 15:684470. [PMID: 34497498 PMCID: PMC8419331 DOI: 10.3389/fnhum.2021.684470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Wason's selection task (WST) as a representative of the field of conditional proposition testing has been explored by multiple disciplines for more than 50 years, but the neural basis of its key falsification thinking remains unclear. Considering that the accuracy of individuals in WST has stability over time, we believe that falsification thinking has a specific brain structural basis and intrinsic neural characteristics. To test this hypothesis, we studied individuals who were able to complete the WST using T1-weighted MRI (using voxel-based morphology (VBM) analysis) and resting electroencephalogram (EEG) (using microstate analysis, which can reflect stable cognitive characteristics of individuals) techniques. First, VBM analysis found that, compared with the verification group, the gray matter volume (GMV) of the left inferior temporal gyrus and the right superior temporal region of the falsification group was larger, whereas the GMV in the cerebellum of the verification group was significantly larger than that of the falsification group. Subsequently, the results of the microstate analysis of the resting EEG data showed that the contribution of class A of the falsification group, which is closely related to the language network, is significantly higher than that of the verification group. Our structural MRI and resting EEG results consistently show that the structure and intrinsic activity pattern of the temporal lobe in individuals with falsification thinking are specific. Furthermore, the findings may provide potential insights into the role of the temporal lobe (which is also a brain region of language processing) in thought.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Li Wang
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Feng Zou
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Yufeng Wang
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Xin Wu
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
22
|
Xiong B, Karim F, Eloy DJ, Ye JH. Gabra6100Q allele Sprague-Dawley rats have a higher sensitivity to hypnosis induced by isoflurane and ethanol than the wild type rats. Neurosci Lett 2021; 762:136142. [PMID: 34332026 DOI: 10.1016/j.neulet.2021.136142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The neurobiological mechanisms underlying how general anesthetics render a patient's unconsciousness (hypnosis) remains elusive. The role of the cerebellum in hypnosis induced by general anesthetics is unknown. Gabra6100Q allele Sprague-Dawley (SD) rats have a naturally occurring single nucleotide polymorphism in the GABAA receptor α6 subunit gene that is expressed exclusively in cerebellum granule cells. METHODS We examined the loss of righting reflex (LORR) induced by isoflurane, and ethanol in Gabra6100Q rats compared with those in wild type (WT) SD rats. We also examined the change of c-Fos expression induced by isoflurane exposure in cerebellum granule cells of both mutant and WT rats. RESULTS Gabra6100Q rats are more sensitive than WT rats to the LORR induced by isoflurane and ethanol. Moreover, isoflurane exposure induced a greater reduction in c-Fos expression in cerebellum granule cells of Gabra6100Q rats than WT rats. CONCLUSIONS Based on these data, we speculate that cerebellum may be involved in the hypnosis induced by some general anesthetics and thus may represent a novel target of general anesthetics.
Collapse
Affiliation(s)
- Bo Xiong
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers-New Jersey Medical School, Newark, NJ, USA; Department of Anesthesiology, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Farabi Karim
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Daniel J Eloy
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers-New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
23
|
Starowicz-Filip A, Prochwicz K, Kłosowska J, Chrobak AA, Krzyżewski R, Myszka A, Rajtar-Zembaty A, Bętkowska-Korpała B, Kwinta B. Is Addenbrooke's Cognitive Examination III Sensitive Enough to Detect Cognitive Dysfunctions in Patients with Focal Cerebellar Lesions? Arch Clin Neuropsychol 2021; 37:423-436. [PMID: 34128041 DOI: 10.1093/arclin/acab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE The main aim of the study was to evaluate whether the available brief test of mental functions Addenbrooke's cognitive examination III (ACE III) detects cognitive impairment in patients with cerebellar damage. The second goal was to show the ACE III cognitive impairment profile of patients with focal cerebellar lesions. METHOD The study sample consisted of 31 patients with focal cerebellar lesions, 78 patients with supratentorial brain damage, and 31 subjects after spine surgery or with spine degeneration considered as control group, free of organic brain damage. The ACE III was used. RESULTS Patients with cerebellar damage obtained significantly lower results in the ACE III total score and in several subscales: attention, fluency, language, and visuospatial domains than healthy controls without brain damage. With the cut-off level of 89 points, the ACE III was characterized by the sensitivity of 71%, specificity of 72%, and accuracy of 72%. The cerebellar cognitive impairment profile was found to be "frontal-like" and similar to that observed in patients with anterior supratentorial brain damage, with decreased ability to retrieve previously learned material and its preserved recognition, impaired word fluency, and executive dysfunction. The results are consistent with cerebellar cognitive affective syndrome. CONCLUSIONS The ACE III can be used as a sensitive screening tool to detect cognitive impairments in patients with cerebellar damage.
Collapse
Affiliation(s)
- Anna Starowicz-Filip
- Chair of Psychiatry, Department of Medical Psychology, Jagiellonian University Medical College, Kraków, Poland.,Department of Neurosurgery, University Hospital, Kraków, Poland
| | | | | | | | - Roger Krzyżewski
- Department of Neurosurgery, Jagiellonian University Medical College, Kraków, Poland
| | - Aneta Myszka
- Department of Neurosurgery, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Rajtar-Zembaty
- Chair of Psychiatry, Department of Medical Psychology, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Bętkowska-Korpała
- Chair of Psychiatry, Department of Medical Psychology, Jagiellonian University Medical College, Kraków, Poland
| | - Borys Kwinta
- Department of Neurosurgery, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
24
|
Wallis TP, Venkatesh BG, Narayana VK, Kvaskoff D, Ho A, Sullivan RK, Windels F, Sah P, Meunier FA. Saturated free fatty acids and association with memory formation. Nat Commun 2021; 12:3443. [PMID: 34103527 PMCID: PMC8187648 DOI: 10.1038/s41467-021-23840-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Polyunsaturated free fatty acids (FFAs) such as arachidonic acid, released by phospholipase activity on membrane phospholipids, have long been considered beneficial for learning and memory and are known modulators of neurotransmission and synaptic plasticity. However, the precise nature of other FFA and phospholipid changes in specific areas of the brain during learning is unknown. Here, using a targeted lipidomics approach to characterise FFAs and phospholipids across the rat brain, we demonstrated that the highest concentrations of these analytes were found in areas of the brain classically involved in fear learning and memory, such as the amygdala. Auditory fear conditioning led to an increase in saturated (particularly myristic and palmitic acids) and to a lesser extent unsaturated FFAs (predominantly arachidonic acid) in the amygdala and prefrontal cortex. Both fear conditioning and changes in FFA required activation of NMDA receptors. These results suggest a role for saturated FFAs in memory acquisition.
