1
|
Shaker F, Razi S, Rezaei N. Circulating miRNA and circulating tumor DNA application as liquid biopsy markers in gastric cancer. Clin Biochem 2024; 129:110767. [PMID: 38705444 DOI: 10.1016/j.clinbiochem.2024.110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Liquid biopsy has been investigated as a novel method to overcome the numerous challenges in gastric cancer (GC) management. This non-invasive, feasible, and easy-to-repeat method has been shown to be cost-effective and capable of increasing diagnostic sensitivity and prognostic assessment. Additionally, it is potentially accurate to aid decision-making and personalized treatment planning. MicroRNA (miRNA) and circulating tumor DNA (ctDNA) markers can enhance GC management in various aspects, including diagnosis (mainly earlier diagnosis and the ability to perform population-based screening), prognosis (more precise stratification of prognosis), and treatment (including more accurate prediction of treatment response and earlier detection of resistance to the treatment). Concerning the treatment-related application, miRNAs' mimics and antagonists (by using two main strategies of restoring tumor suppressor miRNAs and inhibiting oncogene miRNAs) have been shown to be effective therapeutic agents. However, these need to be further validated in clinical trials. Furthermore, novel delivery systems, such as lipid-based vectors, polymeric-based vectors, and exosome-based delivery, have been developed to enhance the performance of these agents. Moreover, this paper explores the current detection and measuring methods for these markers. These approaches are categorized into direct methods (e.g., Chem-NAT, HTG EdgeSeq, and Multiplex Circulating Fireplex) and indirect methods (e.g., Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), qPCR, microarray, and NGS) for miRNA detection. For ctDNA measurement, main core technologies like NGS, digital PCR, real-time PCR, and mass spectrometry are suggested.
Collapse
Affiliation(s)
- Farhad Shaker
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
2
|
Grewal M, Ahmed T, Javed AA. Current state of radiomics in hepatobiliary and pancreatic malignancies. ARTIFICIAL INTELLIGENCE SURGERY 2023; 3:217-32. [DOI: 10.20517/ais.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Rising in incidence, hepatobiliary and pancreatic (HPB) cancers continue to exhibit dismal long-term survival. The overall poor prognosis of HPB cancers is reflective of the advanced stage at which most patients are diagnosed. Late diagnosis is driven by the often-asymptomatic nature of these diseases, as well as a dearth of screening modalities. Additionally, standard imaging modalities fall short of providing accurate and detailed information regarding specific tumor characteristics, which can better inform surgical planning and sequencing of systemic therapy. Therefore, precise therapeutic planning must be delayed until histopathological examination is performed at the time of resection. Given the current shortcomings in the management of HPB cancers, investigations of numerous noninvasive biomarkers, including circulating tumor cells and DNA, proteomics, immunolomics, and radiomics, are underway. Radiomics encompasses the extraction and analysis of quantitative imaging features. Along with summarizing the general framework of radiomics, this review synthesizes the state of radiomics in HPB cancers, outlining its role in various aspects of management, present limitations, and future applications for clinical integration. Current literature underscores the utility of radiomics in early detection, tumor characterization, therapeutic selection, and prognostication for HPB cancers. Seeing as single-center, small studies constitute the majority of radiomics literature, there is considerable heterogeneity with respect to steps of the radiomics workflow such as segmentation, or delineation of the region of interest on a scan. Nonetheless, the introduction of the radiomics quality score (RQS) demonstrates a step towards greater standardization and reproducibility in the young field of radiomics. Altogether, in the setting of continually improving artificial intelligence algorithms, radiomics represents a promising biomarker avenue for promoting enhanced and tailored management of HPB cancers, with the potential to improve long-term outcomes for patients.
Collapse
|
3
|
Li W, Zhang P, Liu C, Xu Y, Gan Z, Kang L, Hou Y. Oncogene-targeting nanoprobes for early imaging detection of tumor. J Nanobiotechnology 2023; 21:197. [PMID: 37340418 DOI: 10.1186/s12951-023-01943-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023] Open
Abstract
Malignant tumors have been one of the major reasons for deaths worldwide. Timely and accurate diagnosis as well as effective intervention of tumors play an essential role in the survival of patients. Genomic instability is the important foundation and feature of cancer, hence, in vivo oncogene imaging based on novel probes provides a valuable tool for the diagnosis of cancer at early-stage. However, the in vivo oncogene imaging is confronted with great challenge, due to the extremely low copies of oncogene in tumor cells. By combining with various novel activatable probes, the molecular imaging technologies provide a feasible approach to visualize oncogene in situ, and realize accurate treatment of tumor. This review aims to declare the design of nanoprobes responded to tumor associated DNA or RNA, and summarize their applications in detection and bioimaging for tumors. The significant challenges and prospective of oncogene-targeting nanoprobes towards tumors diagnosis are revealed as well.