Collapse
Affiliation(s)
- Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Bharat G Venkatesh
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Vinod K Narayana
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - David Kvaskoff
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| | - Alan Ho
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Robert K Sullivan
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - François Windels
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, P. R. China
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
25
|
Liu S, Luo S, Yan T, Ma W, Wei X, Chen Y, Zhan S, Wang B. Differential Modulating Effect of Acupuncture in Patients With Migraine Without Aura: A Resting Functional Magnetic Resonance Study. Front Neurol 2021; 12:680896. [PMID: 34122321 PMCID: PMC8193984 DOI: 10.3389/fneur.2021.680896] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction: Migraine is a recurrent neurological disorder, the symptoms of which can be significantly relieved by acupuncture. However, the central mechanism via which acupuncture exerts its therapeutic effect in migraine is unclear. The aim of this study was to compare the differences in regional homogeneity (ReHo) between patients with migraine without aura (MwoA) and healthy controls (HCs) and to explore the immediate and cumulative therapeutic effect of acupuncture in patients with MwoA using resting-state functional magnetic resonance imaging (fMRI). Methods: The study subjects were 40 patients with MwoA and 16 matched HCs. The patients with MwoA received acupuncture on 2 days per week for 6 weeks for a total of 12 sessions followed by 24 weeks of follow-up. The primary clinical efficacy outcomes were the number of days with migraine and the average severity of headache. Secondary outcomes were the Migraine-Specific Quality of Life Questionnaire, Self-Rating Anxiety Scale, and Self-Rating Depression Scale scores. In the migraine group, resting-state blood-oxygen-level-dependent fMRI scans were obtained at baseline and after the first and 12th acupuncture sessions to measure the ReHo value. In the HCs, only a baseline resting-state blood-oxygen-level-dependent fMRI scan was obtained. Results: Compared with the control group, the migraine group had a significantly lower ReHo value in the cerebellum, which increased after the first acupuncture session. Long-term acupuncture significantly improved migraine symptoms and mood with a therapeutic effect that lasted for at least 6 months. After 12 acupuncture sessions, there were significant increase of cerebellum and angular gyrus in the migraine group. Conclusion: These findings suggest that migraine is related to cerebellar dysfunction. Acupuncture can relieve the symptoms of migraine, improve dysfunction of cerebellum, and activate brain regions involved in modulation of pain and emotion The cumulative therapeutic effect of acupuncture is more extensive and significant than its immediate effect.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shilei Luo
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianwei Yan
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Ma
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangyu Wei
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yilei Chen
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Wang
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Schmitz-Hübsch T, Lux S, Bauer P, Brandt AU, Schlapakow E, Greschus S, Scheel M, Gärtner H, Kirlangic ME, Gras V, Timmann D, Synofzik M, Giorgetti A, Carloni P, Shah JN, Schöls L, Kopp U, Bußenius L, Oberwahrenbrock T, Zimmermann H, Pfueller C, Kadas EM, Rönnefarth M, Grosch AS, Endres M, Amunts K, Paul F, Doss S, Minnerop M. Spinocerebellar ataxia type 14: refining clinicogenetic diagnosis in a rare adult-onset disorder. Ann Clin Transl Neurol 2021; 8:774-789. [PMID: 33739604 PMCID: PMC8045942 DOI: 10.1002/acn3.51315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives Genetic variant classification is a challenge in rare adult‐onset disorders as in SCA‐PRKCG (prior spinocerebellar ataxia type 14) with mostly private conventional mutations and nonspecific phenotype. We here propose a refined approach for clinicogenetic diagnosis by including protein modeling and provide for confirmed SCA‐PRKCG a comprehensive phenotype description from a German multi‐center cohort, including standardized 3D MR imaging. Methods This cross‐sectional study prospectively obtained neurological, neuropsychological, and brain imaging data in 33 PRKCG variant carriers. Protein modeling was added as a classification criterion in variants of uncertain significance (VUS). Results Our sample included 25 cases confirmed as SCA‐PRKCG (14 variants, thereof seven novel variants) and eight carriers of variants assigned as VUS (four variants) or benign/likely benign (two variants). Phenotype in SCA‐PRKCG included slowly progressive ataxia (onset at 4–50 years), preceded in some by early‐onset nonprogressive symptoms. Ataxia was often combined with action myoclonus, dystonia, or mild cognitive‐affective disturbance. Inspection of brain MRI revealed nonprogressive cerebellar atrophy. As a novel finding, a previously not described T2 hyperintense dentate nucleus was seen in all SCA‐PRKCG cases but in none of the controls. Interpretation In this largest cohort to date, SCA‐PRKCG was characterized as a slowly progressive cerebellar syndrome with some clinical and imaging features suggestive of a developmental disorder. The observed non‐ataxia movement disorders and cognitive‐affective disturbance may well be attributed to cerebellar pathology. Protein modeling emerged as a valuable diagnostic tool for variant classification and the newly described T2 hyperintense dentate sign could serve as a supportive diagnostic marker of SCA‐PRKCG.
Collapse
Affiliation(s)
- Tanja Schmitz-Hübsch
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,CENTOGENE AG, Rostock, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, CA, USA
| | - Elena Schlapakow
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Susanne Greschus
- Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Department of Neuroradiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Hanna Gärtner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
| | - Mehmet E Kirlangic
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Institute for Biomedical Engineering and Computer Science, Technische Universität Ilmenau, Ilmenau, Germany
| | - Vincent Gras
- Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, Juelich, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alejandro Giorgetti
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Research Centre Juelich, Juelich, Germany.,Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Research Centre Juelich, Juelich, Germany
| | - Jon N Shah
- Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, Juelich, Germany.,Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ute Kopp
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lisa Bußenius
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Institute for Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Clinic Hamburg Eppendorf, Hamburg, Germany
| | - Timm Oberwahrenbrock
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Caspar Pfueller
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Ella-Maria Kadas
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Maria Rönnefarth
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anne-Sophie Grosch
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sarah Doss
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Movement Disorders Section, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
27
|
Khodarahimi S, Rasti A, Rahmian Bougar M. The impact of demographics and nutritional status on cognitive functioning in an Iranian adults sample. PSYCHOLOGIE FRANCAISE 2021. [DOI: 10.1016/j.psfr.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
The Polarity-Specific Nature of Single-Session High-definition Transcranial Direct Current Stimulation to the Cerebellum and Prefrontal Cortex on Motor and Non-motor Task Performance. THE CEREBELLUM 2021; 20:569-583. [PMID: 33544371 DOI: 10.1007/s12311-021-01235-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
The cerebellum has an increasingly recognized role in higher order cognition. Advancements in noninvasive neuromodulation techniques allow one to focally create functional alterations in the cerebellum to investigate its role in cognitive functions. To this point, work in this area has been mixed, in part due to varying methodologies for stimulation, and it is unclear whether or not transcranial direct current stimulation (tDCS) effects on the cerebellum are task or load dependent. Here, we employed a between-subjects design using a high definition tDCS system to apply anodal, cathodal, or sham stimulation to the cerebellum or prefrontal cortex (PFC) to examine the role the cerebellum plays in verbal working memory, inhibition, motor learning, and balance performance, and how this interaction might interact with the cortex (i.e., PFC). We predicted performance decrements following anodal stimulation and performance increases following cathodal stimulation, compared with sham. Broadly, our work provides evidence for cerebellar contributions to cognitive processing, particularly in verbal working memory and sequence learning. Additionally, we found the effect of stimulation might be load specific, particularly when applied to the cerebellum. Critically, anodal stimulation negatively impacted performance during effortful processing, but was helpful during less effortful processing. Cathodal stimulation hindered task performance, regardless of simulation region. The current results suggest an effect of stimulation on cognition, perhaps suggesting that the cerebellum is more critical when processing is less effortful but becomes less involved under higher load when processing is more prefrontally dependent.
Collapse
|
29
|
Olopade FE, Femi-Akinlosotu O, Adekanmbi AJ, Ajani S, Shokunbi MT. Neurobehavioural changes and morphological study of cerebellar purkinje cells in kaolin induced hydrocephalus. Anat Sci Int 2021; 96:87-96. [PMID: 32789737 DOI: 10.1007/s12565-020-00561-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022]
Abstract
Cerebellar abnormalities are commonly associated with hydrocephalus. However, the effect of hydrocephalus on the otherwise normal cerebellum has been largely neglected. This study assesses the morphological changes in the Purkinje cells in relation to cerebellar dysfunction observed in juvenile hydrocephalic rats. Fifty-five three-week old albino Wistar rats were used, hydrocephalus was induced by intracisternal injection of kaolin (n = 35) and others served as controls (n = 20). Body weight measurements, hanging wire, negative geotaxis, and open field tests were carried out at the onset and then weekly for 4 weeks, rats were killed, and their cerebella processed for Hematoxylin and Eosin, Cresyl violet and Golgi staining. Qualitative and quantitative studies were carried out; quantitative data were analyzed using two-way ANOVA and independent T tests at p < 0.05. Hydrocephalic rats weighed less than controls (p = 0.0247) but their cerebellar weights were comparable. The hydrocephalic rats had a consistently shorter latency to fall in the hanging wire test (F(4,112) = 18.63; p < 0.0001), longer latency to turn in the negative geotaxis test (F(4,112) = 22.2; p < 0.0001), and decreased horizontal (F(4,112) = 4.172, p = 0.0035) and vertical movements (F(4,112) = 4.397; p = 0.0024) in the open field test than controls throughout the 4 weeks post-induction. Cellular compression in the granular layer, swelling of Purkinje cells with vacuolations, reduced dendritic arborization and increased number of pyknotic Purkinje cells were observed in hydrocephalic rats. Hydrocephalus caused functional and morphological changes in the cerebellar cortex. Purkinje cell loss, a major pathological feature of hydrocephalus, may be responsible for some of the motor deficits observed in this condition.
Collapse
Affiliation(s)
- Funmilayo Eniola Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, PO Box 200284, Ibadan, Nigeria
| | - Omowumi Femi-Akinlosotu
- Department of Anatomy, College of Medicine, University of Ibadan, PO Box 200284, Ibadan, Nigeria
| | - Adejoke Joan Adekanmbi
- Department of Anatomy, College of Medicine, University of Ibadan, PO Box 200284, Ibadan, Nigeria
| | - Seun Ajani
- Department of Anatomy, College of Medicine, University of Ibadan, PO Box 200284, Ibadan, Nigeria
| | - Matthew Temitayo Shokunbi
- Department of Anatomy, College of Medicine, University of Ibadan, PO Box 200284, Ibadan, Nigeria.
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
30
|
Cheng Y, Yan L, Hu L, Wu H, Huang X, Tian Y, Wu X. Differences in network centrality between high and low myopia: a voxel-level degree centrality study. Acta Radiol 2020; 61:1388-1397. [PMID: 32098475 DOI: 10.1177/0284185120902385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Previous studies have linked high myopia (HM) to brain activity, and the difference between HM and low myopia (LM) can be assessed. PURPOSE To study the differences in functional networks of brain activity between HM and LM by the voxel-level degree centrality (DC) method. MATERIAL AND METHODS Twenty-eight patients with HM (10 men, 18 women), 18 patients with LM (4 men, 14 women), and 59 healthy controls (27 men, 32 women) were enrolled in this study. The voxel-level DC method was used to assess spontaneous brain activity. Correlation analysis was used to explore the change of average DC value in different brain regions, in order to analyze differences in brain activity between HM and LM. RESULTS DC values of the right cerebellum anterior lobe/brainstem, right parahippocampal gyrus, and left caudate in HM patients were significantly higher than those in LM patients (P < 0.05). In contrast, DC values of the left medial frontal gyrus, right inferior frontal gyrus, left middle frontal gyrus, and left inferior parietal lobule were significantly lower in patients with HM (P < 0.05). However, there was no correlation between behavior and average DC values in different brain regions (P < 0.05). CONCLUSION Different changes in brain regions between HM and LM may indicate differences in neural mechanisms between HM and LM. DC values could be useful as biomarkers for differences in brain activity between patients with HM and LM. This study provides a new method to assess differences in functional networks of brain activity between patients with HM and LM.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Li Yan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Liqun Hu
- Department of Ophthalmology, Ganzhou People's Hospital of Jiangxi Province, PR China
| | - Hongyun Wu
- Department of Ophthalmology, Ganzhou People's Hospital of Jiangxi Province, PR China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yu Tian
- Department of Ophthalmology, Ganzhou People's Hospital of Jiangxi Province, PR China
| | - Xiaorong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| |
Collapse
|
31
|
Zhang D, Qi F, Gao J, Yan X, Wang Y, Tang M, Zhe X, Cheng M, Wang M, Xie Q, Su Y, Zhang X. Altered Cerebellar-Cerebral Circuits in Patients With Type 2 Diabetes Mellitus. Front Neurosci 2020; 14:571210. [PMID: 33071743 PMCID: PMC7541847 DOI: 10.3389/fnins.2020.571210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
The role of the cerebellum in type 2 diabetes mellitus (T2DM) has been receiving increased attention. However, the functional connectivity (FC) between the cerebellar subregions and the cerebral cortex has not been investigated in T2DM. Therefore, the purpose of this study was to investigate cerebellar-cerebral FC and the relationship between FC and clinical/cognitive variables in patients with T2DM. A total of 34 patients with T2DM and 30 healthy controls were recruited for this study to receive a neuropsychological assessment and undergo resting-state FC. We selected four subregions of the cerebellum (bilateral lobules IX, right and left Crus I/II, and left lobule VI) as regions of interest (ROIs) to examine the differences in cerebellar-cerebral circuits in patients with T2DM compared to healthy controls. Correlation analysis was performed to examine the relationship between FC and clinical/cognitive variables in the patients. Compared to healthy controls, patients with T2DM showed significantly decreased cerebellar-cerebral FC in the default-mode network (DMN), executive control network (ECN), and visuospatial network (VSN). In the T2DM group, the FC between the left cerebellar lobule VI and the right precuneus was negatively correlated with the Trail Making Test A (TMT-A) score (r = −0.430, P = 0.013), after a Bonferroni correction. In conclusion, patients with T2DM have altered FC between the cerebellar subregions and the cerebral networks involved in cognitive and emotional processing. This suggests that a range of cerebellar-cerebral circuits may be involved in the neuropathology of T2DM cognitive dysfunction.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fei Qi