Collapse
Affiliation(s)
- Wenyue Li
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Peisen Zhang
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China.
| | - Chuang Liu
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Yuping Xu
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Zhihua Gan
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China.
| | - Yi Hou
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China.
| |
Collapse
|
4
|
Yu J, Ostowari A, Gonda A, Mashayekhi K, Dayyani F, Hughes CCW, Senthil M. Exosomes as a Source of Biomarkers for Gastrointestinal Cancers. Cancers (Basel) 2023; 15:cancers15041263. [PMID: 36831603 PMCID: PMC9954462 DOI: 10.3390/cancers15041263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Exosomes are small, lipid-bilayer bound extracellular vesicles of 40-160 nanometers in size that carry important information for intercellular communication. Exosomes are produced more by tumor cells than normal cells and carry tumor-specific content, such as DNA, RNA, and proteins, which have been implicated in tumorigenesis, tumor progression, and treatment response. Due to the critical role of exosomes in cancer development and progression, they can be exploited to develop specific biomarkers and therapeutic targets. Since exosomes are present in various biofluids, such as blood, saliva, urine, and peritoneal fluid, they are ideally suited to be developed as liquid biopsy tools for early diagnosis, molecular profiling, disease surveillance, and treatment response monitoring. In the past decade, numerous studies have been published about the functional significance of exosomes in a wide variety of cancers, with a particular focus on exosome-derived RNAs and proteins as biomarkers. In this review, utilizing human studies on exosomes, we highlight their potential as diagnostic, prognostic, and predictive biomarkers in gastrointestinal cancers.
Collapse
Affiliation(s)
- Jingjing Yu
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA 92868, USA
| | - Arsha Ostowari
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA 92868, USA
| | - Amber Gonda
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA 92868, USA
| | - Kiarash Mashayekhi
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA 92868, USA
| | - Farshid Dayyani
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine Medical Center, Orange, CA 92868, USA
| | - Christopher C. W. Hughes
- Department of Molecular Biology & Biochemistry and Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Maheswari Senthil
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA 92868, USA
- Correspondence:
| |
Collapse
|
5
|
Dhar R, Mallik S, Devi A. Exosomal microRNAs (exoMIRs): micromolecules with macro impact in oral cancer. 3 Biotech 2022; 12:155. [DOI: 10.1007/s13205-022-03217-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
|
6
|
Rapid Multiplex Strip Test for the Detection of Circulating Tumor DNA Mutations for Liquid Biopsy Applications. BIOSENSORS 2022; 12:bios12020097. [PMID: 35200357 PMCID: PMC8869478 DOI: 10.3390/bios12020097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 01/16/2023]
Abstract
In the era of personalized medicine, molecular profiling of patient tumors has become the standard practice, especially for patients with advanced disease. Activating point mutations of the KRAS proto-oncogene are clinically relevant for many types of cancer, including colorectal cancer (CRC). While several approaches have been developed for tumor genotyping, liquid biopsy has been gaining much attention in the clinical setting. Analysis of circulating tumor DNA for genetic alterations has been challenging, and many methodologies with both advantages and disadvantages have been developed. We here developed a gold nanoparticle-based rapid strip test that has been applied for the first time for the multiplex detection of KRAS mutations in circulating tumor DNA (ctDNA) of CRC patients. The method involved ctDNA isolation, PCR-amplification of the KRAS gene, multiplex primer extension (PEXT) reaction, and detection with a multiplex strip test. We have optimized the efficiency and specificity of the multiplex strip test in synthetic DNA targets, in colorectal cancer cell lines, in tissue samples, and in blood-derived ctDNA from patients with advanced colorectal cancer. The proposed strip test achieved rapid and easy multiplex detection (normal allele and three major single-point mutations) of the clinically relevant KRAS mutations in ctDNA in blood samples of CRC patients with high specificity and repeatability. This multiplex strip test represents a minimally invasive, rapid, low-cost, and promising diagnostic tool for the detection of clinically relevant mutations in cancer patients.
Collapse
|
7
|
Zhang P, Jing L. Nanoprobes for Visualization of Cancer Pathology in Vivo※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Manoochehri H, Asadi S, Tanzadehpanah H, Sheykhhasan M, Ghorbani M. CDC25A is strongly associated with colorectal cancer stem cells and poor clinical outcome of patients. GENE REPORTS 2021; 25:101415. [DOI: 10.1016/j.genrep.2021.101415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
A predictive biomarker panel for bone metastases: Liquid biopsy approach. J Bone Oncol 2021; 29:100374. [PMID: 34189028 PMCID: PMC8220227 DOI: 10.1016/j.jbo.2021.100374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/12/2023] Open
Abstract
Data mining of published microarray datasets directed us to the identification of a multi gene panel involving of 15 genes that are particular to bone metastases. Serum exosomal markers HSP90AA1, SPP1, IL3, and PTK2 found in the present study might be useful in detecting the early spread of bone metastases leading to better clinical outcomes. This multi-gene panel and their related pathways may assist as promising conclusion predictors using novel approaches of exosome as liquid biopsy and their application in therapeutic targets in breast and lung cancer patients with bone metastases.
Bone metastases is one of the common metastatic site and leading cause of cancer-related mortality in progressive cancer patients. The purpose of the present study is to establish a liquid biopsy based multi-gene classifier and associated signalling pathways for early diagnosis of bone metastases. We used publically available microarray datasets and analysed them in a platform/chip-specific manner using GeneSpring software. Analyses of gene expression datasets identified 15 consistently over-expressed genes with statistical significance. Further, expression profile of same set of 15 genes were compared in breast and lung cancer exosome derived mRNA with (n = 10) and without (n = 10) bone metastases against healthy controls. ROC curve analysis performed individually for all the 15 genes shortlisted the 5 most relevant genes with significant sensitivity and specificity in both cancers. This liquid biopsy-based bone metastases predictor using multi-gene panel is a unique approach with potential clinical applications for effective management of aggressive cancers.