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yarong Wang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xia Zhe
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Miao Cheng
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Man Wang
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Qingming Xie
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Yu Su
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
32
|
Dellatolas G, Câmara-Costa H. The role of cerebellum in the child neuropsychological functioning. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:265-304. [PMID: 32958180 DOI: 10.1016/b978-0-444-64150-2.00023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter proposes a review of neuropsychologic and behavior findings in pediatric pathologies of the cerebellum, including cerebellar malformations, pediatric ataxias, cerebellar tumors, and other acquired cerebellar injuries during childhood. The chapter also contains reviews of the cerebellar mutism/posterior fossa syndrome, reported cognitive associations with the development of the cerebellum in typically developing children and subjects born preterm, and the role of the cerebellum in neurodevelopmental disorders such as autism spectrum disorders and developmental dyslexia. Cognitive findings in pediatric cerebellar disorders are considered in the context of known cerebellocerebral connections, internal cellular organization of the cerebellum, the idea of a universal cerebellar transform and computational internal models, and the role of the cerebellum in specific cognitive and motor functions, such as working memory, language, timing, or control of eye movements. The chapter closes with a discussion of the strengths and weaknesses of the cognitive affective syndrome as it has been described in children and some conclusions and perspectives.
Collapse
Affiliation(s)
- Georges Dellatolas
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France.
| | - Hugo Câmara-Costa
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France; Centre d'Etudes en Santé des Populations, INSERM U1018, Paris, France
| |
Collapse
|
33
|
Piccoli T, Maniaci G, Collura G, Gagliardo C, Brancato A, La Tona G, Gangitano M, La Cascia C, Picone F, Marrale M, Cannizzaro C. Increased functional connectivity in gambling disorder correlates with behavioural and emotional dysregulation: Evidence of a role for the cerebellum. Behav Brain Res 2020; 390:112668. [PMID: 32434751 DOI: 10.1016/j.bbr.2020.112668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Gambling disorder (GD) is a psychiatric disease that has been recently classified as a behavioural addiction. So far, a very few studies have investigated the alteration of functional connectivity in GD patients, thus the concrete interplay between relevant function-dependent circuitries in such disease has not been comprehensively assessed. The aim of this research was to investigate resting-state functional connectivity in GD patients, searching for a correlation with GD symptoms severity. GD patients were assessed for gambling behaviour, impulsivity, cognitive distortions, anxiety and depression, in comparison with healthy controls (HC). Afterwards, they were assessed for resting-state functional magnetic resonance imaging; functional connectivity was assessed through a data-driven approach, by using independent component analysis. The correlation between gambling severity and the strength of specific resting-state networks was also investigated. Our results show that GD patients displayed higher emotional and behavioural impairment than HC, together with an increased resting state functional connectivity in the network including anterior cingulate cortex, the caudate nucleus and nucleus accumbens, and within the cerebellum, in comparison with the control group. Moreover, a significant correlation between behavioural parameters and the strength of the resting-state cerebellar network was found. Overall, the functional alterations in brain connectivity involving the cerebellum observed in this study underpin the emotional and behavioural impairment recorded in GD patients. This evidence suggests the employment of novel neuromodulatory therapeutic approaches involving specific and salient targets such as the cerebellum in addictive disorders.
Collapse
Affiliation(s)
- Tommaso Piccoli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics - Section of Neurology, University of Palermo, Palermo, Italy
| | - Giuseppe Maniaci
- Department of Biomedicine, Neuroscience and Advanced Diagnostics - Section of Psychiatry, University of Palermo, Palermo, Italy
| | - Giorgio Collura
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, and Istituto Nazionale di Fisica Nucleare, Sezione of Catania, Catania, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics - Section of Radiological Sciences, University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giuseppe La Tona
- Department of Pathological Addiction, ASP Palermo, Palermo, Italy
| | - Massimo Gangitano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics - Section of Neurology, University of Palermo, Palermo, Italy
| | - Caterina La Cascia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics - Section of Psychiatry, University of Palermo, Palermo, Italy
| | - Francesca Picone
- Department of Pathological Addiction, ASP Palermo, Palermo, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, and Istituto Nazionale di Fisica Nucleare, Sezione of Catania, Catania, Italy.
| | - Carla Cannizzaro
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
34
|
Lee JC, Nopoulos PC, Tomblin JB. Procedural and declarative memory brain systems in developmental language disorder (DLD). BRAIN AND LANGUAGE 2020; 205:104789. [PMID: 32240854 PMCID: PMC7161705 DOI: 10.1016/j.bandl.2020.104789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 05/29/2023]
Abstract
The aim of the current study was to examine microstructural differences in white matter relevant to procedural and declarative memory between adolescents/young adults with and without Developmental Language Disorder (DLD) using diffusion tensor imaging (DTI). The findings showed atypical age-related changes in white matter structures in the corticostriatal system, in the corticocerebellar system, and in the medial temporal region in individuals with DLD. Results highlight the importance of considering the age factor in research on DLD. Future studies are needed to examine the developmental relationship between long-term memory and individual differences in language development and learning.
Collapse
Affiliation(s)
- Joanna C Lee
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, United States
| | - Peggy C Nopoulos
- Department of Psychiatry, The University of Iowa, The Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, United States
| | - J Bruce Tomblin
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
35
|
Neurocognitive functioning and health-related quality of life in adult medulloblastoma patients: long-term outcomes of the NOA-07 study. J Neurooncol 2020; 148:117-130. [PMID: 32367436 PMCID: PMC7280359 DOI: 10.1007/s11060-020-03502-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Background Combined radiochemotherapy followed by maintenance chemotherapy with cisplatin, lomustine and vincristine within the NOA-07 study resulted in considerable short-term toxicity in adult medulloblastoma patients. Here we investigated the long-term impact of this treatment, focusing on neurocognitive functioning and health-related quality of life (HRQoL). Methods Neurocognitive functioning and HRQoL scores over time were determined, and differences between the post-treatment and follow-up assessments were calculated up to 18 months for neurocognition and 60 months for HRQoL. Results 28/30 patients were analyzed. The three preselected HRQoL scales (role, social and cognitive functioning) showed improved scores, to a clinically relevant extent (≥ 10 points), compared to post-treatment levels up to 30 months, but decreased afterwards. Z-scores for verbal working memory were worse during follow-up compared to post-treatment scores and remained impaired during 18 months follow-up (i.e. z-score below − 1 standard deviation). Attention was impaired post-treatment, and remained impaired to a clinically relevant extent during follow-up. Coordination/processing speed and lexical verbal fluency improved compared to post-treatment scores, and remained within the normal range thereafter. Other tests of verbal fluency were stable over time, with z-scores within the normal range. Conclusions This long-term follow-up study showed that the NOA-07 treatment regimen was not associated with a deterioration in HRQoL in the post-treatment period. Verbal working memory deteriorated, while other neurocognitive domains did not seem to be impacted negatively by the treatment. Electronic supplementary material The online version of this article (10.1007/s11060-020-03502-y) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Sendhilnathan N, Semework M, Goldberg ME, Ipata AE. Neural Correlates of Reinforcement Learning in Mid-lateral Cerebellum. Neuron 2020; 106:188-198.e5. [PMID: 32001108 PMCID: PMC8015782 DOI: 10.1016/j.neuron.2019.12.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/19/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
Abstract
The role of the cerebellum in non-motor learning is poorly understood. Here, we investigated the activity of Purkinje cells (P-cells) in the mid-lateral cerebellum as the monkey learned to associate one arbitrary symbol with the movement of the left hand and another with the movement of the right hand. During learning, but not when the monkey had learned the association, the simple spike responses of P-cells reported the outcome of the animal's most recent decision without concomitant changes in other sensorimotor parameters such as hand movement, licking, or eye movement. At the population level, P-cells collectively maintained a memory of the most recent decision throughout the entire trial. As the monkeys learned the association, the magnitude of this reward-related error signal approached zero. Our results provide a major departure from the current understanding of cerebellar processing and have critical implications for cerebellum's role in cognitive control.
Collapse
Affiliation(s)
- Naveen Sendhilnathan
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Mahoney Center for Brain and Behavior Research, Columbia University, New York, NY, USA; Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA.
| | - Mulugeta Semework
- Department of Neuroscience, Columbia University, New York, NY, USA; Mahoney Center for Brain and Behavior Research, Columbia University, New York, NY, USA; Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
| | - Michael E Goldberg
- Department of Neuroscience, Columbia University, New York, NY, USA; Mahoney Center for Brain and Behavior Research, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA; Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA; Department of Neurology, Psychiatry, and Ophthalmology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Anna E Ipata
- Department of Neuroscience, Columbia University, New York, NY, USA; Mahoney Center for Brain and Behavior Research, Columbia University, New York, NY, USA; Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
Steiner KM, Jansen S, Adeishvili N, Hulst T, Ernst TM, Müller O, Wondzinski E, Göricke SL, Siebler M, Uengoer M, Timmann D. Extinction of cognitive associations is preserved in patients with cerebellar disease. Neurobiol Learn Mem 2020; 169:107185. [PMID: 32061996 DOI: 10.1016/j.nlm.2020.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
In the present study extinction and renewal of cognitive associations were assessed in two experiments in participants with focal and degenerative cerebellar disease. Using a predictive learning task, participants had to learn by trial and error the relationships between food items and the occurrence of stomach trouble in a hypothetical patient. In the first experiment, focus was on renewal effects. Participants with chronic cerebellar stroke (n = 14; mean age 50.9 ± 12 years), participants with degenerative cerebellar disease (n = 16; mean age 58 ± 12 years), age-, sex-, and education matched controls (n = 20; mean age 53.7 ± 10.8 years) and young controls (n = 19; mean age 23.2 ± 2.7 years) were tested. Acquisition and extinction of food-stomach trouble associations took part in two different contexts (represented by restaurants). In a subsequent test phase, food stimuli were presented in both contexts and no feedback was given. This allowed testing for renewal of the initially acquired associations in the acquisition context. Acquisition and extinction learning were not significantly different between groups. Significant renewal effects were present in young controls only. In the second experiment, focus was on extinction. To control for age effects, 19 young participants with chronic surgical lesions of the cerebellum (mean age 25.6 ± 6.1 years), and 24 age-, sex- and education-matched healthy controls were tested. Acquisition and extinction of food-stomach trouble associations took part in the same context. In the extinction phase, the relationship with stomach trouble was reversed in some of the food items. Acquisition and extinction learning were not significantly different between groups. The main finding of the present study was preserved extinction of learned cognitive associations in participants with chronic cerebellar disease. Findings agree with previous observations in the literature that cognitive abnormalities are frequently absent or weak in adults with cerebellar disease. This does not exclude a contribution of the cerebellum to extinction of learned associations. For example, findings may be different in more challenging cognitive tasks, and in participants with acute cerebellar disease with no time for compensation.
Collapse
Affiliation(s)
- Katharina M Steiner
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.
| | - Sarah Jansen
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nino Adeishvili
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Thomas Hulst
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Thomas M Ernst
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Oliver Müller
- Department of Neurosurgery, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Elke Wondzinski
- Department of Neurology, MediClin Fachklinik Rhein/Ruhr, Essen, Germany
| | - Sophia L Göricke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Germany
| | - Mario Siebler
- Department of Neurology, MediClin Fachklinik Rhein/Ruhr, Essen, Germany
| | - Metin Uengoer
- Department of Psychology, Philipps-Universität Marburg, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
38
|
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. CEREBELLUM (LONDON, ENGLAND) 2020; 19:102-125. [PMID: 31522332 PMCID: PMC6978293 DOI: 10.1007/s12311-019-01068-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the "cerebellar cognitive affective syndrome" ("CCAS") or "Schmahmann syndrome." Introduced in the late 1990s, CCAS reflects a constellation of cerebellar-induced sequelae, comprising deficits in executive function, visuospatial cognition, emotion-affect, and language, over and above speech. The CCAS thus offers excellent grounds to investigate the functional topography of the cerebellum, and, ultimately, illustrate the precise mechanisms by which the cerebellum modulates cognition and affect. The primary objective of this task force paper is thus to stimulate further research in this area. After providing an up-to-date overview of the fundamental findings on cerebellar neurocognition, the paper substantiates the concept of CCAS with recent evidence from different scientific angles, promotes awareness of the CCAS as a clinical entity, and examines our current insight into the therapeutic options available. The paper finally identifies topics of divergence and outstanding questions for further research.