Collapse
|
10
|
Liquid biopsy genotyping by a simple lateral flow strip assay with visual detection. Anal Chim Acta 2021; 1163:338470. [PMID: 34024417 DOI: 10.1016/j.aca.2021.338470] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
Liquid biopsy, as a minimally invasive method that allows real-time monitoring of the tumor genome, represents a competing approach for cancer diagnosis, prognosis and therapy decision making. Liquid biopsy in cancer patients mainly includes analysis of circulating tumor cells (CTC) and cell-free circulating tumor DNA (ctDNA). ctDNA is the tumor-derived fraction of the cell-free DNA present in the blood. ctDNA is detected based on cancer-specific genomic aberrations (mainly mutations) and represents a challenging analyte due to high fragmentation and low concentration. Several methodologies have been developed for ctDNA analysis in cancer patients but many of these technologies are too time-intensive, complicated and expensive for implementation in diagnostic testing. Herein, we developed a novel lateral flow strip assay for mutational analysis of ctDNA in blood samples and visual detection that is based on gold nanoparticles as reporters. As a model, common single-point mutations of the KRAS gene, related to colorectal cancer (CRC), have been selected for method development. The proposed DNA biosensor has been successfully applied for the detection of three KRAS mutations (KRAS G12D/A/V), along with the wild-type KRAS gene in synthetic DNA targets, cancer cell lines and cfDNA from blood samples of healthy individuals and CRC patients. The main advantages of the proposed lateral flow assay are simplicity, rapid analysis time (∼10 min) and visual detection without the requirement of special instrumentation. The assay is also cost-effective with high detectability, specificity and reproducibility and has the potential to be used as a portable and universal device. In conclusion, the proposed assay offers a rapid diagnostic strip test for visual genotyping, as an alternative approach for liquid biopsy applications.
Collapse
|
11
|
Assessment of circulating tumor cells in peripheral blood using flow cytometry in patients with surgery for colorectal cancer – review. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction: Colorectal cancer (CRC) is the third most common neoplasia in the world. Circulating tumor cells (CTC) have a prognostic value and can be useful in monitoring solid neoplasia. Only one method for CTC identification has received the approval and this is the CellSearch® system based on the immunomagnetic separation. Multiple markers are used in CTC identification, as epithelial markers and cytokeratines. CTC identification in peripheral blood is associated with a worse prognostic and reduced free survival in CRC.
Material and methods: We performed a systematic search in PubMed database for articles that reports the circulating tumor cells in CRC until July 2019. We selected studies in English and French and the main words used for search were ‘circulating tumor cells’, ‘colorectal cancer’, ‘colon cancer’, ‘rectal cancer’, ‘flow cytometry’, ‘peripheral blood’. We included studies with more than 10 patients, where samples were collected from the blood in relation with surgery and flow cytometry was used as analyzing technique.
Results: We included 7 studies in final analysis, that showed in flow cytometry analysis a cut-off value of CTC that can vary from 2-4 CTC/ 7.5 ml peripheral blood with a sensitivity of 50.8% and specificity of 95%. Patients with positive CTC were associated with higher T stage and positive lymph nodes, with a worse overall survival (OS) and disease free survival (DFS) comparing with negative patients.
Conclusion: CTC are considered to be a prognostic factor who needs more validation studies in order to be included in the clinical practice.