Collapse
Affiliation(s)
| | - Kim van Dun
- Rehabilitation Research Center REVAL, UHasselt, Hasselt, Belgium
| | - Michael Adamaszek
- Clinical and Cognitive Neurorehabilitation, Center of Neurology and Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht 1-2, 01703 Kreischa, Germany
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000 Charleroi, Belgium
- Department of Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Marcella Masciullo
- SPInal REhabilitation Lab (SPIRE), IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | | | | | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley, CA USA
| | - Jeremy D. Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
39
|
Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level. Cell 2020; 180:536-551.e17. [PMID: 31955849 DOI: 10.1016/j.cell.2019.12.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/28/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.
Collapse
|
40
|
Badea A, Wu W, Shuff J, Wang M, Anderson RJ, Qi Y, Johnson GA, Wilson JG, Koudoro S, Garyfallidis E, Colton CA, Dunson DB. Identifying Vulnerable Brain Networks in Mouse Models of Genetic Risk Factors for Late Onset Alzheimer's Disease. Front Neuroinform 2019; 13:72. [PMID: 31920610 PMCID: PMC6914731 DOI: 10.3389/fninf.2019.00072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
The major genetic risk for late onset Alzheimer’s disease has been associated with the presence of APOE4 alleles. However, the impact of different APOE alleles on the brain aging trajectory, and how they interact with the brain local environment in a sex specific manner is not entirely clear. We sought to identify vulnerable brain circuits in novel mouse models with homozygous targeted replacement of the mouse ApoE gene with either human APOE3 or APOE4 gene alleles. These genes are expressed in mice that also model the human immune response to age and disease-associated challenges by expressing the human NOS2 gene in place of the mouse mNos2 gene. These mice had impaired learning and memory when assessed with the Morris water maze (MWM) and novel object recognition (NOR) tests. Ex vivo MRI-DTI analyses revealed global and local atrophy, and areas of reduced fractional anisotropy (FA). Using tensor network principal component analyses for structural connectomes, we inferred the pairwise connections which best separate APOE4 from APOE3 carriers. These involved primarily interhemispheric connections among regions of olfactory areas, the hippocampus, and the cerebellum. Our results also suggest that pairwise connections may be subdivided and clustered spatially to reveal local changes on a finer scale. These analyses revealed not just genotype, but also sex specific differences. Identifying vulnerable networks may provide targets for interventions, and a means to stratify patients.
Collapse
Affiliation(s)
- Alexandra Badea
- Department of Radiology, Duke University, Durham, NC, United States.,Department of Neurology, Duke University School of Medicine, Durham, NC, United States.,Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Wenlin Wu
- Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Jordan Shuff
- Department of Biomedical Engineering, University of Delaware, Newark, NJ, United States
| | - Michele Wang
- Department of Psychology and Neuroscience, Trinity College of Arts & Sciences, Duke University, Durham, NC, United States
| | | | - Yi Qi
- Department of Radiology, Duke University, Durham, NC, United States
| | - G Allan Johnson
- Department of Radiology, Duke University, Durham, NC, United States
| | - Joan G Wilson
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Serge Koudoro
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| | - Eleftherios Garyfallidis
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| | - Carol A Colton
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - David B Dunson
- Department of Statistical Science, Trinity College of Arts & Sciences, Duke University, Durham, NC, United States
| |
Collapse
|
41
|
Rizzi A, Saccia M, Benagiano V. Is the Cerebellum Involved in the Nervous Control of the Immune System Function? Endocr Metab Immune Disord Drug Targets 2019; 20:546-557. [PMID: 31729296 DOI: 10.2174/1871530319666191115144105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND According to the views of psychoneuroendocrinoimmunology, many interactions exist between nervous, endocrine and immune system the purpose of which is to achieve adaptive measures restoring an internal equilibrium (homeostasis) following stress conditions. The center where these interactions converge is the hypothalamus. This is a center of the autonomic nervous system that controls the visceral systems, including the immune system, through both the nervous and neuroendocrine mechanisms. The nervous mechanisms are based on nervous circuits that bidirectionally connect hypothalamic neurons and neurons of the sympathetic and parasympathetic system; the neuroendocrine mechanisms are based on the release by neurosecretory hypothalamic neurons of hormones that target the endocrine cells and on the feedback effects of the hormones secreted by these endocrine cells on the same hypothalamic neurons. Moreover, the hypothalamus is an important subcortical center of the limbic system that controls through nervous and neuroendocrine mechanisms the areas of the cerebral cortex where the psychic functions controlling mood, emotions, anxiety and instinctive behaviors take place. Accordingly, various studies conducted in the last decades have indicated that hypothalamic diseases may be associated with immune and/or psychic disorders. OBJECTIVE Various researches have reported that the hypothalamus is controlled by the cerebellum through a feedback nervous circuit, namely the hypothalamocerebellar circuit, which bi-directionally connects regions of the hypothalamus, including the immunoregulatory ones, and related regions of the cerebellum. An objective of the present review was to analyze the anatomical bases of the nervous and neuroendocrine mechanisms for the control of the immune system and, in particular, of the interaction between hypothalamus and cerebellum to achieve the immunoregulatory function. CONCLUSION Since the hypothalamus represents the link through which the immune functions may influence the psychic functions and vice versa, the cerebellum, controlling several regions of the hypothalamus, could be considered as a primary player in the regulation of the multiple functional interactions postulated by psychoneuroendocrinoimmunology.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Matteo Saccia
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Vincenzo Benagiano
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| |
Collapse
|
42
|
Kumari N, Taylor D, Signal N. The Effect of Cerebellar Transcranial Direct Current Stimulation on Motor Learning: A Systematic Review of Randomized Controlled Trials. Front Hum Neurosci 2019; 13:328. [PMID: 31636552 PMCID: PMC6788395 DOI: 10.3389/fnhum.2019.00328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Cerebellar transcranial direct current stimulation (ctDCS) appears to modulate motor performance in both adaptation and motor skill tasks; however, whether the gains are long-lasting is unclear. Objectives: This systematic review aims to evaluate the effect of ctDCS with respect to different time scales of motor learning. Methods: Ten electronic databases (CINAHL, MEDLINE, SPORT Discus, Scopus, Web of Science, Cochrane via OVID, Evidence-Based Reviews (EBM) via OVID, AMED: Allied and Complementary Medicine, PsycINFO, and PEDro) were systematically searched. Studies evaluating the effect of ctDCS compared to sham ctDCS on motor learning in healthy individuals were selected and reviewed. Two authors independently reviewed the quality of the included studies using the revised Cochrane's risk-of-bias tool. The results were extracted with respect to the time scale in which changes in motor performance were evaluated. Results: Seventeen randomized controlled trials met the eligibility criteria of which 65% of the studies had a “high” risk-of-bias, and 35% had “some concerns.” These studies included data from 629 healthy participants. Of the studies that evaluated the effect of anodal ctDCS during and immediately after the stimulation, four found enhanced, three found impaired, and ten found no effect on gains in motor performance. Of the studies that evaluated the effect of anodal ctDCS after a break of 24 h or more, seven found enhanced, two found impaired, and one found no effect on gains in motor performance. Of the studies that evaluated the effect of cathodal ctDCS across a range of time scales, five found impaired, one found enhanced, and five found no effect on gains in motor performance. Conclusions: In healthy individuals, anodal ctDCS appears to improve short to longer-term motor skill learning, whereas it appears to have no effect on gains in motor performance during and immediate after the stimulation. ctDCS may have potential to improve motor performance beyond the training period. The challenge of the motor task and its characteristics, and the stimulation parameters are likely to influence the effect of ctDCS on motor learning.