Collapse
|
12
|
Vafaei S, Saeednejad Zanjani L, Habibi Shams Z, Naseri M, Fattahi F, Gheytanchi E, Alemrajabi M, Ebrahimi M, Madjd Z. Low expression of Talin1 is associated with advanced pathological features in colorectal cancer patients. Sci Rep 2020; 10:17786. [PMID: 33082414 PMCID: PMC7576823 DOI: 10.1038/s41598-020-74810-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
To explore the proper prognostic markers for the likelihood of metastasis in CRC patients. Seventy-seven fresh CRC samples were collected to evaluate the mRNA level of the selected marker using Real-time PCR. Moreover, 648 formalin-fixed paraffin-embedded CRC tissues were gathered to evaluate protein expression by immunohistochemistry (IHC) on tissue microarrays. The results of Real-Time PCR showed that low expression of Talin1 was significantly associated with advanced TNM stage (p = 0.034) as well as gender (p = 0.029) in mRNA levels. Similarly, IHC results indicated that a low level of cytoplasmic expression of Talin1 was significantly associated with advanced TNM stage (p = 0.028) as well as gender (p = 0.009) in CRC patients. Moreover, decreased expression of cytoplasmic Talin1 protein was found to be a significant predictor of worse disease-specific survival (DSS) (p = 0.011) in the univariate analysis. In addition, a significant difference was achieved (p = 0.039) in 5-year survival rates of DSS: 65% for low, 72% for moderate, and 88% for high Talin1 protein expression. Observations showed that lower expression of Talin1 at both the gene and protein level may drive the disparity of CRC patients' outcomes via worse DSS and provide new insights into the development of progression indicators because of its correlation with increased tumor aggressiveness.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next To Milad Tower, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, Tehran, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next To Milad Tower, Tehran, Iran
| | | | - Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next To Milad Tower, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next To Milad Tower, Tehran, Iran
| | - Mahdi Alemrajabi
- Firoozgar Clinical Research Development Center, Firoozgar Hospital (FCRDC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next To Milad Tower, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Vafaei S, Roudi R, Madjd Z, Aref AR, Ebrahimi M. Potential theranostics of circulating tumor cells and tumor-derived exosomes application in colorectal cancer. Cancer Cell Int 2020; 20:288. [PMID: 32655320 PMCID: PMC7339440 DOI: 10.1186/s12935-020-01389-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND At the present time, colorectal cancer (CRC) is still known as a disease with a high mortality rate. Theranostics are flawless scenarios that link diagnosis with therapy, including precision medicine as a critical platform that relies on the development of biomarkers particularly "liquid biopsy". Circulating tumor cells (CTCs) and tumor-derived exosomes (TDEs) in a liquid biopsy approach are of substantial importance in comparison with traditional ones, which cannot generally be performed to determine the dynamics of the tumor due to its wide restriction of range. Thus, recent attempts has shifted towards minimally noninvasive methods. MAIN TEXT CTCs and TDEs, as significant signals emitted from the tumor microenvironment, which are also detectable in the blood, prove themselves to be promising novel biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of them is still limited, and studies are at its infancy. One of the major challenges for the implementation of CTCs and TDEs which are new trends in translational medicine is the development of isolation and characterization; a standardizable approach. This review highlights and discusses the current challenges to find the bio fluids application in CRC early detection and clinical management. CONCLUSION Taken together, CTCs and TDEs as silent drivers of metastasis can serve in the management of cancer patient treatment and it is of the upmost importance to expand our insight into this subject. However, due to the limited data available from clinical trials, further validations are required before addressing their putative application in oncology.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Chen L, Chen Y, Feng YL, Zhu Y, Wang LQ, Hu S, Cheng P. Tumor circulome in the liquid biopsies for digestive tract cancer diagnosis and prognosis. World J Clin Cases 2020; 8:2066-2080. [PMID: 32548136 PMCID: PMC7281040 DOI: 10.12998/wjcc.v8.i11.2066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023] Open
Abstract
Digestive tract cancer is one of the main diseases that endanger human health. At present, the early diagnosis of digestive tract tumors mainly depends on serology, imaging, endoscopy, and so on. Although tissue specimens are the gold standard for cancer diagnosis, with the rapid development of precision medicine in cancer, the demand for dynamic monitoring of tumor molecular characteristics has increased. Liquid biopsy involves the collection of body fluids via non-invasive approaches, and analyzes biological markers such as circulating tumor cells, circulating tumor DNA, circulating cell-free DNA, microRNAs, and exosomes. In recent years, liquid biopsy has become more and more important in the diagnosis and prognosis of cancer in clinical practice due to its convenience, non-invasiveness, high specificity and it overcomes temporal-spatial heterogeneity. Therefore, this review summarizes the current evidence on liquid biopsies in digestive tract cancers in relation to diagnosis and prognosis.
Collapse
Affiliation(s)
- Long Chen
- Department of Radiotherapy, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Yu Chen
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou 511400, Guangdong Province, China
| | - Yuan-Ling Feng
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yan Zhu
- Department of Respiratory, Shulan Hospital, Hangzhou 310004, Zhejiang Province, China
| | - Li-Quan Wang
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310052, Zhejiang Province, China
| |
Collapse
|
15
|
Wu J, Hu S, Zhang L, Xin J, Sun C, Wang L, Ding K, Wang B. Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis. Theranostics 2020; 10:4544-4556. [PMID: 32292514 PMCID: PMC7150480 DOI: 10.7150/thno.40532] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Liquid biopsy is a convenient, fast, non-invasive and reproducible sampling method that can dynamically reflect the changes in tumor gene expression profile, and provide a robust basis for individualized therapy and early diagnosis of cancer. Circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) are the currently approved diagnostic biomarkers for screening cancer patients. In addition, tumor-derived extracellular vesicles (tdEVs), circulating tumor-derived proteins, circulating tumor RNA (ctRNA) and tumor-bearing platelets (TEPs) are other components of liquid biopsies with diagnostic potential. In this review, we have discussed the clinical applications of these biomarkers, and the factors that limit their implementation in routine clinical practice. In addition, the most recent developments in the isolation and analysis of circulating tumor biomarkers have been summarized, and the potential of non-blood liquid biopsies in tumor diagnostics has also been discussed.