Collapse
Affiliation(s)
- Nitika Kumari
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Denise Taylor
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Nada Signal
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
43
|
Wanner NM, Colwell ML, Faulk C. The epigenetic legacy of illicit drugs: developmental exposures and late-life phenotypes. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz022. [PMID: 31777665 PMCID: PMC6875650 DOI: 10.1093/eep/dvz022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 05/24/2023]
Abstract
The effects of in utero exposure to illicit drugs on adult offspring are a significant and widespread but understudied global health concern, particularly in light of the growing opioid epidemic and emerging therapeutic uses for cannabis, ketamine, and MDMA. Epigenetic mechanisms including DNA methylation, histone modifications, and expression of non-coding RNAs provide a mechanistic link between the prenatal environment and health consequences years beyond the original exposure, and shifts in the epigenome present in early life or adolescence can lead to disease states only appearing during adulthood. The current review summarizes the literature assessing effects of perinatal illicit drug exposure on adult disease phenotypes as mediated by perturbations of the epigenome. Both behavioral and somatic phenotypes are included and studies reporting clinical data in adult offspring, epigenetic readouts in offspring of any age, or both phenotypic and epigenetic measures are prioritized. Studies of licit substances of abuse (i.e. alcohol, nicotine) are excluded with a focus on cannabis, psychostimulants, opioids, and psychedelics; current issues in the field and areas of interest for further investigation are also discussed.
Collapse
Affiliation(s)
- Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
| | - Mathia L Colwell
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Natural Resource Sciences, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
| | - Christopher Faulk
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Natural Resource Sciences, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
| |
Collapse
|
44
|
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. CEREBELLUM (LONDON, ENGLAND) 2019. [PMID: 31522332 DOI: 10.1007/s12311‐019‐01068‐8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the "cerebellar cognitive affective syndrome" ("CCAS") or "Schmahmann syndrome." Introduced in the late 1990s, CCAS reflects a constellation of cerebellar-induced sequelae, comprising deficits in executive function, visuospatial cognition, emotion-affect, and language, over and above speech. The CCAS thus offers excellent grounds to investigate the functional topography of the cerebellum, and, ultimately, illustrate the precise mechanisms by which the cerebellum modulates cognition and affect. The primary objective of this task force paper is thus to stimulate further research in this area. After providing an up-to-date overview of the fundamental findings on cerebellar neurocognition, the paper substantiates the concept of CCAS with recent evidence from different scientific angles, promotes awareness of the CCAS as a clinical entity, and examines our current insight into the therapeutic options available. The paper finally identifies topics of divergence and outstanding questions for further research.
Collapse
Affiliation(s)
| | - Kim van Dun
- Rehabilitation Research Center REVAL, UHasselt, Hasselt, Belgium
| | - Michael Adamaszek
- Clinical and Cognitive Neurorehabilitation, Center of Neurology and Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht 1-2, 01703, Kreischa, Germany
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000, Charleroi, Belgium.,Department of Neurosciences, University of Mons, 7000, Mons, Belgium
| | - Marcella Masciullo
- SPInal REhabilitation Lab (SPIRE), IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | | | | | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Bohne P, Schwarz MK, Herlitze S, Mark MD. A New Projection From the Deep Cerebellar Nuclei to the Hippocampus via the Ventrolateral and Laterodorsal Thalamus in Mice. Front Neural Circuits 2019; 13:51. [PMID: 31447652 PMCID: PMC6695568 DOI: 10.3389/fncir.2019.00051] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
The cerebellar involvement in cognitive functions such as attention, language, working memory, emotion, goal-directed behavior and spatial navigation is constantly growing. However, an exact connectivity map between the hippocampus and cerebellum in mice is still unknown. Here, we conducted a tracing study to identify the sequence of transsynaptic, cerebellar-hippocampal connections in the mouse brain using combinations of Recombinant adeno-associated virus (rAAV) and pseudotyped deletion-mutant rabies (RABV) viruses. Stereotaxic injection of a primarily anterograde rAAV-WGA (wheat germ agglutinin)-Cre tracer virus in the deep cerebellar nuclei (DCN) of a Cre-dependent tdTomato reporter mouse resulted in strong tdTomato labeling in hippocampal CA1 neurons, retrosplenial cortex (RSC), rhinal cortex (RC) as well as thalamic and cerebellar areas. Whereas hippocampal injections with the retrograde tracer virus rAAV-TTC (tetanus toxin C fragment)-eGFP, displayed eGFP positive cells in the rhinal cortex and subiculum. To determine the sequence of mono-transsynaptic connections between the cerebellum and hippocampus, we used the retrograde tracer RABVΔG-eGFP(EnvA). The tracing revealed a direct connection from the dentate gyrus (DG) in the hippocampus to the RSC, RC and subiculum (S), which are monosynaptically connected to thalamic laterodorsal and ventrolateral areas. These thalamic nuclei are directly connected to cerebellar fastigial (FN), interposed (IntP) and lateral (Lat) nuclei, discovering a new projection route from the fastigial to the laterodorsal thalamic nucleus in the mouse brain. Collectively, our findings suggest a new cerebellar-hippocampal connection via the laterodorsal and ventrolateral thalamus to RSC, RC and S. These results strengthen the notion of the cerebellum's involvement in cognitive functions such as spatial navigation via a polysynaptic circuitry.