Collapse
Affiliation(s)
- Jicheng Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lihong Zhang
- Department of Biochemistry, College of Biomedical Sciences, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jinxia Xin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Liquan Wang
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Kefeng Ding
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
16
|
Azad TD, Chaudhuri AA, Fang P, Qiao Y, Esfahani MS, Chabon JJ, Hamilton EG, Yang YD, Lovejoy A, Newman AM, Kurtz DM, Jin M, Schroers-Martin J, Stehr H, Liu CL, Hui ABY, Patel V, Maru D, Lin SH, Alizadeh AA, Diehn M. Circulating Tumor DNA Analysis for Detection of Minimal Residual Disease After Chemoradiotherapy for Localized Esophageal Cancer. Gastroenterology 2020; 158:494-505.e6. [PMID: 31711920 PMCID: PMC7010551 DOI: 10.1053/j.gastro.2019.10.039] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Biomarkers are needed to risk stratify after chemoradiotherapy for localized esophageal cancer. These could improve identification of patients at risk for cancer progression and selection of additional therapy. METHODS We performed deep sequencing (CAncer Personalized Profiling by deep Sequencing, [CAPP-Seq]) analyses of plasma cell-free DNA collected from 45 patients before and after chemoradiotherapy for esophageal cancer, as well as DNA from leukocytes and fixed esophageal tumor biopsy samples collected during esophagogastroduodenoscopy. Patients were treated from May 2010 through October 2015; 23 patients subsequently underwent esophagectomy, and 22 did not undergo surgery. We also sequenced DNA from blood samples from 40 healthy control individuals. We analyzed 802 regions of 607 genes for single-nucleotide variants previously associated with esophageal adenocarcinoma or squamous cell carcinoma. Patients underwent imaging analyses 6-8 weeks after chemoradiotherapy and were followed for 5 years. Our primary aim was to determine whether detection of circulating tumor DNA (ctDNA) after chemoradiotherapy is associated with risk of tumor progression (growth of local, regional, or distant tumors, detected by imaging or biopsy). RESULTS The median proportion of tumor-derived DNA in total cell-free DNA before treatment was 0.07%, indicating that ultrasensitive assays are needed for quantification and analysis of ctDNA from localized esophageal tumors. Detection of ctDNA after chemoradiotherapy was associated with tumor progression (hazard ratio, 18.7; P < .0001), formation of distant metastases (hazard ratio, 32.1; P < .0001), and shorter disease-specific survival times (hazard ratio, 23.1; P < .0001). A higher proportion of patients with tumor progression had new mutations detected in plasma samples collected after chemoradiotherapy than patients without progression (P = .03). Detection of ctDNA after chemoradiotherapy preceded radiographic evidence of tumor progression by an average of 2.8 months. Among patients who received chemoradiotherapy without surgery, combined ctDNA and metabolic imaging analysis predicted progression in 100% of patients with tumor progression, compared with 71% for only ctDNA detection and 57% for only metabolic imaging analysis (P < .001 for comparison of either technique to combined analysis). CONCLUSIONS In an analysis of cell-free DNA in blood samples from patients who underwent chemoradiotherapy for esophageal cancer, detection of ctDNA was associated with tumor progression, metastasis, and disease-specific survival. Analysis of ctDNA might be used to identify patients at highest risk for tumor progression.
Collapse
Affiliation(s)
- Tej D. Azad
- Department of Radiation Oncology, Stanford University, Stanford, California, USA,Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Aadel A. Chaudhuri
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Penny Fang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yawei Qiao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mohammad S. Esfahani
- Department of Radiation Oncology, Stanford University, Stanford, California, USA,Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Jacob J. Chabon
- Department of Radiation Oncology, Stanford University, Stanford, California, USA,Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Emily G. Hamilton
- Department of Radiation Oncology, Stanford University, Stanford, California, USA,Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Yi D. Yang
- Department of Radiation Oncology, Stanford University, Stanford, California, USA,Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Alex Lovejoy
- Department of Radiation Oncology, Stanford University, Stanford, California, USA,Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Aaron M. Newman
- Stanford Cancer Institute, Stanford University, Stanford, California, USA,Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - David M. Kurtz
- Stanford Cancer Institute, Stanford University, Stanford, California, USA,Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Michael Jin
- Stanford Cancer Institute, Stanford University, Stanford, California, USA,Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Joseph Schroers-Martin
- Stanford Cancer Institute, Stanford University, Stanford, California, USA,Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Henning Stehr
- Department of Radiation Oncology, Stanford University, Stanford, California, USA,Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Chih Long Liu
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Angela Bik-Yu Hui
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Viren Patel
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dipen Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ash A. Alizadeh
- Stanford Cancer Institute, Stanford University, Stanford, California, USA,Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University, Stanford, California; Stanford Cancer Institute, Stanford University, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California.
| |
Collapse
|
17
|
Eso Y, Shimizu T, Takeda H, Takai A, Marusawa H. Microsatellite instability and immune checkpoint inhibitors: toward precision medicine against gastrointestinal and hepatobiliary cancers. J Gastroenterol 2020; 55:15-26. [PMID: 31494725 PMCID: PMC6942585 DOI: 10.1007/s00535-019-01620-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023]
Abstract
Recent innovations in the next-generation sequencing technologies have unveiled that the accumulation of genetic alterations results in the transformation of normal cells into cancer cells. Accurate and timely repair of DNA is, therefore, essential for maintaining genetic stability. Among various DNA repair pathways, the mismatch repair (MMR) pathway plays a pivotal role. MMR deficiency leads to a molecular feature of microsatellite instability (MSI) and predisposes to cancer. Recent studies revealed that MSI-high (MSI-H) or mismatch repair-deficient (dMMR) tumors, regardless of their primary site, have a promising response to immune checkpoint inhibitors (ICIs), leading to the approval of the anti-programmed cell death protein 1 monoclonal antibody pembrolizumab for the treatment of advanced or recurrent MSI-H/dMMR solid tumors that continue to progress after conventional chemotherapies. This new indication marks a paradigm shift in the therapeutic strategy of cancers; however, when considering the optimum indication for ICIs and their safe and effective usage, it is important for clinicians to understand the genetic and immunologic features of each tumor. In this review, we describe the molecular basis of the MMR pathway, diagnostics of MSI status, and the clinical importance of MSI status and the tumor mutation burden in developing therapeutic strategies against gastrointestinal and hepatobiliary malignancies.