Collapse
Affiliation(s)
- Pauline Bohne
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Martin K Schwarz
- Institute of Experimental Epileptology and Cognition Research (EECR), University of Bonn Medical School, Bonn, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Melanie D Mark
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
46
|
Spisák T, Román V, Papp E, Kedves R, Sághy K, Csölle CK, Varga A, Gajári D, Nyitrai G, Spisák Z, Kincses ZT, Lévay G, Lendvai B, Czurkó A. Purkinje cell number-correlated cerebrocerebellar circuit anomaly in the valproate model of autism. Sci Rep 2019; 9:9225. [PMID: 31239528 PMCID: PMC6592903 DOI: 10.1038/s41598-019-45667-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 06/12/2019] [Indexed: 02/03/2023] Open
Abstract
While cerebellar alterations may play a crucial role in the development of core autism spectrum disorder (ASD) symptoms, their pathophysiology on the function of cerebrocerebellar circuit loops is largely unknown. We combined multimodal MRI (9.4 T) brain assessment of the prenatal rat valproate (VPA) model and correlated immunohistological analysis of the cerebellar Purkinje cell number to address this question. We hypothesized that a suitable functional MRI (fMRI) paradigm might show some altered activity related to disrupted cerebrocerebellar information processing. Two doses of maternal VPA (400 and 600 mg/kg, s.c.) were used. The higher VPA dose induced 3% smaller whole brain volume, the lower dose induced 2% smaller whole brain volume and additionally a focal gray matter density decrease in the cerebellum and brainstem. Increased cortical BOLD responses to whisker stimulation were detected in both VPA groups, but it was more pronounced and extended to cerebellar regions in the 400 mg/kg VPA group. Immunohistological analysis revealed a decreased number of Purkinje cells in both VPA groups. In a detailed analysis, we revealed that the Purkinje cell number interacts with the cerebral BOLD response distinctively in the two VPA groups that highlights atypical function of the cerebrocerebellar circuit loops with potential translational value as an ASD biomarker.
Collapse
Affiliation(s)
- Tamás Spisák
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Viktor Román
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Edit Papp
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Rita Kedves
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Katalin Sághy
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | | | - Anita Varga
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Dávid Gajári
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Gabriella Nyitrai
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Zsófia Spisák
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Zsigmond Tamás Kincses
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - György Lévay
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Lendvai
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - András Czurkó
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary.
| |
Collapse
|
47
|
Abstract
Cerebellar plasticity is a critical mechanism for optimal feedback control. While Purkinje cell activity of the oculomotor vermis predicts eye movement speed and direction, more lateral areas of the cerebellum may play a role in more complex tasks, including decision-making. It is still under question how this motor-cognitive functional dichotomy between medial and lateral areas of the cerebellum plays a role in optimal feedback control. Here we show that elite athletes subjected to a trajectory prediction, go/no-go task manifest superior subsecond trajectory prediction accompanied by optimal eye movements and changes in cognitive load dynamics. Moreover, while interacting with the cerebral cortex, both the medial and lateral cerebellar networks are prominently activated during the fast feedback stage of the task, regardless of whether or not a motor response was required for the correct response. Our results show that cortico-cerebellar interactions are widespread during dynamic feedback and that experience can result in superior task-specific decision skills.
Collapse
|
48
|
Abstract
Major advances in our understanding of the neurology/pathology, anatomy/physiology, and molecular biology of the cerebellum have opened a new door for cerebellar ataxias (CAs). We have now entered in the ‘era of therapies’. Cures are knocking at the door. We discuss the hot topics in the therapeutic protocols available for CAs, including aminopyridines, noninvasive cerebellar stimulation, anti-oxidant drugs and therapies for immune-mediated cerbellar ataxias (IMCAs), topics emphasized in this issue. The history of the cerebellum is a typical example of the importance of apparently divergent and multi-disciplinary approaches.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Service de Neurologie, CHUCharleroi, Charleroi, Belgium.,Service des Neurosciences, Université de Mons, 7000 Mons, Belgium
| |
Collapse
|
49
|
Li MG, Chen YY, Chen ZY, Feng J, Liu MY, Lou X, Shu SY, Wang ZF, Ma L. Altered functional connectivity of the marginal division in Parkinson's disease with mild cognitive impairment: A pilot resting-state fMRI study. J Magn Reson Imaging 2019; 50:183-192. [PMID: 30644620 DOI: 10.1002/jmri.26548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The marginal division (MrD) is an important subcortical center involved in learning and memory. Mild cognitive impairment (MCI) is commonly seen in patients with Parkinson's disease (PD), but the neurobiological basis is yet to be elucidated. PURPOSE To use resting-state functional magnetic resonance imaging (rs-fMRI) to explore the altered functional connectivity (FC) of the MrD in patients with PD-MCI. STUDY TYPE Prospective pilot study. POPULATION Twenty-five patients with PD-MCI; 25 PD patients and no cognitive impairment (PD-NCI); and 25 healthy control (HC) participants. SEQUENCE 3.0 T GE Healthcare MRI scanner; three-dimensional T1 -weighted fast spoiled gradient recalled echo (3D T1 -FSPGR); rs-fMRI. ASSESSMENT The MrD was defined using manual delineation, which was the seed point to compute the FC to examine correlations between low-frequency fMRI signal fluctuations in MrD and the whole brain. STATISTICAL TESTS Between-group comparisons of the rs-fMRI data were computed using two-sample t-tests in a voxelwise manner after controlling for age and sex, to determine the brain regions that showed significant differences in FC with the bilateral MrDs. Correlation analyses were performed for FC values and cognitive abilities in patients with PD. RESULTS In the PD-MCI group, compared with the PD-NCI group, we observed lesser FC between the MrD bilaterally and right putamen, left insula, left cerebellum, and left thalamus; greater FC between the MrD bilaterally and left middle cingulate cortex, left middle frontal gyrus, left superior frontal gyrus, left supplementary motor area, and left middle/inferior occipital gyrus. Moreover, the strength of FC between the MrD and regions that showed differences between the PD-MCI and PD-NCI groups was significantly correlated with neuropsychological scores in patients with PD. DATA CONCLUSION The current study suggests that MrD dysfunction may contribute to MCI in PD. However, the mechanisms underlying this process require further investigation. Level of Evidence 1. Technical Efficacy Stage 2. J. Magn. Reson. Imaging 2019;50:183-192.
Collapse
Affiliation(s)
- Ming-Ge Li
- School of Medicine, Nankai University, Tianjin, P.R. China.,Department of Radiology, Chinese PLA General Hospital, Beijing, P.R. China
| | | | - Zhi-Ye Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Jie Feng
- Department of Radiology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Meng-Yu Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Si-Yun Shu
- Institute of Cognitive Neuroscience, South China Normal University, Guangzhou, P.R. China
| | - Zhen-Fu Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Lin Ma
- School of Medicine, Nankai University, Tianjin, P.R. China.,Department of Radiology, Chinese PLA General Hospital, Beijing, P.R. China
| |
Collapse
|
50
|
Puhr A, Ruud E, Anderson V, Due-Tønnesen BJ, Skarbø AB, Finset A, Andersson S. Self-Reported Executive Dysfunction, Fatigue, and Psychological and Emotional Symptoms in Physically Well-Functioning Long-Term Survivors of Pediatric Brain Tumor. Dev Neuropsychol 2018; 44:88-103. [DOI: 10.1080/87565641.2018.1540007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anita Puhr
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Neurology, Oslo University Hospital, Oslo, Norway
| | - Ellen Ruud
- Department of Pediatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Vicki Anderson
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | | | - Anne-Britt Skarbø
- Department of Pediatric Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Stein Andersson
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|