Collapse
Affiliation(s)
- Yuji Eso
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Takahiro Shimizu
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Haruhiko Takeda
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Atsushi Takai
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Hiroyuki Marusawa
- grid.417000.20000 0004 1764 7409Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, Osaka, 5438555 Japan
| |
Collapse
|
18
|
Danese E, Montagnana M, Lippi G. Circulating molecular biomarkers for screening or early diagnosis of colorectal cancer: which is ready for prime time? ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:610. [PMID: 32047771 PMCID: PMC7011594 DOI: 10.21037/atm.2019.08.97] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
According to recent statistics, colorectal cancer (CRC) is a frequent disease, the second most frequent malignancy in women and the third most common malignant disease in men, respectively. Although reinforced emphasis on CRC screening by means of immunochemical fecal occult blood test, colonoscopy or sigmoidoscopy has contributed to decrease cancer-related deaths, alternative diagnostic tests would be needed for establishing earlier and more potentially effective treatments. Innovative diagnostic techniques have recently emerged, some of which hold promises for screening and/or early CRC detection. Recent evidence suggests that the so-called "liquid biopsy", conventionally defined as detection and quantification of circulating tumor cells (CTCs) and cancer-related nucleic acids in peripheral blood, may allow earlier diagnosis of CRC combined with lower invasiveness and less patient inconvenience, higher throughput, faster turnaround time, inferior usage of healthcare resources and relatively low cost. Encouraging data have emerged from trials based on CTCs detection, though the sensitivity of the current diagnostic techniques is still perhaps insufficient for enabling early CRC diagnosis. Among the various biomarkers that can be detected with liquid biopsy, SEPT9 methylation displays good diagnostic performance and relatively high cancer detection rate (between 57-64% in patients with CRC stages 0-I), which would make this test a promising tool for population screening, alone or in combination with other conventional diagnostic investigations. Encouraging evidence has also been recently published for BCAT1/IKZF1 methylation. Regarding microRNA (miRNAs), the available evidence highlights that the combination of some of these biomarkers rather than the assessment of a single miRNA alone would enable efficient identification of early CRCs, though widespread clinical application is still challenged by a number of preanalytical, analytical and clinical issues.
Collapse
Affiliation(s)
- Elisa Danese
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | | | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Vafaei S, Fattahi F, Ebrahimi M, Janani L, Shariftabrizi A, Madjd Z. Common molecular markers between circulating tumor cells and blood exosomes in colorectal cancer: a systematic and analytical review. Cancer Manag Res 2019; 11:8669-8698. [PMID: 31576171 PMCID: PMC6768129 DOI: 10.2147/cmar.s219699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Nearly half of patients with colorectal cancer (CRC), the third leading cause of cancer deaths worldwide, are diagnosed in the late stages of the disease. Appropriate treatment is not applied in a timely manner and nearly 90% of the patients who experience metastasis ultimately die. Timely detection of CRC can increase the five-year survival rate of patients. Existing histopathological and molecular classifications are insufficient for prediction of metastasis, which limits approaches to treatment. Detection of reliable cancer-related biomarkers can improve early diagnosis, prognosis, and treatment response prediction and recurrence risk. Circulating tumor cells (CTCs) and exosomes in peripheral blood can be used in a liquid biopsy to assess the status of a tumor. Exosomes are abundant and available in all fluids of the body, have a high half-life and are released by most cells. Tumor-derived exosomes are released from primary tumors or CTCs with selective cargo that represents the overall tumor. The current systematic review highlights new trends and approaches in the detection of CRC biomarkers to determine tumor signatures using CTC and exosomes. When these are combined, they could be used to guide molecular pathology and can revolutionize detection tools. Relevant observational studies published until July 24, 2019 which evaluated the expression of tumor markers in CTCs and exosomes were searched in PubMed, Scopus, Embase, and ISI Web of Science databases. The extracted biomarkers were analyzed using String and EnrichR tools.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Zanutto S, Ciniselli CM, Belfiore A, Lecchi M, Masci E, Delconte G, Primignani M, Tosetti G, Dal Fante M, Fazzini L, Airoldi A, Vangeli M, Turpini F, Rubis Passoni GG, Viaggi P, Arena M, Motta RIO, Cantù AM, Crosta C, De Roberto G, Iannuzzi F, Cassinotti A, Dall'Olio V, Tizzoni L, Sozzi G, Meroni E, Bisanti L, Pierotti MA, Verderio P, Gariboldi M. Plasma miRNA-based signatures in CRC screening programs. Int J Cancer 2019; 146:1164-1173. [PMID: 31304978 DOI: 10.1002/ijc.32573] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) screening programs help diagnose cancer precursors and early cancers and help reduce CRC mortality. However, currently recommended tests, the fecal immunochemical test (FIT) and colonoscopy, have low uptake. There is therefore a pressing need for screening strategies that are minimally invasive and consequently more acceptable to patients, most likely blood based, to increase early CRC identification. MicroRNAs (miRNAs) released from cancer cells are detectable in plasma in a remarkably stable form, making them ideal cancer biomarkers. Using plasma samples from FIT-positive (FIT+) subjects in an Italian CRC screening program, we aimed to identify plasma circulating miRNAs that detect early CRC. miRNAs were initially investigated by quantitative real-time PCR in plasma from 60 FIT+ subjects undergoing colonoscopy at Fondazione IRCCS Istituto Nazionale dei Tumori, then tested on an internal validation cohort (IVC, 201 cases) and finally in a large multicenter prospective series (external validation cohort [EVC], 1121 cases). For each endoscopic lesion (low-grade adenoma [LgA], high-grade adenoma [HgA], cancer lesion [CL]), specific signatures were identified in the IVC and confirmed on the EVC. A two-miRNA-based signature for CL and six-miRNA signatures for LgA and HgA were selected. In a multivariate analysis including sex and age at blood collection, the areas under the receiver operating characteristic curve (95% confidence interval) of the signatures were 0.644 (0.607-0.682), 0.670 (0.626-0.714) and 0.682 (0.580-0.785) for LgA, HgA and CL, respectively. A miRNA-based test could be introduced into the FIT+ workflow of CRC screening programs so as to schedule colonoscopies only for subjects likely to benefit most.
Collapse
Affiliation(s)
- Susanna Zanutto
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Molecular Genetics of Cancer Unit, Fondazione Istituto FIRC Oncologia Molecolare (IFOM), Milan, Italy
| | - Chiara Maura Ciniselli
- Bioinformatics and Biostatistics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonino Belfiore
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Lecchi
- Bioinformatics and Biostatistics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enzo Masci
- Diagnostic and Therapeutic Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriele Delconte
- Diagnostic and Therapeutic Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Primignani
- CRC "A. M. e A. Migliavacca" Center for Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giulia Tosetti
- CRC "A. M. e A. Migliavacca" Center for Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marco Dal Fante
- Gastroenterology and Endoscopy Unit, Humanitas San Pio X, Milan, Italy
| | - Linda Fazzini
- Gastroenterology and Endoscopy Unit, Humanitas San Pio X, Milan, Italy
| | - Aldo Airoldi
- Hepatology and Gastroenterology Unit, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Marcello Vangeli
- Hepatology and Gastroenterology Unit, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Francesca Turpini
- Digestive Endoscopy Unit, Department of Gastro Hepatology, ASST Santi Paolo e Carlo, San Carlo Borromeo Hospital, Milan, Italy
| | - Giovanni Giuseppe Rubis Passoni
- Digestive Endoscopy Unit, Department of Gastro Hepatology, ASST Santi Paolo e Carlo, San Carlo Borromeo Hospital, Milan, Italy
| | - Paolo Viaggi
- Digestive Endoscopy Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Monica Arena
- Digestive Endoscopy Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | | | | | - Cristiano Crosta
- Division of Endoscopy, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | | | | | | | - Gabriella Sozzi
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emanuele Meroni
- Diagnostic and Therapeutic Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luigi Bisanti
- Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Alessandro Pierotti
- Molecular Genetics of Cancer Unit, Fondazione Istituto FIRC Oncologia Molecolare (IFOM), Milan, Italy.,Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Gariboldi
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Molecular Genetics of Cancer Unit, Fondazione Istituto FIRC Oncologia Molecolare (IFOM), Milan, Italy
| |
Collapse
|
21
|
Pizzi MP, Bartelli TF, Pelosof AG, Freitas HC, Begnami MD, de Abrantes LLS, Sztokfisz C, Valieris R, Knebel FH, Coelho LGV, da Costa WL, Coimbra FJF, da Silva IT, de Amorim MG, Nunes DN, Dias-Neto E. Identification of DNA mutations in gastric washes from gastric adenocarcinoma patients: Possible implications for liquid biopsies and patient follow-up. Int J Cancer 2019; 145:1090-1098. [PMID: 30779121 DOI: 10.1002/ijc.32217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
Whereas cancer patients have benefited from liquid biopsies, the scenario for gastric adenocarcinoma (GAC) is still dismal. We used next-generation deep sequencing of TP53-a highly mutated and informative gene in GAC-to assess mutations in tumor biopsies, plasma (PL) and stomach fluids (gastric wash-GW). We evaluated their potential to reveal tumor-derived mutations, useful for monitoring mutational dynamics at diagnosis, progression and treatment. Exon-capture libraries were constructed from 46 patients including tumor biopsies, GW and PL pre and post-treatment (196 samples), with high vertical coverage >8,000×. At diagnosis, we detected TP53 mutations in 15/46 biopsies (32.6%), 7/46 GW- (15.2%) and 6/46 PL-samples (13%). Biopsies and GW were concordant in 38/46 cases (82.6%) for the presence/absence of mutations and, furthermore, four GW-exclusive mutations were identified, suggesting tumor heterogeneity. Considering the combined analysis of GW and PL, TP53 mutations found in biopsies were also identified in 9/15 (60%) of cases, the highest detection level reported for GAC. Our study indicates that GW could be useful to track DNA alterations, especially if anchored to a comprehensive gene-panel designed for this malignancy.
Collapse
Affiliation(s)
- Melissa Pool Pizzi
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | | | - Helano Carioca Freitas
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, São Paulo, SP, Brazil.,Department of Clinical Oncology, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | | | | | - Renan Valieris
- Laboratory of Computational Biology, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Luiz Gonzaga Vaz Coelho
- Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wilson Luiz da Costa
- Department of Abdominal Surgery, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Felipe J F Coimbra
- Department of Abdominal Surgery, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Israel Tojal da Silva
- Laboratory of Computational Biology, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Diana Noronha Nunes
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, São Paulo, SP, Brazil.,Laboratory of Neurosciences Alzira Denise Hertzog Silva (LIM-27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Yang W, Han Y, Zhao X, Duan L, Zhou W, Wang X, Shi G, Che Y, Zhang Y, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Advances in prognostic biomarkers for esophageal cancer. Expert Rev Mol Diagn 2018; 19:109-119. [PMID: 30582379 DOI: 10.1080/14737159.2019.1563485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xinhui Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Gaokai Shi
- The First Brigade of Student, Air Force Military Medical University, Xi’an, China
| | - Yinggang Che
- The First Brigade of Student, Air Force Military Medical University, Xi’an, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Hongwei Zhang
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Qingchuan Zhao
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
23
|
Gabriel E, Bagaria SP. Assessing the Impact of Circulating Tumor DNA (ctDNA) in Patients With Colorectal Cancer: Separating Fact From Fiction. Front Oncol 2018; 8:297. [PMID: 30128304 PMCID: PMC6088154 DOI: 10.3389/fonc.2018.00297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Significant advances and increased awareness have been in made in the field of non-invasive liquid biopsies for cancer, spanning several malignancies from gastrointestinal, pulmonary, and other etiologies. Broadly, the genetic source material for liquid biopsies includes circulating tumor cells, cell-free circulating tumor DNA (ctDNA), or cell-free circulating tumor microRNA (mRNA). In this review, we specifically focus on ctDNA and its current role in colorectal cancer. While there are several commercially available assays that detect ctDNA, the utility of these products is still variable and therefore the clinical applications of ctDNA in the management of patients with cancer has yet to be determined. This is reflected by the recent joint review set forth by the American Society of Clinical Oncology (ASCO) and the College of American Pathologists (CAP), clarifying and somewhat tempering the present role of ctDNA in patients with cancer. This review provides additional detail regarding ctDNA in the limited setting of colorectal cancer. The increasing importance and promise of ctDNA remains an area of active research, and further prospective studies may enhance the clinical utility of ctDNA in the future.
Collapse
Affiliation(s)
- Emmanuel Gabriel
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Sanjay P Bagaria
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL, United States
| |
Collapse
|
24
|
Battaglin F, Naseem M, Puccini A, Lenz HJ. Molecular biomarkers in gastro-esophageal cancer: recent developments, current trends and future directions. Cancer Cell Int 2018; 18:99. [PMID: 30008616 PMCID: PMC6042434 DOI: 10.1186/s12935-018-0594-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Gastro-esophageal adenocarcinomas (GEA) represent a severe global health burden and despite improvements in the multimodality treatment of these malignancies the prognosis of patients remains poor. HER2 overexpression/amplification has been the first predictive biomarker approved in clinical practice to guide patient selection for targeted treatment with trastuzumab in advanced gastric and gastro-esophageal junction cancers. More recently, immunotherapy has been approved for the treatment of GEA and PD-L1 expression is now a biomarker required for the administration of pembrolizumab in these diseases. Significant progress has been made in recent years in dissecting the genomic makeup of GEA in order to identify distinct molecular subtypes linked to distinct patterns of molecular alterations. GEA have been found to be highly heterogeneous malignances, representing a challenge for biomarkers discovery and targeted treatment development. The current review focuses on an overview of established and novel promising biomarkers in GEA, covering recent molecular classifications from TCGA and ACRG. Main elements of molecular heterogeneity are discussed, as well as emerging mechanisms of primary and secondary resistance to HER2 targeted treatment and recent biomarker-driven trials. Future perspectives on the role of epigenetics, miRNA/lncRNA and liquid biopsy, and patient-derived xenograft models as a new platform for molecular-targeted drug discovery in GEA are presented. Our knowledge on the genomic landscape of GEA continues to evolve, uncovering the high heterogeneity and deep complexity of these tumors. The availability of new technologies and the identification of promising novel biomarker will be critical to optimize targeted treatment development in a setting where therapeutic options are currently lacking. Nevertheless, clinical validation of novel biomarkers and treatment strategies still represents an issue.
Collapse
Affiliation(s)
- Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA 90033 USA
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA 90033 USA
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA 90033 USA
- Oncologia Medica 1, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA 90033 USA
| |
Collapse
|